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Abstract. This paper studies an adaptive clustering problem. We focus on re-clustering an object
set, previously clustered, when the feature set characterizing the objects increases. We propose an
adaptive clustering method based on a hierarchical agglomerative approach, Hierarchical Adaptive
Clustering (HAC), that adjusts the partitioning into clusters that was established by applying the
hierarchical agglomerative clustering algorithm (HACA) (Han and Kamber, 2001) before the feature
set changed. We aim to reach the result more efficiently than running HACA again from scratch
on the feature-extended object set. Experiments testing the method’s efficiency and a practical
distributed systems problem in which the HAC method can be efficiently used (the problem of
adaptive horizontal fragmentation in object oriented databases) are also reported.
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1. Introduction

Clustering is a data mining activity that aims to differentiate groups inside a given set
of objects, with respect to a set of relevant attributes of the analyzed objects. A large
collection of clustering algorithms is available in the literature. The papers (Han and
Kamber, 2001) and (Jain and Dubes, 1998) contain comprehensive overviews of existing
techniques. All clustering techniques employ a dissimilarity (similarity) measure between
objects, usually expressed on the basis of a distance function. Generally, the distance
function is defined on the attribute (feature) set describing the objects.

Hierarchical clustering methods represent a major class of clustering techniques.
There are two types of hierarchical clustering algorithms. Given a set of n objects and a
number k, k � n, the agglomerative (bottom-up) methods begin with n singletons (sets
with one element), merging them until the desired number of clusters (k) is achieved.
At each step, the most similar two clusters are chosen for merging. The divisive (top-
down) methods start from one cluster containing all n objects and split it until the desired
number of clusters (k) is achieved. In the following, we will name HACA the classical
hierarchical agglomerative clustering algorithm.

Generally, the clustering methods apply on a set of objects measured against a known
set of features (attributes). But there are applications where the attribute set characterizing
the objects evolves. For obtaining in these conditions a partitioning of the object set,



102 G. Şerban, A. Câmpan

the clustering algorithm can be, obviously, applied over and over again, beginning from
scratch, each time when the attributes change. But this can be inefficient.

We propose an adaptive clustering algorithm, named Hierarchical Adaptive Cluste-
ring (HAC), based on detecting stable structures (called cores) inside the existing clusters,
when the attribute set increases. We aim to reach the result more efficiently than applying
the hierarchical agglomerative clustering algorithm (HACA) (Han and Kamber, 2001)
again from the scratch on the feature-extended object set.

Related Work. There are few approaches reported in the literature that take into ac-
count the problem of adapting the result of a clustering when the object feature set is
extended. Early works treat the sequential use of features in the clustering process, one
by one. An example of such a monothetic approach is mentioned in (Jain et al., 1999).
A more recent paper (Wu and Gardarin, 2001) analyzes the same problem of adapting a
clustering produced by a DBSCAN like algorithm, using some additional structures and
distance approximations in an Euclidian space.

However, adapting a clustering resulted from a hierarchical agglomerative algorithm
has not been reported by none of these works.

The term adaptive clustering has also been used in (Bagherjeiran et al., 2005), but
with a different meaning. In this paper the authors address, under the name of adaptive
clustering, the problem of adapting the distance function for discriminating the objects,
using a reinforcement learning approach. Besides the terminology coincidence, this prob-
lem has nothing in common with the one we approach in this paper.

The remaining of the paper is organized as follows. Section 2 presents the theoreti-
cal modeling of the adaptive clustering problem. The Hierarchical Adaptive Clustering
algorithm (HAC) is described in Section 3. Section 4 presents a comparative experimen-
tal evaluation of HAC and HACA algorithms, with respect to several cost measures we
describe. Section 4 also indicates how a practical distributed systems problem can be ef-
ficiently approached, modeled and solved using the proposed adaptive clustering method.
Conclusions and future work are given in Section 5.

2. Theoretical Model

Let {O1, O2, . . . , On} be the set of objects to be classified. Each object is measured
with respect to a set of m initial attributes and is therefore described by a n-dimensional
vector Oi = (Oi1, . . . , Oim), Oik ∈ �+, 1 � i � n, 1 � k � m. Usually, the attributes
associated to objects are standardized, in order to ensure an equal weight to all of them
(Han and Kamber, 2001).

