
INFORMATICA, 1990, Vol.1, No.l, 071-088

DESIGN OF SOFTWARE FOR ,
GLOBAL OPTIMIZATION'

Audris MOCKUS and Linas MOCKUS

Institute of Mathematics and Cybernetics,
Lithuanian Academy of Sciences,
232600 Vilnius, Akademijos St.4, Lithuania

Abstract. In the paper the global optimization is described
from the point of an interactive software design. The interactive
software that implements numeric methods and other techniques
to solve global optimization problems is presented. Some problems
of such a software design are formulated and discussed.

Key words: global optimization, software environment.

1. Introduction.The optimization of a non convex con
tinuous function involves different techniques. In the paper
an approach to this problem from the point of the designer of
interactive software is presented.

The "Global Minimum" software implements numeric
methods and other techniques to solve ,the global optimization
problems. "Global Minimum" will be used to illustrate the
discussed problems in global optimization and software design.

At the beginning, the Bayesian approach to the optimiza
tion, the underlying idea of numeric methods used in "Global
Minimum," is presented. Then, the implemented optimizatio!l
methods are briefly described. Finally, the design of interac
tive software environment for optimization is considered. The
stated design problems may be similar for ot.her software en
vironments.

72 Design of Software

2. Global optimization problems. Almost every en
gineering and design problem has a subproblem, requiring op
timization. The functions to be examined usually have mul
tiply extrema and the best of them must be chosen. Local
optimization techniques are usually not sufficient to solve the
problem.

Numeric optimization techniques ,never give exact results,
the achieved answer is some approximation of the real mini
mum. Some techniques guarantee that deviation from the real
minimum for all problems is no worse than the predefined. In
"Global Minimum" the Bayesian approach is used.

The optimization methods implemented in "Global Min
imum" are the result of a long research based on real problems
and are available in portable FORTRAN (Mockus J.,1989;
MINIMUM, 1984). Their portable implementation lack inter
active features, so in "Global Minimum" they are redesigned
and implemented in 0 on IBM PC.

2.1. Bayesian approach to optiInization. The idea
of the Bayesian approach is as follows: optimization tech
niques are optimal in the sense of mean deviation (usually
optimality is understood as a minimization of the maximal
deviation). Implementing this approach at each iteration one
must minimize the expected deviation from the global maxi
mum (or minimum) for a given class of functions with given
a priori distribution of probabilities and with regard to the
calculated function values (Mockus J.,1989).

It is desirable to make a procedure for calculation of the
expected deviation (risk function) as simple as possible, but
there are natural restrictions. For example, in the global op
timization of continuous functions in order to minimize the
expected deviation one must minimize an auxiliary function,
vvhich in the simplest case can't be reduced to the unimodal

A.Mockus, L.Mockus 73

function if we want to provide the convergence to global min
imum for every continuous function.

2.2. About implemented methods. The implemen
ted methods can be divided into three categories: global, local
and multicriterial. An objective function is the n-dimensional
continuous function, but for some methods it also can be non
differentiable or with noise. Usually, the function is defined on
the n-dimensional rectangle, but in some local methods the re
gion is defined by arbitrary continuous functions. Here is some
information about each method; its purpose, restrictions and
accuracy.

The global Bayesian method by J .Mockus (1984b). It
finds the global minimum of a continuous noise or determinis
tic function of n variables defined on the rectangle. In terms
of efficiency this program becomes increasingly less successful
as the dimension of the rectangle increases. The method is
using a considerable amount of auxiliary calculations. As a
result, the method can be efficiently used only when the ob
jective function is "difficult" - takes more of CPU time than
the auxiliary calculations to find the coordinates of the next
point. It performs search in the whole area and can find the
point in the neighborhood of global minimum. The method
not always can fix the point of minimum with sufficient ac
curacy, so some local methods should be used to carry out
the local minimization. The method provides the minimum
average deviation in accordance with a given statistical model
(Mockus J.,1984b) and the convergence to global minimum
for any continuous function. It means that if we solve many
problems, the average error will be as small as possible. For
some fixed samples it can happen to be great, if the iteration
number is limited.

