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Abstract. A modified version of the Bellare and Rogaway (1993) adversarial model is encoded
using Asynchronous Product Automata (APA). A model checker tool, Simple Homomorphism
Verification Tool (SHVT), is then used to perform state-space analysis on the Automata in the
setting of planning problem. The three-party identity-based secret public key protocol (3P-ID-SPK)
protocol of Lim and Paterson (2006), which claims to provide explicit key authentication, is used as
a case study. We then refute its heuristic security argument by revealing a previously unpublished
flaw in the protocol using SHVT. We then show how our approach can automatically repair the
protocol. This is, to the best of our knowledge, the first work that integrates an adversarial model
from the computational complexity paradigm with an automated tool from the computer security
paradigm to analyse protocols in an artificial intelligence problem setting – planning problem –
and, more importantly, to repair protocols.
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1. Introduction

Key establishment protocols are used for distributing shared keying material in a secure
manner. The first key establishment protocol with public key properties is published by
Diffie and Hellman (1976). Although a later protocol of Merkle (1978) – Merkle’s puzzles
– also achieves the key distribution goal, the Diffie–Hellman protocol enjoys a better ratio
between security and efficiency (Wolf, 1999).

Despite an enormous amount of research effort has been expended in the design and
analysis of such protocols, there are still worthwhile contributions to be made even in
the simple scenario of two users with an on-line server (e.g., the recently proposed three-
party identity-based secret public key protocol (3P-ID-SPK) protocol of Lim and Paterson
(2006)). The difficulties associated in obtaining a high level of assurance in the security
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of almost any new or even existing key establishment protocols are well illustrated with
examples of errors found in many such protocols years after they were published (Choo,
2006b; Phan and Goi, 2006). The study of such protocols has led to a dichotomy in cryp-
tographic protocol analysis techniques between the computational complexity approach
(Bellare et al., 2000; Bellare and Rogaway, 1993; Canetti and Krawczyk, 2001) and the
computer security approach (Lowe, 1996; Meadows, 2003).

Computational Complexity Paradigm. The emphasis in this (provable security) paradigm
for protocols is placed on a proven reduction from the problem of breaking the protocol
to another problem believed to be hard. The first treatment of computational complex-
ity analysis for cryptography began in the 1980s (Goldwasser and Micali, 1984). It was
made popular for key establishment protocols by Bellare and Rogaway (1993). They pro-
vided the first formal definition for a model of adversarial capabilities with an associated
definition of security (hereafter referred to as the BR93 model).

The difficulty of obtaining correct computational proofs of security is, however, dra-
matically illustrated by the well-known problem with the OAEP mode for public key
encryption (Shoup, 2001). Problems with proofs of protocol security have occurred too,
evidenced by the breaking of several provably-secure protocols after they were published
(Abdalla et al., 2006; Choo, 2006b). Despite these setbacks, proofs are invaluable for ar-
guing about security and certainly are one very important tool in getting protocols right.
Moreover, having security proofs allow protocol designer to formally state the desir-
able properties / goals that a protocol offers (giving assurance to protocol implementors)
(Boyd and Mathuria, 2003).

Computer Security Paradigm. Since the 1990s, many researchers have shifted their atten-
tion to using formal methods (also known as the computer security approach). Emphasis
in this approach is placed on automated machine specification and analysis. The main
goal of this approach is to relieve humans of the tedious and error prone parts of the
mathematical proofs.

The Dolev and Yao (1983) adversarial model is often the de-facto standard used in
formal specifications, where cryptographic operations are used in a “black box” fashion.
Such an approach, however, ignores some of the cryptographic properties, resulting in
possible loss of partial information. Cervesato et al. (1999) also pointed out that the main
obstacles in this automated approach are undecidability and intractability. Messages from
an adversary are unbounded in structural depth and the number of possible values for
some data fields is infinite. The adversary can have a large set of possible actions, which
results in a state explosion. It is generally acknowledged that protocols proven secure
in such a manner could possibly be flawed (Backes and Jacobi, 2003). However, this
approach has the benefit of providing unambiguous specification of system requirements
and mathematically precise proofs of system properties. This approach should also be
credited for finding both known and previously unknown flaws in protocols (Lowe, 1996;
Meadows, 1999).

An Integrated Approach. Recognising the disparity in the two different approaches
to protocol analysis, Abadi and Rogaway (2002) started the trend of unifying the two
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paradigms. In this integrated approach, the aim is to provide abstract models of crypto-
graphic primitives suitable for machine analysis in some well defined sense. More recent
comprehensive efforts have been under way in several independent yet related projects by
Backes et al. (Backes, 2004a; Backes, 2004b; Backes and Jacobi, 2003), Blanchet et al.
(Blanchet, 2006; Blanchet and Pointcheval, 2006), Canetti et al. (Canetti, 2000; Canetti
and Fischlin, 2001), and Choo et al. (Choo, 2006a; Choo et al., 2004).

Motivations of Paper. One may note that attacks and proofs on protocols are hard to
find and check respectively. Moreover, once an attack has been identified (e.g., by using
some automated tools from the computer security approach), protocol modifications by
hand are also prone to errors and may not necessarily lead to secure protocols. One re-
cent example is the original version of Jakobsson–Pointcheval protocol that appeared in
the unpublished pre-proceedings of Financial Crypto 2001 (Jakobsson and Pointcheval,
2001) with a claimed proof of security in the BR93 model. A flaw in the original proto-
col was discovered by Wong and Chan (2001). Fixes were proposed by Jakobsson and
Pointcheval and by Wong and Chan independently; and had claimed security proofs in
the BR93 model. However, both fixes were later shown to be flawed (Choo et al., 2005b).