Let {K1, K2, . . . , Kp} be the set of clusters discovered in data by applying the HACA
algorithm. Each cluster is a set of objects, Kj = {Oj

1, O
j
2, . . . , O

j
nj
}, 1 � j � p. Even if

it is a concept appeared from and employed in non-hierarchical clustering (k-means), we
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will also make use in our method of the centroid notion. The centroid of the cluster Kj ,
denoted by fj , represents the cluster’s mean and is defined as

fj =
(∑nj

k=1 Ok1

nj
, . . . ,

∑nj

k=1 Okm

nj

)
.

The measure used for discriminating objects can be any metric or semi-metric func-
tion, d. We use in our approach the Euclidian distance as distance function between the
objects:

d(Oi, Oj) = dE(Oi, Oj) =

√√√√ m∑
l=1

(Oil − Ojl)2.

The measured set of attributes is afterwards extended with s (s � 1) new attributes,
numbered as (m+1), (m+2), . . . , (m+s). After extension, the objects’ feature vectors
become O′

i = (Oi1, . . . , Oim, Oi,m+1, . . . , Oi,m+s), 1 � i � n.
We want to analyze the problem of recalculating the objects grouping into clusters,

after object extension and starting from the current partitioning. We aim to obtain a per-
formance with respect to the partitioning from scratch process.

We denote by K ′
j , 1 � j � p , the set containing the same objects as Kj , after the

attribute set extension. By f ′
j , 1 � j � p, we denote the mean (center) of the set K ′

j .
These sets K ′

j , 1 � j � p, will not necessarily represent clusters after the attribute set
extension. The newly arrived attributes can change the objects arrangement into clusters.
But there is a considerable chance, when adding one or few attributes to objects, and
the attributes have equal weights and normal data distribution, that the old arrangement
into clusters to be close to the new actual one. The actual K ′

j clusters could be of course
obtained by applying the HACA clustering algorithm on the set of extended objects. But
we try to avoid this process and replace it with one less expensive but not less accurate.
With these being said, we agree, however, to continue to refer the sets K ′

j as clusters.
We therefore take as starting point the previous partitioning into clusters and study in

which conditions an extended object Oj′
i is still “correctly” placed in its cluster K ′

j . For

that, we express the distances between Oj′
i and the centers of its old and new clusters,

fj and f ′
j , compared to the distances to the centers fr and f ′

r of any other cluster K ′
r,

1 � r � p, r �= j. The objects in cluster j that are satisfying certain conditions are
similar enough to be kept together. So we keep them in one cluster. The remaining objects
in cluster j (those that are not satisfying the imposed conditions) will be extracted and
distributed each one in its singleton. Clearly, from this cluster adjustment process will
result a number k′ of clusters, k � k′ � n. In order to reach again the targeted number k

of clusters, we proceed next to merge clusters in the same manner as HACA does. But, as
we do not generally start again from singletons, the number of steps will be significantly
reduced. Also, as we will demonstrate by experiments, we do not lose significantly the
quality of the clusters obtained by the hierarchical adaptive clustering method described
above compared to the quality of the clusters provided by HACA. We mention that the
group metric (“linkage metric”) that we have used in our experiments is “average-link”.
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In Theorem 1 below we give conditions in which an extended object Oj′
i is “cor-

rectly” placed in its cluster K ′
j , assuming that Kj is the cluster in which Oj

i was disposed
by HACA.

Theorem 1. When inequality (1) holds for an object Oj
i and its cluster Kj

dE(Oj
i , fj) � dE(Oj

i , fr), ∀j, r, 1 � j, r � p, r �= j, (1)

and inequality (2) holds for the extended object Oj′
i and its cluster K ′

j

m+s∑
l=m+1

(∑nj

k=1 Okl

nj
−

∑nr

k=1 Okl

nr

)
·
(∑nj

k=1 Okl

nj
+

∑nr

k=1 Okl

nr
− 2 ·Oil

)
� 0 (2)

for all r = 1, p, r �= j, then the object Oj′
i is closer to the center f ′

j than to any other
center f ′

r, 1 � j, r � p, r �= j.