The global Bayesian method based on the extrapolation
theory by Zilinskas (1986). It finds the global minimum of a

74 Design of Software

continuous deterministic function of n variables defined on the
rectangle. Restrictions are like in the global Bayesian method
by J .Mockus, except that if the function is differentiable, then
the local search of a variable metrics type can be directly incor
porated into the method. The method provides the minimal
average deviation in accordance with the set of assumptions
(Zilinskas,1986). All other accuracy considerations are similar
to those in the global Bayesian method by J .Mockus. The
method terminates after the fixed number of local minima is
reached.

The global deterministic uniform search method (Sobolj,
1969). It finds the global minimum of a continuous determin
istic function of n variables defined on the rectangle. The
amount of arbitrary calculations is less than that of the pre
ceding methods, so we can have more iterations. The method
is more efficient for simpler functions. It asymptotically con
verges to the global minimum. The method also makes the
statistical analysis of a function structure (Dzemyda,1983).

The global method of clustering by Torn (1978). It finds
the global minimum of a continuous deterministic function
of n variables defined on the rectangle. Restrictions are the
same as in all preceding methods with the exception that this
method uses smaller amount of auxiliary calculations, so it
can be recommended to minimize "simpler" functions in com
parison with all previous methods if the convergence is not
necessary. The convergence to minimum is not provided, but
usually the accuracy satisfies practical needs.

The global method of Monte-Carlo (uniform random
search). It finds the global mini~um of a continuous deter
ministic function of n variables defined on the rectangle. The
restrictions are similar to those in all other global methods ex
cept for the amount of auxiliary calculations being minimal, so
the method can be recommended to minimize very" simple"
functions, when the convergence in probability is sufficient.

A.Mockus, L.Mockus 75

The method converges in probability' to the global minimum
of continuous functions. The average deviation is considerably
greater, comparing to other global methods with the same
number of function evaluations.

The global Bayesian coordinate line search method by
Zilinskas (1986). It finds the global minimum of a continuous
deterministic function of n variables defined on the rectangle.
Restrictions are similar to those of global methods. The local
search is included into the method. The method provides
the minimal average deviation from the optimum under the
assumption that the objective function can be regarded as a
sample of Wiener process and converges to the minimum of
continuous functions.

The local simplex method of Nelder and Mead (Himmel
blau,1972). It finds the local minimum of a continuous deter
ministic nondifferentiable function of n variables with nonlin
ear constraints. Only the . local minimum of a function w~th
constraints can be found. The convergence to the minimum is
not provided,but usually the accuracy satisfies practical needs
if number of the iterations is large enough.

The local method of nonlinear programming by Shit
tkowski (1981). It finds the local minimum of a determin
istic differentiable function of n variables with nonlinear con
straints or defined on the rectangle. Only the local minimum
of a function can be found. An arbitrary close approach to
the minimum can be made depending on the parameter. In
our system this parameter is set to satisfy practical needs.

The local method of stochastic approximation with Bay
esian step size control by J .Mockus (1984a). It finds the lo
cal minimum of a unimodal function with noise of n variables
defined on the rectangle. Only the optimum of an unimodal
function is found. An arbitrary close approach to the mini
mum can be made with a probability one,when the number of
iterations is large enough. The Bayesian step length provides

76 Design of Software

the minimal average deviation in accordance with a given sta
tistical model (Mockus J.,1984b). The number of iterations
should be increased sharply if one wishes to make the average
error considerably less than the level of noise.

The method for search of pareto optimal set by L.Mockus.
It finds the approximation of this set on the rectangle and
the approximation improves as the number of iterations in
creases. Asymptotically, the method founds the set of pareto
optimal points. It has two variations: uniform search with the
use of LP-sequences (Sobolj,1969) or nonuniform search, using
Bayesian techniques (Mockus J. and Mockus L.,1989). It was
shown that the second variation is better in the case,when the
answer is approximately known

3. Design and implementation of software envi
ronment. Solving of practical problems usually involves a
construction of their mathematical model (problem definition)
and its exploration. Sometimes exploration of the problem
model requires to change the model itself (for example, if the
model is found to be not adequate).