We are motivated by the observation that despite recent advances in the integrative
approach, no researchers have propose an integrated framework to analyse and (automat-
ically) repair protocols that were found to be flawed (during the analysis). For example,
in the approaches of Backes et al., Blanchet et al., and Canetti et al., the focus is to prove
the protocols secure using some automated tools whilst in the approach of Choo et al. –
which is more closely related to our proposed framework – the focus is to analyse proto-
cols that were proven secure in the Bellare–Rogaway model (Bellare et al., 2000; Bellare
and Rogaway, 1993) and the Canetti–Krawczyk model (Canetti and Krawczyk, 2001).

Our Proposed Integrative Framework. In this work, we propose an integrative frame-
work that allows us to analyse protocols using a modified version of the BR93 adver-
sarial model1 and, more importantly, to repair protocols that are found to be insecure
against certain types of attacks2. Note that our approach differs from the automatic pro-
tocol generation (APG) approach of Song et al. (Song, 1999; Song et al., 2001). In the
APG approach, the focus is on how to develop a particular protocol in some automatic
way in terms of a set of property specifications about the application, and not to analyse
and repair protocols.

We now present an overview of our framework.

1: The Adversarial Model. We provide a formal specification and machine analysis of
a modified version of the widely accepted indistinguishability-based model of Bel-
lare and Rogaway (1993), the BR93 model, from computational proofs in the set-
ting of a planning problem.

1We remark that another distinctive feature of our framework as compared to other existing computer
security approaches – with the exception of the approach by Choo et al. (Choo, 2006a; Choo et al., 2004) – is
that we are able to analyse protocols proven secure in the BR93 model (and also the CK2001 model with some
minor modifications).

2To the best of our knowledge, this is the first work that utilises an automated tool to update “insecure"
protocols specifications.
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– The planning problem, an ongoing research area in artificial intelligence, is
about composing a workable plan (a sequence of actions) that allows the agent
to achieve its given goal(s) from the initial state (Lifschitz, 1999; Weld, 1999).
This is also known as goal-directed reasoning. In our context, the given goal
is defined as a state of insecurity and if a workable plan exists, then we have
found an attack on the protocol that we are analysing.

– Our choice of formalism for this work is Asynchronous Product Automata
(APA), a universal state-based formal method. APA is supported by the Sim-
ple Homomorphism Verification Tool (SHVT) (Ochsenschläger et al., 1998)
for analysis and verification of cooperating systems and communicating au-
tomata. Once the possible state transitions of each automaton have been spec-
ified, SHVT (the planner) can be used to automatically search the state space
of the model. SHVT provides a reachability graph of the explored states. In
our APA specification, the abstract communication model captures the repre-
sentation of the protocol, the message transmission, and the communication
channels.

2: Protocol Specification. As a case study we analyse the three-party identity-based se-
cret public key (3P-ID-SPK) protocol of Lim and Paterson (2006). The protocol
claims to provide explicit key authentication – implicit key authentication3 and key
confirmation4.

3: Protocol Analysis. Our planner, SHVT, reveals a workable plan that allows us to
achieve our defined goals (states of insecurity) from the given initial state. In other
words, previously unpublished flaw on the Lim–Paterson protocol is revealed by
the automated state space analysis performed with SHVT.

4: Protocol Repair. In our framework, we have a set of generic patches to overcome
certain attacks, such as the known session key attacks, unknown key share attacks,
and reflection attacks, which we term the “repairable” attacks. Once some attack
has been revealed using SHVT in the earlier analysis, we check to determine if the
revealed attack is in the list of our pre-defined “repairable” attacks. This list can be
updated when new patches are discovered.

If revealed attack ∈ “repairable” attacks,
then modify the existing specification of the protocol accordingly,
otherwise do nothing.

End If.

Contributions of Paper. We regard the main contributions of this paper to be two-fold:

1) confirmation of the feasibility of using formal specifications to identify problems
in human-generated computational complexity proofs by revealing previously un-
published flaw in the case study protocol, and

3The property whereby one party is assured that no other party aside from a specifically identified second
party (and possibly additional identified trusted parties) may gain access to a particular secret key.

4The property whereby one party is assured that a second (possibly unidentified) party actually has posses-
sion of a particular secret key.
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2) an automated approach to repair protocols that were found to be insecure against
certain types of attacks.

Foreword. Demonstrating that this integrative framework is useful for analysing and re-
pairing protocols for key establishment is the main conceptual contribution of our work.
However, presenting the full APA specifications and a comprehensive description of the
planning problem turns out to be rather “challenging” due to space constraints. Moreover,
reader not familiar with APA / SHVT might not find the specifications interesting. There-
fore, we postpone the presentation of the full APA specifications and instead present only
sufficient formalization necessary to understand our approach. Interested reader can refer
to the SHVT manual (SHVTManual, 2004). Our framework can also be instantiated with
other specification languages and model checker tools.

Outline of Paper. In Section 2, we revisit the three-party identity-based secret public key
(3P-ID-SPK) protocol of Lim and Paterson (2006), which we will use as a case study.
We then present an overview of our formal specification framework in Section 3. We
briefly explain how the protocols are specified in our framework, followed by the results
of the protocol analysis using SHVT. Using our approach, we then repair the revealed
flaw in the case study protocol. Finally, Section 4 presents the conclusions. Analysis and
repair of another case study protocol, the conference key agreement protocol of Boyd and
González Nieto (2003), is presented in Appendix C.