Proof. We prove below this statement.

d2(Oj′
i , f ′

j) − d2(Oj′
i , f ′

r) = d2(Oj
i , fj) +

m+s∑
l=m+1

(∑nj

k=1 Okl

nj
− Oil

)2

− d2(Oj
i , fr) −

m+s∑
l=m+1

(∑nr

k=1 Okl

nr
− Oil

)2

.

Using the inequality (1), we have:

d2(Oj′
i , f ′

j) − d2(Oj′
i , f ′

r)

�
m+s∑

l=m+1

(∑nj

k=1 Okl

nj
− Oil

)2

−
m+s∑

l=m+1

(∑nr

k=1 Okl

nr
− Oil

)2

⇔

d2(Oj′
i , f ′

j) − d2(Oj′
i , f ′

r)

�
m+s∑

l=m+1

(∑nj

k=1 Okl

nj
−

∑nr

k=1 Okl

nr

)
·
(∑nj

k=1 Okl

nj
+

∑nr

k=1 Okl

nr
− 2 · Oil

)
.

If the inequality (2) holds for Oj′
i , then the inequality above becomes

d2(Oj′
i , f ′

j) − d2(Oj′
i , f ′

r) � 0.

Because all distances are non-negative numbers, it follows that

d(Oj′
i , f ′

j) � (Oj′
i , f ′

r), ∀r, 1 � r � p, r �= j.
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The first condition in Theorem (1) requires that an object Oi ∈ Kj to be, at the
end of the initial clustering process, closer to the centroid of its cluster than to any other
centroid. Inequality (1) will not hold for every object with respect to the clusters produced
by HACA. But as we used as linkage-metric in HACA average-link, it is likely that a lot of
objects will satisfy inequality (1). All objects Oi ∈ Kj which satisfy inequality (1) and
have extensions that meet the requirements expressed by condition (2), are sufficiently
similar with each other and dissimilar to the objects in other clusters. So, it is justified to
keep them together in one cluster, after the attribute set extension.

3. The Hierarchical Adaptive Clustering Algorithm

We will use the properties enounced in Section 2 in order to identify inside each cluster
K ′

j , 1 � j � p, those objects that have a considerable chance to remain together in one
cluster, and not to move in different clusters as a result of the attribute set extension. We
say that these objects form the core of their cluster.

DEFINITION 1. We introduce the following terms that will be used in our adaptive algo-
rithm:

a) We denote by StrongCorej = {Oj′
i |O

j′
i ∈ K ′

j , Oj
i satisfies inequality (1) and Oj′

i

satisfies inequalities set (2)} - the set of all objects in K ′
j closer, before extension,

to the center of their cluster than to the center of any other cluster and satisfying,
after extension, inequality (2) for each cluster K ′

r 1 � j, r � p, r �= j.
b) Let sat(Oj′

i ) be the set of all clusters K ′
r,∀r, 1 � r � p, r �= j not containing

Oj′
i and for which object Oj′

i satisfies inequality (2). We denote by WeakCorej =

{Oj′
i |O

j′
i ∈ K ′

j , O
j
i satisfies inequality (1) and |sat(Oj′

i )| �
∑nj

k=1
|sat(Oj′

k
)|

nj
} the

set of all objects in K ′
j satisfying: before extension, inequality (1); after extension,

inequality (2) for at least so many clusters that all objects in K ′
j are satisfying (2),

in average.
c) Corej = StrongCorej iif StrongCorej �= ∅; otherwise, Corej = WeakCorej .

OCorej = K ′
j \ Corej is the set of out-of-core objects in cluster K ′

j .