Most software tools (optimization methods, statistical
analysis techniques, etc.) are suitable for the exploration of
the already implemented model, and are not integrated into
one environment with techniques for the construction of the
model.

It is suggested that software tools for the problem defi
nition integrated with tools for exploration must be the main
property of the software environment. Implementation in
terms of a specific problem might restrict the software usabil
ity for the problems in adjacent fields. This can be solved
by implementing common mathematical concepts that under
lie techniques of application domain. For optimization such
common base might be a set of linear algebra objects. The
definition of a model in terms of vectors, matrices, gradients
will be more convenient than in terms of integers, reals, ar-

A.Mockus, L.Mockus 77

rays' arid loops as in a common programming language. Such
common base can be used to define and solve different opti
mization problems (differential equations, statistic, etc.).

Implementing application domain requires its mapping to
the programming language, operating system and computer
system. This is a hard to formalize task because of the differ
ence of concepts and structure of domain and range. Finding
or constructing adequate structures in programming eilViron
ment can greatly help the implementation.

3.1. Design problems. A software system must be
an adequate model of application domain. A l~ge number of
implementation specific concepts can be time consuming for a
user to learn and the propertie's of such concepts are hard to
prove. A better way is to implement the basic mathematical
concepts that underlie the definition and solving of a problem.

A software representation of mathematical concepts must
comply the corresponding axioms. This task is inherently dif
ficult because ofa nonconstructive approach used in mathe
matics.

Software augments the functionality of application do
main concepts. The representation on display devices and
interaction with a user must be provided. Time additional
enhancements are needed also because of the specific software
tools used as the basis of the system and to enable the new
possibilities present only in the software implementation of the
application domain. For example, software implementation of
a vector must define the creation of such an object, provide
its representation (if any) on display and specify a connection
of the implemented vector to the space and basis it belongs.

The problem equally important for a design and imple
mentation is a choice of the basic software environment (op
erating system, windows systein, programming language) on
which the system is to be implem~nted. The basic environ
ment includes the basic interaction possibilities (windows,

78 Design of Software

menus, dialog boxes etc.) and the programming language
specifics (object-oriented, functional, logic). The implemen
tation is a mapping from application domain to the basic en
vironment. For the mapping to be possible, the following tasks
must be completed: decomposition of the application domain
into the structure available in the basic environment and con
struction of the specific software concepts that are present
in the application domain structure. The tasks are mutually
dependent, and show the importance of the basic software en
vironment specifics.

3.2. Structure of "Global Minimum".

3.2.1. Overview. The software is to solve multivariable
local, global and multiobjective optimization problems. The
implemented optimization techniques are designed to solve the
problems of different classes ami complexities. They vary from
pure deterministic to pure random ones, from the Monte-Carlo
method for global search to the variable metrics method for
local optimization. The software has a graphical user. inter
face designed speci~ly for optimization problems, so that a
user can influence the process of solving at every moment (to
change a method, parameters, etc.). The information on the
current state of the problem is presented both in graphical
and text form. A dialogue with a- user is multileveI and the
help is context sensitive.

"Global Minimum" is implemented on IBM
PC\XT\AT compatibles. The software is implemented in C
(except for some methods in FORTRAN and some graphical
procedures in ASSEMBLER). "Global Minimum" is compat
ible with CGA, EGA, HERCULES graphical cards.

The subset (excluding graphical and interactive part) of
the package is implemented on various machines, such as
PDP-ll, VAX and IBM mainframe.

The system interface is implemented as a number of win-

A.Mockus, L.Mockus 79

dows and menus. After each iteration of the method, a check
is made for user's input, so an optimization process and user's
actions seem to be asynchronoUs.

The optimal point given by one method doesn't mean
much when optimizing a complex function. Experimentation
is needed to analyze the behavior of a function and to evaluate
what methods and method combinations do the work. "Global
Minimum" graphic capabilities and a ,user interface addresses
this problem.

3.2.2. Software techniques and the main objects.
The framework of "Global Minimum" is an object structure.
It is assumed that everything is represented as an object hav
ing state and well defined functionality. The objects sharing
structure and functionality are grouped to classes. The ob
ject framework is chosen for its generality and simplicity. It
is implemented as some programming rules in the C language
(Mockus A.,1989).