2. Case Study Protocol

Protocol 1 involves three parties, a trusted server S and two principals, A and B, who
wish to establish communication. The security goal of Protocol 1 is to distribute a session
key between two communication principals (i.e., implicit key authentication), which is
suitable for establishing a secure session. Key confirmation is also provided by Protocol 1,
and hence, achieving explicit key authentication (Menezes et al., 1997; Definition 12.8).

The notation used in Protocol 1 is as follows.

– {·}K denote the encryption of some message under some key K,
– rU denote some randomly chosen nonce, || denote concatenation of messages,
– MACKMAC(·) denote the computation of a MAC digest under some MAC

key KMAC ,
– SigKSign(·) denote the signature of some message under some signature key KSign,
– KU1U2 denote the session key shared between users U1 and U2,
– pwdUS denote some secret password shared between some user U and the server

S, and
– H denote a secure cryptographic hash function.

1. Protocol 1 begins by having A randomly select a random string, STA, and a nonce,
rA. A then computes the encryption key, PKA1 = H(A||S||pwdAS), and encrypts
(A, STA) using PKA1. The message, A, rA, {A, STA}PKA1 , is then sent to B

with whom A desires to communicate.
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1. A −→ B : A, rA, {A, STA}PKA1
2. B −→ S : B, {B, STB}PKB1 , A, rA, {A, STA}PKA1
3. S −→ B : SigSKB2(KAB), SigSKA2(KAB)
4. B −→ A : SigSKA2(KAB), MACKAB

(rA), rB

5. A −→ B : MACKAB
(rB)

Protocol 1. Lim–Paterson three-party identity-based secret public key (3P-ID-SPK) protocol.

2. Upon receiving the message from A, B also randomly selects a random string,
STB , computes the encryption key, PKB1 = H(B||S||pwdBS), and encrypts
(B, STB) using PKB1. The message, B, {B, STB}PKB1 , A, rA, {A, STA}PKA1 ,
is then sent to the server, S.

3. S computes the corresponding private key pairs for PKA1 and PKB1, SKA2 and
SKB2 respectively. Using SKA2 and SKB2, the respectively ciphertexts are de-
crypted and STA and STB obtained. S then runs the session key generator to obtain
a session key KAB , which has not been used before. KAB is then signed under the
respectively SKA2 and SKB2, and sent to B.

4. B recovers KAB from SigSKB2(KAB) using PKB1, computes the MAC digest
MACKAB

(rA), and randomly chooses a nonce, rB . Message SigSKA2(KAB),
MACKAB

(rA), rB is then sent.
5. A recovers KAB from SigSKA2(KAB) using PKA1. If the MAC digest re-

ceived verifies true, then A will compute MAC digest MACKAB
(rB) and sends

MACKAB
(rB) to B.

6. At the end of Protocol 1’s execution, both A and B have accepted a session key of
the same value, KAB .

3. Our Integrative Framework

In this section, we present an overview of our APA formal specification framework. We
follow the general adversarial formalism of the BR93 model, except that we now have
a definition of insecurity rather than a definition of security. We then specify Protocol 1
using APA and demonstrate that SHVT (or any other model checker tool) can be used to
find previously unknown flaws in the protocols. We conclude this section by showing a
repaired Lim–Paterson protocol.

3.1. The Adversarial Model

In the setting of the reductionist proof approach for protocols, the security model com-
prises protocol participants and a powerful probabilistic, polynomial-time (PPT) adver-
sary, A. The adversary, A, is in control of all communication between all parties in the
model. Each party Pi can run multiple sessions concurrently. The action of Uu running
a session, i, is modelled as an oracle. The adversary, A controls the communications be-
tween parties by interacting with a set of oracle, Πi

Uu,Uv
, where Πi

Uu,Uv
is defined to be
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the ith instantiation of a principal Uu in a specific protocol run and Uv is the principal
with whom Uu wishes to establish a secret key.

A controls the communication channels via the queries to the targeted oracles, as
shown below.

Send(Uu, Uv, i, m) query. This query to an oracle, Πi
Uu,Uv

, computes a response ac-
cording to the protocol specification and decision on whether to accept or reject
yet, and returns them to the adversary, A. If the oracle has either accepted with
some session key or terminated, this will be made known to A.

Reveal(Uu, Uv, i) query. Any oracle upon receiving such a query and if it has accepted
and holds some session key, will send this session key back to A.

Corrupt(Uu) query. This query allows A to corrupt the principal Uu at will, and thereby
learn the complete internal state (e.g., password) of the corrupted principal.

Definition of insecurity for the protocol is dependent on the notions of partnership of
oracles and indistinguishability of the session key. The definition of partnership is used in
the definition of security to restrict the adversary’s Reveal and Corrupt queries to oracles
that are not partners of the oracle whose key the adversary is trying to guess.

3.1.1. Definition of Partnership
Partnership in the BR93 model is defined using the notions of matching conversations.
However, we adopt the recent trend, also adopted by several other researchers (Jeong et
al., 2004; Krawczyk, 2005; Kudla and Paterson, 2005), and define partnerships based on
the notion of session identifiers (SIDs).

DEFINITION 1 (Partnership). Two oracles, Πi
A,B and Πj

B,A, are partners if, and only if,
both oracles have accepted the same session key with the same SID, have agreed on the
same set of principals (i.e., the initiator and the responder of the protocol), and no other
oracles besides Πi

A,B and Πj
B,A have accepted with the same SID.

3.1.2. Definition of Freshness
Definition 2 describes the notion of freshness, which depends on the notion of partnership
in Definition 1.