We have chosen the above cluster cores definition because of the following reasons. It
is not sure that there is in cluster K ′

j any object that satisfies inequality (2) for all clusters
K ′

r, 1 � r � p, r �= j. If there are such objects (StrongCorej �= ∅), we know that,
according to Theorem (1), they are closer to the cluster center f ′

j than to any other cluster
center f ′

r, 1 � r � p, r �= j. Then, Corej will be taken to be equal to StrongCorej and
will be the seed for cluster j in the adaptive algorithm. But if StrongCorej = ∅, then,
for the core not to be empty, we will choose as seed for cluster j other objects, the most
stable ones between all objects in K ′

j .
We give next the Hierarchical Adaptive Clustering (HAC) algorithm.
The algorithm starts by calculating the old clusters’ cores. The cores will be the new

initial clusters from which the iterative process begins. Next, the algorithm proceeds in
the same manner as the classical HACA method does.
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We mention that the algorithm stops when the desired number of clusters is obtained.

Algorithm Hierarchical Adaptive Clustering is
Input:

- the set X = {O1, . . . , On} of m-dimensional previously clustered
objects;

- the set X′ = {O′
1, . . . , O′

n} of (m+s)-dimensional extended objects
to be clustered; O′

i has the same first m components as Oi;
- the metric dE between objects in a multi-dimensional space;
- the number p of desired clusters;
- K = {K1, . . . , Kp} the previous partition of objects in X.

Output:
- the new partition K′ = {K′

1, . . . , K′
p} for the objects in X′.

Begin
For all clusters Kj ∈ K do

Calculate Corej ← (StrongCorej �= ∅)?StrongCorej : WeakCorej

Calculate OCorej ← Kj \ Corej

EndFor
C ← ∅ // the current cluster set
For i = 1 to p do

If Corei �= ∅ then
C ← C ∪ {Corei}

EndIf
For all O ∈ OCorei do

C ← C ∪ {O} //add a singleton to C

EndFor
EndFor
While | C |> p do

(Cu∗ , Cv∗ ) ← argmin(Cu,Cv)dE(Cu, Cv)

Cnew ← Cu∗ ∪ Cv∗

C ← C \ {Cu∗ , Cv∗} ∪ {Cnew}
EndWhile
K′ ← C

End.

As we have already mentioned, we consider the distance dE(Cu, Cv) between two
clusters Cu and Cv expressed by the average-link metric:

dE(Cu, Cv) =

∑
a∈Cu

∑
b∈Cv

dE(a, b)
| Cu | × | Cv | . (3)

This linkage metric leads to higher probability of well formed cores than would lead
the single-link metric, for example. We are working on experimentally validating and
formally proving this statement.

REMARK 1. The global complexity of the HAC algorithm is not increased by the
clusters’ cores calculation. This happens because cores can be optimally computed in
O(n · p · s), where s is usually a small number, and p < n, generally p << n. Conse-
quently, the cores computation is feasible in O(n2), while HACA also runs in O(n2).
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4. Experimental Evaluation

In this section we present some experimental results obtained by applying the HAC algo-
rithm described in Section 3.

As a case study, for experimenting our theoretical results described in Section 2 and
for evaluating the performance of the HAC algorithm, we consider some experiments that
are briefly described in the following subsections.

We have to mention that all data were taken from the website at "http://www.
cormactech.com/neunet" (CorMac, 2005).

4.1. Quality Measures

We present in the following the measures that will be used for evaluating the results of
the HAC and HACA clustering algorithms.

Number of iterations. It determines the global calculus complexity and it is used for
evaluating the performances of both HAC and HACA.

The degree of compactness of a partition. The degree of compactness, or the dis-
persion (DISP) of a partition K is defined as follows:

DISP (K) =

∑p
l=1

∑
Oi,Oj∈Kl,i>j

d(Oi,Oj)

C2
|Kl|

p
, (4)

where K = {K1, . . . , Kp} is the set of clusters obtained after applying a clustering algo-
rithm. DISP expresses the average distance between objects in a cluster, for all clusters,
and C2

|Kl| represents the number of combinations of two elements from the set Kl.
As expected, the smaller the dispersion is, more compact clusters we have obtained

and better was the cores choice at the beginning of the adaptive clustering process.

Information gain. For comparing the informational relevance of the attributes we
used the information gain (IG) measure (Quinlan, 1993).

