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Abstract. The paper considers application of stochastic optimization to system of automatic recog-
nition of ischemic stroke area on computed tomography (CT) images. The algorithm of recognition
depends on five inputs that influence the results of automatic detection. The quality of recognition
is measured by size of conjunction of ethalone image and the image calculated by the program of
automatic detection. The method of Simultaneous Perturbation Stohastic Approximation algorithm
with the Metropolis rule has been applied to the optimization of the quality of image recognition.
The Monte-Carlo simulation experiment was performed in order to evaluate the properties of de-
veloped algorithm.
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1. Introduction

The most of algorithms for image processing strikes with snag of determination of inter-
nal parameters that regulate the quality of results. There is always a problem in choosing
the values of empirical parameters and motivation of the values chosen. It was the same
with the algorithm for system of automatic recognition of areas of ischemic stroke in CT
images (Grigaitis et al., 2004). In this paper, the optimization algorithm is described, that
gave the values of parameters by definite criteria. We have developed an optimization al-
gorithm (Bartkutė et al., 2006; Bartkutė and Sakalauskas, 2007) for system of automatic
recognition of ischemic stroke areas (Grigaitis et al., 2004; Bernatavičienė et al., 2007).
The target of this system were CT images of human brain (Fig. 1) where ischemic stroke
has dark features with texture property similar to other dark areas (Novelline and Squire,
1987).
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Fig. 1. The examples of automatically detected stroke areas.

The system that recognizes stroke areas have 16 different functions and is designed
for 8 bit images converted from CT. Most of these functions are complicated themselves
and they have several parameters that influence directly the results of recognition. The
main problem solved in the paper – the search of values of parameters that ensure the
best results of automatic recognition.

2. The Algorithm for Automatic Recognition

Consider that recognition system has 32 parameters with their intervals from 1 to 10. Then
amount of possible combinations is 1031 and calculations of all combinations would last
the years. By this reason optimization algorithm must be used to optimize the values
of parameters. For testing of designed optimization algorithm we used 5 functions and
their parameters x1, x2, x3, x4, and x5 that have the most great influence on the results.
Fig. 2 illustrates the principle of operation of recognition system. The parameter x1 regu-
lates the size of sliding window of average linear filter, that reduces noise level in images.
This parameter has only four values. The second parameter x2 is associated with detec-
tion of gyri areas in human brain image. This parameter has interval from 1 to 16. The

Fig. 2. Basic flowchart of principle of optimization of recognition system, where x1, x2, x3, x4, and x5 are
regulated parameters.
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third parameter x3 regulates threshold level for images. It regulates treshold level from
50 to 110 with 13 steps. The fourth parameter x4 is related with symmetry filtering and
regulates the level of comparison of two hemishperes of human brain and has 19 steps.
The last x5 parameter regulates the capability to select the ischemic stroke area, it has
12 steps. So, we have 189696 possible combinations of values of parameters.

2.1. The Filtering

The initial filtering is neccessery for Roberts Cross edge detector, thresholding, and re-
gion of ischemic stroke selection. For this purpose the images f(x, y) are filterred by
linear filter. The linear spatial filter is simply averaging the pixels contained in the neigh-
borhood of the filter mask. This filter sometimes is called averaging or low pass filter and
is described by formula:

Icenter =
1
k2

k∑
m=1

k∑
n=1

imn; (1)

Icenter is the average value of pixels values in center of sliding window, k is width of
sliding window, imn is a value of pixel in nth row and mth column of sliding window.
The average filter is regulated by x1 parameter that has four values of sliding window
width k = 3, 5, 7, 9.