DEFINITION 2. Oracle Πi
A is fresh (or it holds a fresh session key) at the end of execu-

tion, if, and only if, (1) oracle Πi
A has accepted with or without some partner oracle(s),

(2) both oracle Πi
A and its partner oracle(s) (if such a partner oracle exists) are unopened

(i.e., have not been sent a Reveal query), and (3) neither A nor any of the partnering play-
ers (if such a partner oracle exists) are corrupted (i.e., none of them have been sent any
Corrupt query).

3.2. Protocols Specification

As mentioned earlier, the setting of our approach is based on the planning problem. There-
fore, similar to the formulation of the planning problem (Weld, 1999), we have three
inputs in the formulation of our framework, as follows.
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Description of Initial State. We describe the internal states and knowledge of (e.g., keys
that are known to) the agents. Agents in our formal framework comprise the pro-
tocol participants and a malicious adversary (adopted from the BR93 model de-
scribed in Section 3.1).

Description of Goal State. Before an agent can achieve its goal(s), we need to provide a
formal description of the goal state that the agent has to achieve. In our framework,
we define a desired goal as a state of insecurity. Hence, if an agent manages to
achieve the defined goal, then the protocol is insecure.

Description of Possible Actions. This input provides a formal description for the set of
possible actions that can be performed by the agents.

For the rest of the paper, we use the terms agent and automata interchangeably. In our
formal framework using APA specification, protocol principals are modelled as a family
of elementary automata. The various state spaces of the principals are modelled as a
family of state sets. The channel through which the elementary automaton communicates
is modelled by the addition and removal of messages from the shared state component
Network, which is initially empty. Each of the elementary automata only has access to the
particular state components to which it is connected. In addition to the regular protocol
principals, we specify an adversary, A, which has access to the shared state component
Network, but no access to the internal states of the principals.

This adversary, A, is adopted from the BP93 model described in Section 3.1 whereby
A is able to intercept messages in the Network, swap data components in the intercepted
messages to form new messages, remove messages from the Network, or fabricate new
messages. A is then able to send these messages to the oracles via the Network (corre-
sponding to Send queries in the BR93 model). Also, once an oracle, Πi

U , has accepted
and holds a session key, the session identifier associated with that oracle becomes visible
to the adversary, A, via the shared state component Transcript. If A so chooses, A is
able to obtain the session key of Πi

U (stored in the state component Keys) via a Reveal

query. The shared state component Transcript also contains a log of all sent messages.
For simplicity, the graphical illustration of a two-party (instead of three-party) protocol
in APA specification is presented in Fig. 1.

Fig. 1. Graphical illustration of a two-party protocol in APA specification.
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Description of Initial State. The first phase of our formal specification is to specify the
basic data types necessary to specify our case study protocols. Examples of the data types
and the functions we defined are shown in Fig. 4 of Appendix A.

Defining SIDs in Protocol 1. Bellare, Pointcheval, and Rogaway (Bellare et al., 2000)
suggested that SIDs can be constructed on-the-fly using fresh unique contributions from
the communicating participants. Uniqueness of SIDs is necessary since otherwise two
parties may share a key but not be partners (in the sense of Definition 1), and hence the
protocol would not be considered secure.

Within Protocol 1, the only values that A and B can be sure are unique are rA, rB ,
STA, and STB . However, only rA and rB are both known to A and B. Hence, a naive
construct for SIDs in Protocol 1 is the concatenation of rA and rB where rA and rB are
the unique nonces contributed by individual protocol participant.

Another possible SID construct is the concatenation of the protocol participants’ iden-
tities and the unique nonces contributed by individual protocol participant. Including the
identities of the participating parties is to provide a binding to the session identifier. This
avoids scenarios where two or more sessions have identical keys but different session
identities as protocol participants have different perceived partners. Such an approach is
adopted by several other researchers (Jeong et al., 2004; Krawczyk, 2005; Kudla and Pa-
terson, 2005) and is also recommended by NIST (NIST, 2006). Therefore for Protocol 1,
we define SIDs as the concatenation of the protocol participants’ identities and the unique
nonces contributed by individual protocol participant (Choo, 2007).

Description of Goal State. In using automated tools, we find it more natural to define the
goal state to be the state of insecurity – reachability of this state implies that the protocol
being analysed is insecure – rather than the state of security due to the limitations of
model checking tool (i.e., state explosion problem). Definition 3 depends on the notions
of partnership in Definition 1 and freshness in Definition 2.

DEFINITION 3. A protocol is insecure in our formal framework if a workable plan is
composed by our planner (an agent achieves any of the following goal state(s)).

Goal State 1.Two fresh non-partner oracles accept the same key – in violation of the key
establishment goal.

Goal State 2.Some fresh oracle accepts some key, which has been exposed (i.e., is known
to A) – in violation of the key establishment goal.

Goal State 3.Some fresh oracle accepts and terminates with no partner – in violation of
the key confirmation goal.

Violation of goal state 1 also implies that the protocol is vulnerable to a key replicating
attack first described by Krawczyk (2005). Definition 4 presents a description of the key
replicating attack.

DEFINITION 4 (Key Replicating Attack (Krawczyk, 2005)). A key replicating attack is
defined to be an attack whereby the adversary, A, succeeds in forcing the establishment
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of a session, S1, (other than the Test session or its matching session) that has the same
key as the Test session. In this case, A can distinguish whether the Test-session key is
real or random by asking a Session-Key Reveal query to the oracle associated with S1.

Since our formal framework is closely based on the BR93 model, protocols that were
proven secure in the BR93 model but found to be violating any of the first two goal states
(or any of the three goal states if the protocol provides key confirmation) described in
Definition 3 will be insecure in the BR93 model. Consequently, the existing proof of the
(insecure) protocol will also be invalid.

