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Abstract. In 2004, Abe et al. proposed a threshold signer-ambiguous signature scheme from variety
of keys. Their scheme is a generalized case of the ring signature scheme, and it allows the key types
to be based on the trapdoor one-way permutations (TOWP) or sigma-protocols including Schnorr’s
signature scheme. However, the signed message is public for all, which may result in disputes.
In this paper, we present a novel threshold signer-ambiguous signature scheme, having the signed
message concealed and keeping who the receivers are secret from variety of keys.
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1. Introduction

Anonymity is an important issue for many applications. As to the digital signature,
anonymity may be still demanded even though the digital signature is for authenticat-
ing the signer of the corresponding document. In 2001, one motivation for the above
scenario comes into being such that one of the possible signers can sign the document
without the other possible signers’ agreement when the signed document may be harmful
if exposed to be public (Rivest et al., 2001). In such schemes, the verifiers know the pos-
sible signers instead of the real signer to have the document trustworthy. As a result, the
real signer should be ambiguous instead of anonymous. Consequently, it is preferred that
the signer-ambiguous signature schemes are setup-free so that the real signer can select
the possible signers at will to make himself/herself not be noticed. Contrary to the signer-
ambiguous signature schemes, the possible signers are grouped to be a set after the setup
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process in the threshold signature schemes (Desmedt and Frankel, 1992; Gennaro et al.,
1996; Shoup, 2000) and the group signature schemes (Camenisch, 1997; Camenisch and
Stadler, 1997; Chaum and Van Heyst, 1991).

Several proposed schemes can be employed as the setup-free signer-ambiguous sig-
nature schemes (Gramer et al., 1994; Jakobsson et al., 1996; Rivest et al., 2001). The
partial knowledge proof CDS (Gramer et al., 1994) leads the efficient threshold signer-
ambiguous schemes, and it can be further combined with other signature schemes based
on sigma-protocols – Schnorr’s signature scheme for example. Nevertheless, the signature
schemes based on TOWP cannot be adopted in CDS such as RSA and Rabin signature
schemes (Bellare and Rogaway, 1996; Coron, 2002).

In 2001, Rivest et al. proposed the ring signature scheme which almost directly adopts
TOWP (Rivest et al., 2001). Later, Bresson et al. proposed a t-out-of-n threshold ring sig-
nature scheme, where the signature size is exponential to the threshold t (Bresson et al.,
2002). Later, a more efficient version was presented such that the signature size is linear
to t and n (Kuwakado and Tanaka, 2002). Thereupon, Abe et al. presented a modification
on the ring signature scheme such that it can be based on both of sigma-protocols and
TOWP (Abe et al., 2002). In 2004, Abe et al. proposed a t-out-of-n signer-ambiguous
signature scheme (Abe et al., 2004). Their scheme allows the key types to be based on
the trapdoor one-way permutations (TOWP) or sigma-protocols including Schnorr’s sig-
nature scheme (Schnorr, 1991). Nevertheless, the signed message is delivered with the
signature without being encrypted. With a deep insight into the signer-ambiguous signa-
ture schemes, the document may be harmful if exposed to be public. It occurs to us that
the document must be concealed. Moreover, for the security of the receivers, no body
should know who the receivers are except for the real signers. As a result, we present a
novel t-out-of-n signer-ambiguous scheme, which makes the signed message concealed
and keeps who the receivers are secret, with variety of keys in this paper.

To illustrate the proposed scheme, let us give a scenario as follows. Suppose that
a group of members cooperate to complete one confidential task. However, when one
member leaks information to others, it will result in serious damage. At the same time, if
some members detect this issue and tend to inform the group manager, what will they do?
If these members directly inform the manager by sending a message or a message with
the corresponding signature, the manager and each member in the group will know this
issue. This approach will place both the informers and the traitor in difficult position. It is
because the manager may be the confederate or the traitor may be innocent. Consequently,
in this situation, the message must be concealed, and the informers should be anonymous.
In our scheme, the informers randomly choose some candidate signers without noticing
them and generate the signer-ambiguous signature of the secret message. Since a set
of possible signers instead of the real signers are given, the received message is still
trustworthy. On the other hand, the secret message is concealed such that the receiver can
retrieve it. As a result, the message is still not exposed, and the informers (signers) are
still anonymous in our scheme. So it can overcome the problem from which the above
scenario suffers. That is, our scheme can prevent unnecessary disputes if the manager
may be the confederate or the traitor is innocent.



A Concealed t-out-of-n Signer Ambiguous Signature Scheme with Variety of Keys 537

The rest of this paper is organized as follows. In Section 2, the preliminaries are
introduced. In Section 3, Abe et al.’s signer-ambiguous signature scheme is introduced.
Then our proposed signature scheme is shown in Section 4, followed by some discussions
in Section 5. Finally, the conclusions are drawn in Section 6.

2. Preliminaries

In the section, we introduce two types of signature schemes, type-OW and type-3M,
which employ TOWP and sigma-protocols, respectively.