2.2. Detection of Gyri Areas

The most complicated problem of detection of ischemic stroke is elimination of gyri
areas of human brain on CT images (Grigaitis et al., 2004). There are two reasons of
complexity: first is that brightness values of stroke are similar to the brightness of gyri
areas; second is that ischemic stroke areas have similar sizes to ordinary gyri areas. Dif-
ference between such areas is that gyri areas mostly look like tremulous stripes (Mangin
et al., 2004) and they can be selected according this property. For this purpose gradient
edge detector is used. We chose Roberts cross method that gave similar results to other
edge detectors such as Canny or Laplace (Gonzalez and Woods, 2002). The gradient of
brightness of image at specific location x, y is defined as

�f =
(∂f

∂x
,
∂f

∂y

)
. (2)

Chosen edge detector used only one 2×2 sliding window. An example of edge detec-
tion on grey level CT image is shown in Fig. 3 (b). Assume that gyri areas are g(m∗, n∗),
then detection procedure is described as erosion-dilation and threshold combination:

g(m∗, n∗) = γ
(
(f(x, y) ⊕ α) � α

)
, (3)

where γ is a threshold level coefficient, α is a structuring element of dilation and erosion.
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Fig. 3. The examples of edge detection: initial image (a); processed image (b); complete detection of gyri
areas (c).

The dilation and erosion were used as filter to extract gyri areas and reduce noise
(Grigaitis et al., 2004). For optimization purpose the threshold coefficient γ is associated
to the parameter x2 that has sixteen steps. They regulate the threshold interval from 100
to 255, such values possess a lot of pixels of gyri areas (Fig. 3 c).

2.3. The Threshold of Histograms

The threshold of gray level images helps to extract approximately the areas that con-
tain ischemic stroke properties. This can be called extraction of region of interest (ROI)
(Agraftotis et al., 2003; Goktur et al., 2001). Fig. 4 shows the histograms of areas of im-
ages that represent the objects of two types: gyri and ischemic stroke areas. Those areas
were manually selected in 100 images, searching to determine the properties of objects.

Histograms 2 and 3 on Fig. 4 show interconnetion of brightness of pixels of stroke and
gyri areas. Most pixels of the stroke area are approximately placed in interval from 63
to 140. Using this interval as ROI it is possible to reduce the area for detection of stroke
and increase possibility that stroke will be detected correctly. The brightness of stroke
areas have wide variation. Using threshold interval from 63 to 140 it is possible to select
ROI areas, that have low size differences from analyzed images. It is shown (Fig. 5) that
narrow interval of threshold yields differrently on various types of stroke areas. It is not
always important, because final result strictly depends on other functions of recognition
algorithm.

Fig. 4. An example of histograms of 100 images separated by the main (1), stroke (2) and gyri (3) areas.
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Fig. 5. The example of selection of stroke area using two intervals of threshold: correct selection (a); incorrect
selection (b); correct selection (c); satisfactory selection (d).

The threshold of histograms is associated with the x3 parameter and it has thirteen
steps. The lower threshold limit varies from 50 to 128. The upper limits were selected
admitting, that there is a lot of pixels brighter than 128, and sometimes they are in the
stroke area.

2.4. Symmetrical Comparison of Brightness of Pixels

The most of ischemic stroke cases occur in brain nonsymmetrically. It is an advantage
for comparison of hemispheres one with another. For this purpose the symmetry plane in
CT image of human head must be detected (Grigaitis and Meilūnas, 2005). Assume that
symmetry axis is vertical and has only one coordinate x′. Then hemispherical comparison
for the left hemisphere can be defined:

Ik(x, y) =
{

0, γsymmetry(Il(x, y) < Ir(2x′ − x, y)),
1, γsymmetry(Il(x, y) > Ir(2x′ − x, y)).

(4)

For the right hemisphere:

Ik(2x′ − x, y) =
{

0, γsymmetry(Il(x, y) > Ir(2x′ − x, y)),
1, γsymmetry((Il(x, y) < Ir(2x′ − x, y)).

(5)

Here Il(x, y) are pixels of image of the left hemisphere of human brain, Ir(2x′ − x, y)
are pixels of image of the right hemisphere of human brain, γsymmetry is the parameter
associated with x4, and it regulates symmetrical comparison, x, y are the coordinates of
pixels.