Description of Possible Actions. Possible actions refer to the message exchanges among
the agents (i.e., protocol participants and the adversary). As Russell and Norvig (1995)
suggested, actions are represented by logical descriptions of pre-conditions and effects
(which we term post-conditions). To model actions, we would now need to specify the
properties of all states of components associated with the particular elementary automa-
ton, and the changes of the states caused by the state transition.

Step 1. The name of the transition pattern has to be first defined, e.g., Protocol Step 1.
Step 2. The variables to be used in this transition pattern, (x1, . . . , xn), is then defined.

Note that the variables defined here are local to this transition pattern.
Step 3. The required (pre-)conditions prior to performing a state transition is now de-

fined. If any of the defined conditions is not satisfied, this transition pattern will
proceed no further.

Step 4. The changes of the states caused by this state transition is now specified, i.e., the
post-conditions / effects.

State Transition. A state transition can only occur when all the above steps are executed.

3.3. Protocols Analysis

Fig. 2 presents an example reachability graph describing how searches are performed in
the SHVT analysis, namely: forward from the initial state to the finish state when an agent
has achieved its goal (i.e., achieving any of the goal states described in Definition 3).

Fig. 2. A reachability graph: protocol analysis in SHVT.
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Protocol
Analysis # Players # Runs Run-Time Goal state(s) achieved New Flaw(s)?

Protocol 1 4 2 Approximately 2 mins Yes (Goal states 2 and 3
of Definition 3) Yes

Fig. 3. Analysis statistics.

If a workable plan exists (i.e., the agent manages to reach any of the finish states,
achieving goal state 1, goal state 2, and/or goal state 3 of Definition 3), we can then trace
the path that it takes and hence, find the attack sequence. This is also known as a solution
– a plan that an agent can execute, which guarantees the achievement of the goal (Russell
and Norvig, 1995) – in the planning problem. Note that the nodes in the reachability
graph described in Fig. 2 represent the various states of the protocol execution and the
arcs (arrows) represent the state transitions between two states.

The search approach in our SHVT analysis is also known as a progression planner in
the planning problem. Consequently, the inherent limitations associated with a progres-
sion planner, i.e., the high branching factor and thus the huge size of the search space
(Russell and Norvig, 1995), are also present in our approach. For example, in several
of our earlier experiments, we observe that certain interleavings of the protocol message
exchanges and actions of the adversary that are “obviously” immaterial in achieving the
goal, are explored by SHVT. In other words, what is obvious to us, human, are not nec-
essarily obvious to the progression planner or SHVT.

Hence, for run-time efficiency, and to avoid enormous branching factors in the search
space, we restrict the actions of the adversary so that certain actions are possible for only
some message types. The attack sequence and the internal states can be examined by
viewing the reachability graphs produced by SHVT. The analyses were run on a Pentium
IV 2.16 GHz computer with 1024 Mb of RAM and the analysis statistics are shown
in Fig. 3.

Analysis of Protocol 1. State space analysis in SHVT reveals that both goal states 2 and 3
of Definition 3 are violated. The attack sequence is described in Attack 1. Let CB denotes
C impersonating B.

The adversary, A, asks a Corrupt query to C, a client participant – static corruption. A now runs as C.
1. A −→ B : A, rA, {A, STA}PKA1
The adversary intercepts and deletes this message from the Network.
2(C). C −→ S : C, {C, STC}PKC1 , A, rA, {A, STA}PKA1
3. S −→ C : SigSKC2(KAC), SigSKA2(KAC)
4(C). CB −→ A: SigSKA2(KAC), MACKAC

(rA), rC

5. A −→ B : MACKAB
(rB)

The adversary intercepts and deletes this message from the Network.

Attack 1. Attack sequence on Protocol 1.

In Attack 1,
Static Corruption. The adversary, A, asks a Corrupt query to C, a client participant,

prior to the execution of Protocol 1 between A and B – static corruption. A now
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runs as C since the Corrupt query enables the adversary to learn the entire internal
state of C including the password shared between C and S, pwdCS .

Step 1 of Protocol 1. A randomly selects a random string, STA, and a nonce, rA. A then
computes the encryption key, PKA1 = H(A||S||pwdAS), and encrypts (A, STA)
using PKA1. The message is then sent to B as per protocol specification.

Message Interception. The adversary intercepts and deletes this message sent by A

from the Network.
Step 2 of Protocol 1 by C. C also randomly selects a random string, STC , computes

the encryption key, PKC1 = H(C||S||pwdCS), and encrypts (C, STC) using
PKC1. The message, C, {C, STC}PKC1 , A, rA, {A, STA}PKA1 , is then sent to
the server, S.

Step 3 of Protocol 1. S computes the corresponding private key pairs for PKA1 and
PKC1, SKA2 and SKC2 respectively. Using SKA2 and SKC2, the respectively
ciphertexts are decrypted and STA and STC obtained. S then runs the session key
generator to obtain a session key KAC , which has not been used before. KAC is
then signed under the respectively SKA2 and SKC2, and sent to C.

Step 4 of Protocol 1 by C. C recovers KAC from SigSKC2(KAB) using PKC1, com-
putes the MAC digest MACKAC

(rA), and randomly chooses a nonce, rC . The
message, SigSKA2(KAC), MACKAC

(rA), rC , is then sent to A by C imperson-
ating B.

Step 5 of Protocol 1. A recovers KAC from SigSKA2(KAC) using PKA1. The MAC
digest received will certainly verified true since C already recovers KAC from
SigSKC2(KAB) using PKC1 in the earlier step. Hence, A will compute MAC
digest MACKAC

(rC) and sends MACKAC
(rC) to B.