The objective function is a part of the system that must
be changed frequently. In PC-DOS that means the"time con
suming linking of a function module to a large module of the'
system. To avoid it,the objective function is linked to the small
body of parent process, which, when invoked, calls the main
system module - the child process. The objective function
is then accessed from the child process as software interrupt.
The savings in linking time can be significant, if frequently
changing functio:n and using slower computer.

The user interface is'realized by menus, function keys
and dialog boxes and is sensitive to the context. The latter is
provided to make an interaction adequate for the specific of
global optimization problems. After the global methods,local
ones can be invoked with the chosen parameters and initial
points to refine the result.

In "Global Minimum" a dynamic graphical presentation
of the function approximation is provided in two forms. The

80 Design of Software

first one is the best value achieved so far versus the iteration
number and the second one is the projection of points onto
any chosen. plain. The projection of the objective function on
a chosen plain with the control menu is shown in Fig. 1. The
control menu is at bottorp. left .

. 88e+811
-2.

Fig. 1. A projection of the objective function with con
trol menu

The "Global Minimum" consists of functions, constraints,
optimization methods and other objects. An objective func
tion is the function to be minimized. It is some computational
algorithm, which takes the point in n-dimensional space as an
input and-returns a function value at this point. The objective
function is implemented as a procedure in. C or FORTRAN
~d its changing involves compilation and linking.

A.Mockus, L.Mockus 81

The important extension of a function concept used in
"Global Minimum" is a function approximation. The func
tion approximation is a collection of all function evaluations.
The Bayesi~ global methods are effective when optimizing a
computationally difficult function. For depicting and optimiz
ing such functions, the evaluation several times at the same
point may be too time consuming. The function approxima
tion may be used for these tasks. The function approximation
can be used by all optimization methods and depicting tech
niques. It also may be used by other methods for a function
exploration.

Constraints are restrictions put onto the domain of ob
jective function. The constraints may have different semantics
(they can mean some penalty, can be a region where an objec
tive function is defined, can mean some region inside which the
extrema probably exist) (Mockus L.,1990). The constraints
are implemented in "Global Minimum" in three ways. For
global methods the constraints usually must be rectangle and
supplied as the parameters of the method. For local meth
ods the constraints can be expressed as a penalty function, so
they are automatically added to an objective ·function. Most
general constraints can be given as a separate instance of a
function with the special interpretation of its values. The
listed options are useful in solving optimizatiop problems of a
different type.

Optimization methods are iterative numeric algorithms
that a given function and constraints generate a set of points
where to evaluate the .function. In "Global Minimum" the
methods were decomposed to one iteration level. After each
iteration, the methods return control to check for user input
and to update the image of function approximation. Some
theoretic algorithms and almost all software impleme.ntations
assume that all iterations are done in one step, without in
terruption. This can be changed by introducing a state and

82 Design of Software

iterator for an object optimization method. The iterator yields
the next point where to evaluate the objective function and
changes the state of optimization method.

3.2.3. Design principles and directions for devel
opment. The main idea in a "Global Minimum" design was
to implement into software the knowledge from corresponding
domain in mathematics and optimization. The implementa
tion of a theory underlying optimization is useful because it
is relatively well formalized if compared with software for op
timization. In practice, to define a problem is no less difficult
than to solve it. The implementation of basic mathemati
cal concepts can facilitate a construction of adequate math
ematical model. Besides, mathematical techniques are more
"portable" and more productive than software implementa
tion. Not every theoretic concept or technique can be imple
mented. The objective of the design is to recognize the most
important concepts that can be implemented with available
computer resources.

The id~a of programming environment that mirrors its
application domain comes from the development of program
ming techniques. One direction into which they are evolving
is to close a gap between "the way of thinking" and the way
of programming. FORTRAN implemented loop and condi
tional, array and function abstractions. Without them it is
quite inconvenient to implement a computational algorithm.
The programming abstractions, such as stacks, queue, virtual
memory and dispatchers, are implemented in hardware or op
erating systems. The programming environment Smalltalk-80
implements such important abstractions as: object, classifica
tion and classification hierarchy (inheritance). It also imple
ments much of the programming knowledge into its elwiron
ment using this framework. All abstractions are quite different
and come from the_ corresponding application domains (algo
rithms, systems programming, real life simulation).