The comparison of hemispheres of human brain starts from determination of sym-
metry plane (Grigaitis and Meilūnas, 2005) that splits brain view into two hemispheres.
Consider that hemispheres are symmetrical and linear noise filter was used, and the com-
parison procedure was implemented using Eqs. 4 and 5. As the basis for comparison the
x′ coordinate was calculated from symmetry plane for each CT slice. In the case when
coordinates of pixels of the left hemishpere Ik(x, y) are known, the coordinates of pixels
of the right hemisphere are determined as Ik(2x′ − x, y). The results achieved by one
variable γsymmetry are shown in Fig. 6. This variable is asocciated with the parameter
x4. The combination of trehsholding with symmetrical comparison can be used as mask
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Fig. 6. The example of symmetrical comparison: initial image with symmetry axis (a); image of symmetrical
comparison of hemispheres (b); combination of symmetrical comparison with thresholding (c); symmetrical
comparison with filterred initial image (d).

for stroke area detection (Fig. 6 c). The benefit of linear filter is less noise on binary image
(Fig. 6 d).

2.5. The Wave Method for Area Selection

The wave method is designed for selection of ischemic stroke area. For this purpose the
initial points are used on any place of ischemic stroke area (Fig. 7 a). Designed algorithm
derives these points automatically, but for analysis we can assume that we have several
points pt, where t is a serial number of point on stroke area Q. Using sliding window of
size q0 the standard deviation of pixels σ0 (Gonzalez and Woods, 2002) is calculated in
environment of the point (Fig. 7 b). This position of sliding window is initial. Then sliding
window is shifted to x and y directions (Fig. 7 c) and the values of σj are calculated. If
brightness of pixels in sliding window qj satisfies condition σj � σ0 then the pixels
are the part of ischemic stroke area. The variable j shows the number of shifted sliding
window qj . The limitation of wave spreading is necessary in order to avoid the selection
of areas that have similar properties as stroke area. For this purpose the mask formed in
symmetrical comparison was used (Fig. 6 d).

Fig. 7. The principle of selection of area of ischemic stroke: initial points on the stroke area (a); white square
where dispersion of brightness of pixels is calculated (b); the other squares for comparison of dispersion (c);
selected stroke area (d).
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3. An Optimization of Aglorithm of System for Automatic Recognition of Ischemic
Stroke Areas

An optimization of recognition algorithm concentrates on evaluation of the results vary-
ing the parameters x1, x2, x3, x4, x5. The quality of the images can be described as
the function f(x), where x = (x1, x2, . . . , xn) and n = 5. Empirical study shows that
this objective function can be presented as smooth convex function disturbed by addi-
tive computational error. Let consider the modification of the Simultaneous Perturbation
Stochastic Approximation algorithm with Metropolis rule for minimization of such func-
tion (Bartkutė et al., 2006; Yang, 2000; Spall, 1992). Assume, the sequences are defined
as ρk = min(a, c

k ) and σk = min(b, d
k2 ), a > 0, b > 0, c > 0, d > 0. These values

are set before omptimisation and can be changed if desired results are not reached. The
optimization algorithm is as follows.

Step 0. Assume that initial approximation x0 and values of the parameters a, b, c, d

be given, k = 0.
Step 1. Let the vector Δk = (Δk

1 , Δk
2 , . . . ,Δk

n) consisting of Bernoulli variables,
which take two values 1 or −1 with probabilities p = 0.5, be generated.

Step 2. Let two perturbed vectors y2,k = (y2,k
1 , y2,k

2 , . . . , y2,k
n ) and y1,k =

(y1,k
1 , y1,k

2 , . . . , y1,k
n ) be computed:

y1,k
i = min

(
max(xk

i + Δk
i · Ck, xi min), xi max

)
, (6)

y2,k
i = max

(
min(xk

i − Δk
i · Ck, xi max), xi min

)
, (7)

where Ck = max(1, [σk + 0.5]).