Message Interception. The adversary intercepts and deletes this message sent by A

from the Network.
Session Key. If the MAC digest received verifies true, then C (the adversary) knows that

A has accepted session key, KAC and A believes is being shared with B. However,
B is unaware of such a session with A since all messages sent by A to B have
been intercepted and deleted from the Network by the adversary. Hence, A has
accepted and terminated without a partner – goal state 3 of Definition 3. Moreover,
the adversary knows the session key accepted by A after receiving the message
from S in Step 3 of the protocol execution – goal state 2 of Definition 3.

3.4. Protocol Repair

As mentioned earlier, we have a set of generic patches to overcome attacks, such as the
known session key attacks, unknown key share attacks, and reflection attacks, which we
term the “repairable” attacks. We now check to determine if the revealed attack is in our
pre-defined list of “repairable” attacks.

Attack 1 can be considered an unknown key share attack since A believes the key is
being shared with B when in fact, the key is being shared with C (the adversary). Hence,
Attack 1 is in our pre-defined list of “repairable” attacks. We now proceed to repair the
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protocols. For readability, we present an informal overview of our repairing procedure (in
plain english rather than in the unwieldy APA specifications). Note that we assume that
sid is the concatenation of the protocol participants’ identities and other unique messages.

1: Session Key Derivation Function Checking. Is the session identifier (sid) part of
the keying material used in the session key derivation function?
If yes, proceed to Step 2,

Otherwise modify the key derivation function within the protocol specifica-
tions to a hash of the concatenation of the session identifier and ex-
isting keying materials using an independent hash function (i.e., in the
case of Protocol 1, session key is now constructed as H1(sid||KAB) =
H1(A||B||S||rA||rB||KAB) where H and H1 are independent secure cryp-
tographic hash functions).

2: Encryption Scheme Checking Does the protocol uses any encryption scheme?
If yes, check if the identities of the sender and the intended recipient are included

within the message to be encrypted?

If yes, proceed to Step 3.
Otherwise modify the encryption function within the protocol specifications

to include the identity of the sender and the intended recipient so that
these identities are included within the message to be encrypted.

Otherwise proceed to Step 3.

3: MAC Scheme Checking Does the protocol uses any MAC scheme?
If yes, check if the identities of the sender and the intended recipient are included

within the MAC digest to be generated?

If yes, proceed to Step 4.
Otherwise modify the MAC function within the protocol specifications to

include the identity of the sender and the intended recipient so that these
identities are included within the MAC digest to be generated.

Otherwise proceed to Step 4.

4: Signature Scheme Checking Does the protocol uses any signature scheme?
If yes, check if the identities of the sender and the intended recipient are included

within the signature to be generated?

If yes, proceed to Step 5.
Otherwise modify the signature function within the protocol specifications

to include the identity of the sender and the intended recipient so that
these identities are included within the signature to be generated.

Otherwise proceed to Step 5.

5: Protocol Analysis Restart the protocol analysis described in Section 3.3 with the re-
paired protocol. Check to see if any of the goal states in Definition 3 are violated.

If yes, output error message “Protocol cannot be repaired!”.
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Otherwise output message “Protocol successfully repaired!” and then terminated.
Due to the current limitations of SHVT, we are unable to automatically output
the specifications of the repaired protocol (in a nice and presentable diagram).
However, the specifications of the repaired protocol will be written to another
(.vsp) file, which can be viewed with any word editor.

Protocol 25 describes the resulting repaired Protocol 1. Let sidU and SKU denote the
session identifier and session key of some participant respectively.

1. A −→ B : A, rA, {A, B, STA}PKA1
2. B −→ S : B, {B, A, STB}PKB1 , A, rA, {A, B, STA}PKA1
3. S −→ B : SigSKB2(A, B, KAB), SigSKA2(A, B, KAB)
4. B −→ A : SigSKA2(A, B, KAB), MACKAB

(B, A, rA), rB

5. A −→ B : MACKAB
(A, B, rB)

sidA = A||B||S||rA||rB = sidB

SKA = H1(sidA||KAB) = H1(sidB ||KAB) = SKB

Protocol 2. A repaired Protocol 1.

We remark that in our generic patches, we ensure that the identities of the protocol par-
ticipants are explicitly exchanged in every encryption, MAC digest, and signature; and
also include the session identifier in the key derivation function. In so doing, we provide
a binding between the messages and the protocol participants, and between the session
key and the session identifier. However, our approach has the drawback of making the
protocol scheme non-symmetric as the participants will have to be ordered.

Although one might observe that our generic patches are not that new – it has been
pointed out in our earlier work (Choo et al., 2005b; Choo et al., 2005a) that similar fixes
can prevent certain attacks – having an automated tool to analyse and repair “broken”
protocols is. Moreover, we hope that by having access to such an automated tool will
help to prevent future cases of old attacks making their way into new protocols (e.g., our
case study protocol was recently published in Security Protocols Workshop 2006 (Lim
and Paterson, 2006)).

4. Conclusions

We proposed a formal framework in which we integrate an adversarial model from the
computational complexity paradigm (i.e., the BR93 adversarial model (Bellare and Ro-
gaway, 1993)) and an automated tool from the computer security paradigm (i.e., APA /
SHVT) in the setting of the planning problem, and an artificial intelligence problem, to
analyse protocols. As a case study, we specified and analysed the three-party identity-
based secret public key protocol (3P-ID-SPK) protocol of Lim and Paterson (2006). We
then refuted its existing heuristic security arguments by revealing a previously unpub-
lished flaw in the protocol with SHVT. More importantly, we describe how our formal

5A further discussion on Protocol 2 and the basis for our repair procedures is presented in Appendix B.
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framework can be used to repair protocols that were found to be insecure against certain
attacks.