A.Mockus, L.Mockus 83

The optimization problem solving using FORTRAN or C
can be criticized as a building of an automobile from atoms,
not from macro constituent parts, such as wheels, corpus, win
dows. The existing software systems for optimization usually
implement optimization methods and fixed interface to them.
This can be criticized at least from three points. First is that
every method cannot be appropriate for all problems, so a
method is too "big" an abstraction to match all cases from ap
plication domain .. Second point is that before using a method
you must know it is appropriate for the problem. This pro
cess frequently cannot be formalized so some software tools
must be developed to aid it. We assume that the implementa
tion of mathematical background of optimization can greatly
facilitate this process. The third point is that the fixed inter
face restricts the software system using. The problem can be
solved by integration of all (most of) the things needed for an
optimization process into one environment.

In the future the "Global Minimum" will be developed to
wards environment for exploring optimization techniques. The
concept of optimization method will be an algorithm,which for
the given function approximation and constraints generates a
point or a number of points where to evaluate an objective
function next. Such an approach allows the easy construc
tion of optimization methods sequence or other exploration
techniques within the environment.

The implementation of mathematics underlying the opti
mization raises two problems. First is the adequacy of software
implementation. The main reasoning techniques and abstrac
tions used in application domain must be implemented and
they must conform to the corresponding axioms. The sec
ond problem is that additional interaction concepts must be
invented to use or to communicate with the implemented ob
jects. The problem is addressed in (Mazurik,1989), where the
integrated system is constructed from three types of objects.

84 D(!sign of Software

A display objects or fields are some logic places of a display
screen. Functions; scalars, vectors and matrices as application
domain objects and mapping objects that map application do
main objects into display objects. In the future the "Global
Minimum" will be based on the environment (now in devel
opment), implementing the main linear algebra objects and
continuous optimiza.tion techniques. This environment is an
effort to solve the described problems.

Depicting of a multivariable. function is a part of opti
mization process. Presenting the 3-dimensional graphs, stars,
Andrew's curves, Chernoff's faces and other methods (see du
Toit,1986) to represent the functions with up to 20 variables
are to be implemented in "Global Minimum". The object
oriented structure of "Global Minimum" allows an easy ad
dition of depicting techniques. (The stars method is to put
point components and function value as vectors, pointing in
all directions from one point. Fig. 2).

3.3. Evaluating the design. Given two designs, it is
desirable to compare them. Usually, the comparison is based
on the experience in using a complete system, but it is no
less important to compare designs, not only working systems
or prototypes. In the case of softw~ for optimization, the
formal properties of the design can be valuable. One of the
ways to evaluate the design is to find out" if it has some useful
pr~perties. For example, in (Mazurik,1989) the property of
an: interface completeness is defined. The idea is that all func
tionality of implemented application domain concepts must be
accessible by an a.vailable user interface. Other properties may
be stability (small changes in interactive con:trollead to small
changes of results), adequacy of implemented objects to their
axiomatic. An interesting property is orthogonality. It is the
possibility to .make a direct product of objects and functions
belonging to different classes. For example, if we have objects
a j of the class A and functions /i of the class F, and for some

A.Mockus; L.Mockus . 85

i and j Ji (a j) make sense, then Ii (a j) is meaningful for any
i, j; While it is a trivial property, it frequently not holds in
software and user interface. In practice this property can be
expressed in many different ways depending on what is evalu
ated and chosen.as objects and compositi.on. For example, in
an interaction technique this property may mean that some
function key (say for changing a size of an object) is applicable
for all sorts of display objects (windows, menus, lists, dialog
boxes, pictures, etc.).

f(x)

x-' xl.

xS rr------iIII .. --..... ,---- x2

)(3

x4

Fig. 2. The stars method

4. Conclusions. The formulation of design problems
was helpful when designing the system. Describing the ap
plication domain as objects (functions, optimization methods,
etc.) was especially useful for implementation of the system.
The most challenging problem was to invent techniques for
the interaction and presentation of the main objects.