REMARK 1. If necessary values y1,k
i , y2,k

i are taken as discrete numbers.

Step 3. Let two function values be computed: z1,k = f(y1,k), z2,k = f(y2,k). These
values show precision of stroke area recognition.

Step 4. Let the point νk = (νk
1 , νk

2 , . . . , νk
n) be defined:

νk
i = xk

i + sign
(z1,k − z2,k

y1,k
i − y2,k

i

)
· Wk, i = 1, 2, . . . , n, (8)

where Wk = max(1, [ρk · | z1,k−z2,k

y1,k
i

−y2,k
i

|]), i = 1, 2, . . . , n.

Step 5. Let two perturbed vectors y1,k = (y1,k
1 , y1,k

2 , . . . , y1,k
n ) and y2,k =

(y2,k
1 , y2,k

2 , . . . , y2,k
n ) be computed:

y1,k
i = min

(
max(νk

i + Δk
i · Ck, xi min), xi max

)
, (9)

y2,k
i = max

(
min(νk

i − Δk
i · Ck, xi max), xi min

)
, (10)

where Ck = max(1, [σk + 0.5]).
Step 6. Let two function values be computed: z1,k = f(y1,k), z2,k = f(y2,k).
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Step 7. Let the next approximation xk+1 = (xk+1
1 , xk+1

2 , . . . , xk+1
n ) be defined as

follows:

xk+1
i =

{
νk

i , if η � e
zk−zk−1

T ,
xk

i , otherwise,
(11)

where T = 1, η is random variable uniformly distributed in the interval [0, 1].

REMARK 2. If necessary values xk+1
i are taken as a discrete numbers.

Step 8. Check the termination condition (for instance, k � kmax). If this condition is
satisfied then stop the algorithm, otherwise k = k + 1 and go to Step 1.

REMARK 3. The final solution can be taken as the point with the best perturbed values
z1,k and z2,k.

REMARK 4. Other termination conditions can be introduced, say, using order statistics
(Žilinskas and Zhigljavsky, 1991; Bartkutė and Sakalauskas, 2004) etc.

The proposed method was tested with function:

f(x) =
n∑

j=1

aj

(
(xi − x∗

i )
2 + 0.1

(
1 − cos

(
18(xi − x∗

i )
)))

, (12)

where aj is a set of real numbers, randomly and uniformly generated in the interval
[μ, K], K > μ > 0, n = 5.

The samples of T = 500 test functions were generated, when μ = 2, K = 5, x∗
1 =

x∗
2 = x∗

3 = x∗
4 = 0.5, x∗

5 = 1. The coefficients of sequence were chosen according
to the convergence conditions (Bartkutė and Sakalauskas, 2007): ρi = min(10, 1

i ), σi =
min(10, 1

iφ ), φ = 0.25. Fig. 8 shows the averaged objective function under the number of
iterations minimized by modificated SPSA is depicted. In Fig. 9 dependence of averaged
values of variables xt

1, x
t
2, x

t
3, x

t
4, x

t
5 on number of iterations t is illustrated. Presented

figures show that the sequence xt defined by the algorithm converges to the optimal
solution.

Fig. 8. Dependence of averaged objective function value on number of iterations.
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Fig. 9. Dependence of averaged values of variables xt
1, xt

2, xt
3, xt

4, xt
5 on number of iterations t.

4. Experimental Results

Ischemic stroke recognition system calculates stroke areas on CT images, according
x1, x2, x3, x4 and x5 values. Processed images are compared with reference images using
evaluation parameter z, that tends to reach 1.0 value when calculated stroke area matches
to the reference:

z =
Sc ∩ Sr

Sc ∪ Sr
. (13)

Here Sc is a width of recognized stroke area, Sr – manually delineated reference image
area.