Analysis and repair of another case study protocol, the conference key agreement
protocol of Boyd and González Nieto (2003), is presented in Appendix C. The same flaw
revealed in Asiacrypt 2005 on the protocol (Choo et al., 2005b) was also found by our
tool. Using the repair technique described in Section 3.4, the same fix proposed in our
earlier work (Choo et al., 2005b) is also derived.

Appendix A. Examples of Some APA Specifications

Fig. 4 describes examples of some basic types used in our specifications. Note that we
only present sufficient background on the syntax of SHVT to specify and analyse the case
study protocol and refer interested reader to the SHVT manual (SHVTManual, 2004) for
a more comprehensive read. Let A, B, and C denote clients and S denote a sever.

The initial state of both Protocol 1 is shown in Fig. 5 of Appendix A. For simplicity,
we restrict the analyses to only four players, A, B, C, S, and a malicious adversary.

Appendix B. Informal Discussions on Protocol 2

We remark that Protocol 2 is not proven secure, as this is not the purpose of our work. Our
work here is to show that we are able to reveal flaws, in particularly previously unknown
flaws, in protocols and repair the revealed flaws using an automated model checker tool.

We now present an informal discussion to provide a better insight into the protocol
failures and the basis for our repair procedures.

In Protocol 1, the identities of the protocol participants are not included within the
encrypted messages, the signatures generated, and the MAC digests generated. This ef-
fectively allows a malicious adversary, A, to intercept messages and cause confusion on
who are the actual partipants of this protocol session. Hence, by including the identities

Examples of some basic types

Agents ::= set of all the principals denoted as A, B, S and A (denoted as E)
Keywords ::= set of all the data items in the messages (e.g., ephemeral secrets, session keys)
A State ::= A’s internal state
A Keys ::= set of A’s public and private keys
B State ::= B’s internal state
B Keys ::= set of B’s public and private keys
C State ::= C’s internal state
C Keys ::= set of C’s public and private keys
E State ::= E’s internal state
S State ::= S’s internal state
S Keys ::= set of S’s public and private keys
Accepted ::= set of all oracles who had accepted and this information is visible to the adversary

Fig. 4. Examples of basic types.
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A State:= {(B,agent), (start,B), (S,server)}; A starts a protocol session run with B (indicated
by the keyword start).

B State:= {(A,agent), (respond,A), (S,server)}; B knows that that A is an agent and can respond
to a protocol run initiated by A (indicated by the
keyword respond).

C State:= {(A,agent), (B,agent), (S,server)}; C knows that both A and B are agents.
E State:= {(A,agent), (B,agent), (C,agent), (S,server)}; The adversary, A, (denoted by E) knows A, B,

and C are agents of this protocol.

A Keys:= (S,pwdA); A has a secret password that is being shared with
the server, S.

B Keys:= (S,pwdB); B has a secret password that is being shared with
the server, S.

C Keys:= (S,pwdC); C has a secret password that is being shared with
the server, S.

S Keys:= (A,pwdA), (B,pwdB), (C,pwdC); S has secret passwords shared with A, B, and C

respectively.

Network:= {}; Network is initially empty, hence, denoted by an
empty set.

Transcript:= {}; Transcript is initially empty, hence, denoted by
an empty set.

Fig. 5. Initial state of Protocol 1.

of the protocol participants within the encrypted messages, the signatures generated, and
the MAC digests generated, we should be able to thawrt Attack 1.

Moreover, as we pointed out in an earlier work (Choo et al., 2005b), including the
unique session identifiers (SIDs) comprising the identities of the participants and their
roles within the session key deriviation function ensures that session keys will be fresh
and effectively ensures some sense of direction. If the role of the participants or the iden-
tities of the (perceived) partner participants change, the session keys will also be different.

Appendix C. Another Case Study – Boyd–González Nieto Protocol

The conference key agreement protocol (Boyd et al., 2003) described in Protocol 3 car-
ries a claimed proof of security in the BR93 model, but uses a different definition of
partnership than that given in the original model description. The notation (eU , dU ) de-
notes the encryption and signature keys of principal U respectively; {·}eU

denotes the
encryption of some message under key eU ; σdU

(·) denotes the signature of some mes-
sage under the signature key dU ; NU denotes the random nonce chosen by principal U ;
H denotes some cryptographic hash function; and SKU denotes the session key accepted
by U . Protocol 3 involves a set of p users, U = {U1, U2, . . . , Up}. The session identifier
(SID) in Protocol 3 is defined to be the concatenation of messages received and sent.

1 and 2. The initiator, U1, randomly selects a k-bit challenge N1, where k is the security
parameter. U1 then encrypts N1 under the public keys of the other participants in
the protocol, signs the encrypted nonces {N1}eU2

, . . . , {N1}eUp
and broadcasts

these messages in protocol flows 1 and 2 of Protocol 3.
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1. U1 → ∗: U = {U1, U2, . . . , Up}, σdU1
(U , {N1}eU2

, . . . , {N1}eUp
)

2. U1 → ∗: {N1}eUi
for 1 < i � p

3. Ui → ∗: Ui, Ni

The session key is SKUi
= H(N1||N2|| . . . ||Np).

Protocol 3. Boyd–González Nieto conference key agreement protocol.

3. The other principals, upon receiving the broadcast messages, will respond with their
identity and a random nonce. All principals are then able to compute the shared
session key SKUi = H(N1||N2|| . . . ||Np).