86 Design of Software

Implementing an interactive system raised some problems
connected with the previous software algorithms. that did not
allow a greater interactivity. Some theoretic algorithms also
bore an assumption on restricted interactivity.

For a highly interactive system, the optimization algo
rithm should have only one iteration, yielding a set of points
where to evaluate an objective function, because an iterative
method can be constructed as some macro in software envi
ronment.

The concept of function approximation is proposed as the
means of keeping a record of evaluations for relatively difficult
to compute functions.

Programming techniques enable a fast and simple system
extension. There are plans to make the system as a test site
for optimization methods.

REFERENCES

Dzemyda, G. (1983). LP-search, taking into account the structure
of an extremal problem. In A.Zilimkas and G.Dzemyda (Eds.),
Theorija Optimaljnych Reshenij. Vo1.9. Inst. Math. Cybern.
Lithuanian Acad. Sci., Vilnius. pp. 39-44 (in Russian).

Himmelblau, D. (1972). Applied Nonlinear Programming.
McGrawHill Book Company.

Mazurik, V.P. (1989). Doctor of Physical and Mathematical Sci
ences Thesis. Computing Center, Academy of Sciences of the
USSR, Moscow (in Russian).

Mockus, A. (1989). Programming in C in an object-oriented style.
In Programine ESM /ranga, Proceedings of the Lithuanian Soft
ware Conference: Palanga. pp. 62-64 (Lithuanian).

Mockus, J. (1984a). The Bayesian Approach to Local Optimization,
Preprint No 175. Free University Berlin, Berlin.

Mockus, J. (1984b). The Bayesian Approach to Global Optimiza-

A.Mockus, L.Mockus 87

tion. In Proc. of the ICI Golden Jubilee Int. Conf. on Statistic,
Calcutta.

Mockus, J. (1989). The Bayesian Approach to Global Optimization,
Kluwer Academic Publishers, the Netherlands. 254pp.

Mockus, J., and L.Mockus (1989). The Bayesian approach to Global
Optimization and Application. Journal of Optimization Theory
and Applications, (in print).

Mockus, L. (1990). Candidate of Physical and Mathematical Sci
ences Thesis. Moscow Physical-Technical Institute, Moscow (in
Russian).

Shittkowski, K. (1981). The nonlinear programming method of
Wilson, Han and Powel with an augmented Lagrangian type
line search function, Part 1: Convergence analysis. Numerische
M athematik.

Sobolj, I. (1969). Multidimensional Numerical Quadrature Formu
las and Haar Functions. Nauka, Moscow (in Russian).

du Toit, S.H.C., A.G.W.Steyn and R.H.Stumpf (1986). Graphical
Exploratory Data Analysis. Springer-Verlag.

Torn, A. (1978). A Program for Global Optimization, Multistart
with Clustering, Rapporter Fron DataCentralEm vid abo
Academi, No.7.

Zilinskas, A. (1986). Global Optimization-Axiomatic of Statistical
Models, Algorithms and Their Application. Mokslas, Vilnius
(in Russian).

MINIMUM (1984). Software Package "MINIMUM" for Global Op
timization. The fund of Algorithms and Programs, registration
No.50860000112, Vilnius.

Received January 1990

88 Design of Software

A. Mockus graduated the Moscow Physical-Techni
cal Institute, USSR, in 1988. He is a software engineer at the
Department of Optimal DeCisions Theory, Institute of Mathe
matics and Cybernetics, Vilnius, Lithuania and a postgradu
ate student at the Department of Optimization of the Comput
ing Center, the USSR Academy of Sciences, Moscow, USSR.
His field of interest is software development techniques and
interactive software systems for engineering.

L. Mockus graduated the Moscow Physical-Technical
Institute, USSR, in 1984. He is a junior researcher at the De
partment of Optimal Decisions Theory, Instit. Math.and
Cybern., Vilnius, Lithuania. His field of interest is develop
ment of software systems for global optimization.