The experiment with two simillar size squares show, that Eq. 13 is not linear because
the value of fraction denominator can increase faster than numerator. In Fig. 10 is shown
calculations of z parameter, here two intersected ojects named Sc and Sr are used. In
changes of distance m the intersection parameter are calculated (Fig. 10 b). When objects’
sizes are equal and intersected by 50% the evaluation parameter reaches 0.328 value. So
the z parameter describes objects matching only.

According optimization algorithm the vector x = (x1, x2, . . . , xn) represents opti-
mization parameters x1, x2, x3, x4, x5. In the beginning they can be selected randomly
or calculated using Monte Carlo method. In Fig. 11 an example of z values graph with
random initial parameters is shown. The values of z at the beginning are small and in-
crease with number of iterations (Fig. 11 a). After 100 iterations the z value can be com-
pared with z value, that is calculated after 103 iterations. As seen in (Fig. 11 a) image
the z value tends to decrease shortly. This happens because the optimization algorithm is
designed to make search in variety of x1, x2, x3, x4, x5 parameters where z definitely
derives small values. Therefore, it is useful to separate the best values entire optimization
process and collect it (Fig. 11 b). This graph shows increasing recognition quality entire
optimization process.

In Fig. 12 is shown an example of detection of stroke area during optimization pro-
cess. White curve represents automatically recognized area, black strips show manually
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Fig. 10. An example of evaluation parameter property: intersection of two objects 100×100 size with distance
m (a); dependences of z on distance between objects in pixels (b).

Fig. 11. Entire examination of values of optimization parameters: a) all z values are over 103 iteration; b)
selected local maximums over examination.

Fig. 12. An example of IS area selection in optimization procecss: the area in the begining of optimization when
z = 0.096 (a); the area after 5 iteration when z = 0.24 (b); the area after 8 iteration when z = 0.35 (c).

selected stroke area. In the beginning the random values of x1, x2, x3, x4, x5 are used that
give z = 0.096. After other iterations the z value increases. When z reaches its pseudo-
maximum value the IS recognition algorithm becomes more precise and selects desired
area (Fig. 12 c).

Consider that there are always complication in ethalon images with selected of IS
areas and optimized algorithm cannot overpass it.
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5. Conclusions

An optimization of ischemic stroke recognition algorithm for personal computers was
analyzed. An adaptation of algorithm was based on comparison of initial images with
reference images. The initial images with injured areas are retrieved by computed tomog-
raphy device. The reference images are made manually selecting areas of stroke in each
CT slice. In optimization process, change of initial parameters minimized difference be-
tween reference and initial images. The main recognition algorithm of stroke consists of
12 stages. Five parameters were chose to alter, that strongly affected the results of recog-
nition. For optimization of discrete objective function the Simultaneous Perturbations
Stochastic Approximation modification was used. Computer modeling with test functions
showed that proposed algorithm reliably minimizes objective function. The results of in-
vestigation showed that proposed algorithm very fast finds optimum range of parameters
and can be used for adjustment of robust images recognition algorithms.
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Ischeminio insulto sriči ↪u kompiuterinės tomografijos vaizduose
automatinio atpažinimo sistemos optimizavimas

Darius GRIGAITIS, Vaida BARTKUTĖ, Leonidas SAKALAUSKAS

Sprendžiamas stochastinės aproksimacijos optimizavimo uždavinys ischeminio insulto sriči ↪u
automatiniam atpažinimui kompiuterinės tomografijos vaizduose. Atpažinimo algoritmas regu-
liuojamas penkiais ↪iėjimo parametrais, kurie tiesiogiai ↪itakoja atpažinimo rezultatus. Atpažinimo
kokybė matuojama sankirtos-s ↪ajungos santykiu tarp etalonini ↪u vaizd ↪u ir atpažint ↪u vaizd ↪u. Opimiza-
vimui naudojamas nuoseklios perturbacijos stochastinės aproksimacijos algoritmas leidžiantis op-
timizuoti vaizdo atpažinim ↪a. Atlikti modeliavimo eksperimentai taikant Monte Karlo metod ↪a,
siekiant ↪ivertinti sukurto algoritmo savybes.