C.1. Protocol Specification

For simplicity and run-time efficiency in our specification and analysis, we modified Pro-
tocol 3 to a two-party protocol. Although Protocol 3 is group-based, it is easily modified
to a two-party setting as explained by Jeong, Katz, and Lee (Jeong et al., 2004). The
modified protocol is described in Protocol 4.

1. U1 → U2: U = {U1, U2}, σdU1
(U , {N1}eU2

)

2. U1 → U2: {N1}eU2
3. U2 → U1: U2, N2

The session key is SKU1 = H(N1||N2) = SKU2 .

Protocol 4. Boyd–González Nieto conference key agreement protocol in a two-party setting.

C.2. Protocol Analysis

State space analysis in SHVT reveals that both goal state 1 of Definition 3 are violated.
The attack sequence is described in Attack 26. Let U = {U1, U2} and UA = {A, U2}
denote two different sessions and AU denotes A impersonating some entity U .

The adversary, A, asks a Corrupt query to C where C �= U1, U2 – static corruption. A now runs as C.
1. U1 → U2: U = {U1, U2}, σdU1

(U , {N1}eU2
)

2. U1 → U2: {N1}eU2
Both messages intercepted by A (i.e., C).

1(C). C → U2: UC = {C, U2}, σdC
(UC , {N1}eU2

)

2(C). C → U2: {N1}eU2
3. U2 → C: U2, N2

3(C). CU2 → U1: U2, N2

The session key is SKU1 = H(N1||N2) = SKU2 .

Attack 2. Unknown key share attack on Protocol 4.

6We remark that Attack 2 is similar to that revealed in an earlier work (Choo et al., 2005b) except that the
attack we revealed in the earlier work is in a group-based setting.
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In Attack 2, the actions of the entities are as follows:

Static Corruption. The adversary, A, asks a Corrupt query to C where C �= U1, U2 –
static corruption. A now runs as C.

1 and 2. The initiator, U1, encrypts N1 under the public key of U2 (i.e., U \ U1), signs
the encrypted nonces {N1}eU2

together with U , and broadcasts these messages in
protocol flows 1 and 2.

1(C) and 2(C). C intercepts the broadcast messages sent by U1; that is, the broadcast
messages sent by U1 never reach U2.

– C then signs the intercepted encrypted nonces {N1}eU2
together with UA

(instead of U) under A’s signing key.
– C now acts as the initiator in a different session and broadcasts these mes-

sages in protocol flows 1 and 2.

3. U2 upon receiving the broadcast messages, replies to A with the identity and random
nonce.

C impersonates U2 and forwards the messages from U2 to U1.

U1, U2, and U3 are then able to compute the shared session key SKUi =
H(N1||N2|, | . . . ||Nn).

Table 1 describes the internal states of players U1 and U2 at the end of Attack 2. We ob-
serve that U1 is not partnered with either U2 according to Definition 1, since U1 does not
have matching SIDs or agreeing PIDs. Such an attack is also termed the key replicating
attack as described in Definition 4 – goal state 1 of Definition 3. In this case, A can dis-
tinguish whether the Test-session key is real or a random value by asking a Reveal query
to the oracle associated with S1).

U1 believes that the session key SKU1 is being shared with U2, but U2 believes the
key SKU2 = H(N1||N2) = SKU1 is being shared with C, when in fact, the key is being
shared between U1 and U2. However, SKU1 = SKU2 = SKU3 = H(N1||N2). Although
the adversary does not know the value of the session key as A does not know the value
of N1, A is able to send a Reveal query to the session associated with U2 and obtain
SKU2 = H(N1||N2), which has the same value as SKU1 . Protocol 4 (and therefore,
Protocol 3) is not secure in the BR93 model since A is able to obtain the fresh session
key of the initiator U1 by revealing non-partner oracle of U1, namely U2.

Table 1

Internal states of players U1, U2, and U3

U sidU pidU

U1 U , σdU1
(U , {N1}eU2

), {N1}eU2
, U2, N2 U2

U2 UC , σdC
(UC , {N1}eU2

), {N1}eU2
, U2, N2, C
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C.3. A Repaired Protocol

Using our approach outlined in Section 3.4, we obtained the repaired protocol described
by Protocol 5.

1. U1 → U2: U = {U1, U2}, σdU1 (U , {N1, U1, U2}KU2
)

2. U1 → U2: {N1, U1, U2}eU2
3. U2 → U1: U2, N2

sid = U1||U2||U = {U1, U2}||σdU1 (U , {N1, U1, U2}KU2
)||{N1, U1, U2}eU2

||N2

The session key is SKUi
= H(sid||N1||N2).

Protocol 5. An improved Protocol 4.

There are some minor differences between Protocol 5 and the fix proposed in our earlier
work (Choo et al., 2005b). In the latter, the identity of the recipient is not included in the
encrypted message.
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Integruota protokolo analizės ir taisymo schema: Bellare-Rogaway
modelis + planavimas + modelis tikrintojas

Kim-Kwang Raymond CHOO

Modifikuota Bellare ir Rogaway (1993) konkuruojančio modelio versija yra užkoduota asin-
chroninio rezultato automatu. Modelio tikrinimo ↪irankis “Simple Homomorphism Verification
Tool” yra panaudotas automato būsen ↪u erdvės analizei. Trišalis tapatybe paremtas slapto viešo
rakto protokolas, pasiūlytas Lim ir Paterson (2006), yra pasirinktas atvejo analizei. Mes paneigiame
jo saugum ↪a atskleisdami anksčiau nepublikuot ↪a trūkum ↪a. Tada parodoma, kaip pasiūlytas būdas
gali ištaisyti protokol ↪a.