4.2. Experiment 1. Cancer

The breast cancer database was obtained from the University of Wisconsin Hospitals,
Madison from Dr. William H. Wolberg.

The objects to be clustered in this experiment are patients: each patient is identified
by 9 attributes (Wolberg and Mangasarian, 1990). The attributes have been used to rep-
resent instances. Each instance has one of two possible classes: benign or malignant. In
this experiment there are 457 patients (objects).
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4.3. Experiment 2. Dermatology

The objects to be clustered in this experiment are also patients: each patient is identified
by 34 attributes, 33 of which are linear valued and one of them is nominal. There are 366
objects (patients).

The aim of the clustering process is to determine the type of Eryhemato-Squamous
Disease (CorMac, 2005).

In the dataset constructed for this domain, the family history feature has the value 1 if
any of these diseases has been observed in the family, and 0 otherwise. The age feature
simply represents the age of the patient. Every other feature (clinical and histopatholog-
ical) was given a degree in the range of 0 to 3. Here, 0 indicates that the feature was not
present, 3 indicates the largest amount possible, and 1, 2 indicate the relative intermediate
values.

4.4. Experiment 3. Wine

These data are the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The analysis determined the quantities
of 13 constituents found in each of the three types of wines (Aeberhard et al., 1992).

The objects to be clustered in this experiment are wine instances: each is identified
by 13 attributes. There are 178 objects (wine instances).

We have to mention that all attributes in this experiment are continuous.

4.5. Results

In this section we comparatively present the results obtained by applying HAC and HACA
algorithms for the experiments described in the above subsections.

From Table 1 we observe that using HAC the number of iterations for finding the
solution is much smaller than in the case of HACA. Also, the clusters obtained by HAC
are roughly equally dispersed as those given by HACA. So, the clusters quality remains
at about the same level, but the clustering process is more efficient.

To see how relevant the newly arrived attributes were, we present in Table 2 all at-
tributes, from each experiment, in the decreasing order of their information gain (IG).
The new attributes are the highlighted ones.

The computation of the information gain measure has been performed as follows. We
cluster, using HACA, the set of extended objects, and a partition K = {K1, K2, . . . , Kp}
is produced. Then, information gain has been computed for each attribute, considering
that the class or label for each object is indicated by its cluster. So, an object Oi ∈ Kj

has as label Kj . The larger the information gain of an attribute is, the more discriminative
that attribute is for the object set – it determines more strongly the objects separation into
classes (clusters).

We think that there might be a connection between how discriminative a new added
attribute is for the object set and how strong changes it causes to the old partitioning of
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Table 1

The comparative results for HAC and HACA

Experiment Cancer Dermatology Wine

No of objects 457 366 178

No of attributes (m+s) 9 34 13

No of new attributes (s) 4 3 4

No of clusters 2 6 3

No of HACA iterations for m attributes 455 360 175

No of HACA iterations for (m+s) attributes (N1) 455 360 175

No of HAC iterations for (m+s) attributes (N2) 32 150 83

Reduction of the no of iterations (N1-N2)/N1(%) 92.9 % 58.3 % 52.5 %

DISP(HACA) for m attributes 5.3507 8.0207 0.83

DISP(HACA) for (m+s) attributes 7.6505 7.9284 0.9871

DISP(HAC) for (m+s) attributes 7.78 8.21 1.06

No of objects StrongCore/WeakCore 92/0 18/41 53/0

(% from no of objects) HAC

the object set. However, intuitively, not only the discriminative power of a new attribute is
important in this issue, but also the way this attribute is correlated with the old attributes.

Table 2 sustains these ideas. Namely, it can be seen that when the new attributes have
large information gain values compared to the old attributes (Cancer and Wine exper-
iments), the old partitioning is more easily adapted, because it does not require to be
significantly changed. This fact reflects in the good quality of the partitions produced by
HAC, i.e., the dispersion of the new partition, produced by HAC, is close to the dispersion
of the old partition. By contrast, when new attributes are less significant compared to the
old ones (Dermatology experiment), the old partition is less well-adapted and the new set
of clusters quality decreases (dispersion increases). These observations consider equally
weighted attributes.

Table 2

The decreasing order of attributes in respect to the information gain measure

IG of new attributes
Experiment Order of attributes /

IG of old attributes

Cancer 2 3 6 7 5 4 8 1 9 64,7%

Dermatology 22 21 23 1 34 30 28 13 26 7 17 9 29 10 16 11

25 15 6 27 4 20 32 8 5 24 3 31 12 2 19 18 14 33 7,6%

Wine 7 10 12 13 6 1 2 11 9 4 5 3 8 57%
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We still have to inspect more carefully how the information gain of the new attributes
and the correlations between the old and the new attributes have impact on partition
changing when object feature set extension happens.

4.6. Adaptive Horizontal Fragmentation in Object Oriented Databases

A practical problem, where the proposed method can be efficiently used, is the adaptive
horizontal fragmentation of object oriented databases.

A horizontal fragmentation approach that uses data mining clustering methods for
partitioning object instances into fragments has been presented in (Darabant and Cam-
pan, 2004a), (Darabant and Campan, 2004b), (Darabant and Campan, 2004c), (Darabant
et al., 2004). Essentially, that approach takes full advantage of existing data, where statis-
tics are already present, and develops fragmentation around user applications (queries)
that are to be optimized by the obtained fragmentation. But real databases applications
evolve in time, and consequently they require re-fragmentation in order to deal with new
applications entering the system and others leaving. Obviously, for obtaining the frag-
mentation that fits the new user applications set, the original fragmentation scheme can
be applied from scratch. However, this process can be inefficient.

We have applied the HAC method in the case when new user applications arrive in the
system and the current fragments must be accordingly adapted (Campan et al., 2005). The
obtained results were good. The adaptive fragmentation keeps the fragmentation quality
around the non-adaptive one and the processing time is improved, as the adaptive method
performs, generally, in less time than the full fragmentation process.

5. Conclusions and Future Work

In this paper we proposed a new method for adapting the result of a clustering when
the attribute set describing the objects increases. The experiments on different data sets
prove that the result is reached more efficiently using the proposed method than running
the agglomerative hierarchical clustering algorithm HACA again from scratch, on the
feature-extended object set.

But there are some situations when it is better to resort to a HACA clustering of the
feature-extended object set, than to use the HAC algorithm. Intuitively, such situations
can be: the addition of a large number of features or the addition of new features with
small information gain and contradictory information with respect to the old feature set.
A discussion about how new attributes information gain and correlation with the old at-
tributes can influence the adaptive clustering results has been presented in Subsection 4.5.
We intend to analyse this issue and to identify situations in which is better to run HACA
from scratch on the feature-extended object set, than to run the adaptive clustering algo-
rithm HAC. It would be interesting to obtain rigourous conditions about the effectiveness
of applying our adaptive clustering approach.

Further work may be done in the following directions:
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• to isolate conditions to decide when it is more effective to adapt (using HAC) the
result of a clustering of the feature-extended object set than to restart the clustering
using HACA;

• to study how the information brought into the system by the newly added attributes,
their correlation with the initial ones influences the quality (dispersion) of clusters
obtained by the HAC algorithm;

• to apply the adaptive algorithm on precise problems, from where the need of such
an adaptive algorithm originated.
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Adaptyvus hierarchinis klasterizavimas

Gabriela ŞERBAN, Alina CÂMPAN

Straipsnyje tiriamas adaptyvaus klasterizavimo uždavinys. Koncentruojamasi ↪i perklasteriza-
vim ↪a, kai objektus charakterizuojanti savybi ↪u aibė yra papildoma. Siūlomas hierarchiniu kaupimu
pagr↪istas adaptyvus klasterizavimas. Siekiama gauti rezultat ↪a efektyviau negu vykdant klasteri-
zavimo algoritm ↪a nuo pradži ↪u. Aprašyti metodo efektyvumo tyrimo eksperimentai ir praktinis
paskirstyt ↪u sistem ↪u uždavinys (adaptyvus horizontalus objektiškai orientuot ↪u duomen ↪u bazi ↪u frag-
mentavimas), kuriame metodas gali būti efektyviai naudojamas.