2.1. Type-OW

Type-OW includes schemes such as the variants of RSA signature scheme, Rabin’s signa-
ture scheme (Bellare and Rogaway, 1996; Coron, 2002) and Paillier’s signature scheme
(Paillier, 1999), which use one-way trapdoor permutations. Let a claw-free permutation,
F , be a one-way trapdoor permutation and, I , be the corresponding inverse function,
where both of F and I are defined over the space C. Let SK and PK be the in-
volved private and public keys, respectively. Suppose that EM ∈ C is the encoded
message. The signature s of EM is I(SK, EM). Note that the verifier may check
the equation EM = F (PK, s) to determine if the signature s of EM is valid. What
is more, if anyone wants to encrypt EM such that only the owner of the public key
needs to compute Cipher = F (PK, EM). Upon getting Cipher, the owner computes
EM = I(SK, Cipher) to retrieve EM .

2.2. Type-3M

Type-3M which is typified by Schnorr’s signature scheme includes the signature schemes
derived from the sigma protocols. There are three polynomial-time algorithms, A, Z and
V , performed by the signer and the verifier. The signer commits to a ← A(SK; r), which
denotes that a is related to r secretly, randomly chooses the challenge c and computes s =
Z(SK, r, c). Then the verifier checks whether a = V (PK, c, s) or not to determine the
validity of the signature. On the other hand, there are three polynomial-time algorithms,
A′, E and D, performed by the sender and the receiver. If anyone wants to encrypt the
encoded message EM such that only the owner of the public key can get EM , he/she
only needs to compute a′ ← A′(SK; r′) and ER = E(PK, r′, EM). Upon getting ER,
the owner computes EM = D(SK, a′, ER) to retrieve EM .

3. Abe et al.’s Threshold Signer-Ambiguous Signature Scheme

In the following, the details of Abe et al.’s scheme are introduced. At first, the initializa-
tion is presented. Let the set of the involved public keys be L = {PK1, PK2, . . . , PKn},
where the first v public keys in L are of type-OW and the others are of type-3M. Note
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that at least t corresponding private keys are known to the signers. Let p be a prime larger
than any number in the challenge space Ci determined by PKi ∈ L for i = 1, 2, . . . , n.
Let H0 and Hi be hash functions with the hashing results in Zp and Ci, respectively, for
i = 1, 2, . . . , n. The signature scheme consists of two phases, the signature generation
phase and the verification phase, described in Subsections 3.1 and 3.2, respectively. In
Subsection 3.3, an example is given.

3.1. The Signature Generation Phase

Suppose that (L, t, m) are given. The corresponding signature α is generated by the fol-
lowing steps, where m is the signed message.

Step 1: For the real signer Ui, Ui chooses ai from Ci if Ui’s key is of type-OW or
commits to ai ← Ai(SKi; ri) if Ui’s key is of type-3M.

Step 2: For other signer Uj who does not sign m, zj is randomly chosen from Zp, sj is
chosen from Sj , and cj and aj are computed, where Sj is the signature space. If
Uj’s key is of type-OW, cj = Hj(zj) and aj = Fj(PKj , sj)− cj . If Uj’s key is of
type-3M, cj = Hj(zj) and aj = Vj(PKj , cjsj). Note that the operations in this
step are executed by the real signers.

Step 3: z0 = H0(L, t, m, a1, a2, . . . , an) is computed, and an (n−t)-degree polynomial
P over Zp is obtained, where P (i) = zi for the known zi’s.

Step 4: For the real signer Ui, he/she computes ci = Hi(P (i)) and si = Ii(SKi, ai+ci)
if Ui’s key is of type-OW, or he/she computes ci = Hi(P (i)) and si =
Zi(SKi, ri, ci) if Ui’s key is of type-3M.

Step 5: Finally, the signer-ambiguous signature α = (P, s1, s2, . . . , sn) is obtained.

3.2. The Verification Phase

While given (L, t, m) and the signature α = (P, s1, s2, . . . , sn), the verifier does the
following steps to verify the signature.

Step 1: If Ui’s key is of type-OW, the verifier computes ai = Fi(PKi, si)−Hi(P (i)) =
Fi(PKi, si) − ci.

Step 2: If Ui’s key is of type-3M, the verifier computes ai = Vi(PKi, Ki(P (i)), si) =
Vi(PKi, ci, si).

Step 3: The verifier checks if P (0) = H0(L, t, m, a1, a2, . . . , an). If it holds, the verifier
confirms that the obtained signature α is valid.

3.3. An Example of Abe et al.’s Signer-Ambiguous Signature Scheme

In (Abe et al., 2004), Abe et al. presented an example of a t-out-of-n signer-ambiguous
signature scheme, where RSA and the Schnorr-like signature schemes are applied, t = 2,
and n = 4. We extend Abe et al.’s example such that t = 2 and n = 5.

Let G = {PK1, PK2, PK3, PK4, PK5}. The key types for U1, U2, and U3 are
of RSA signature scheme, and the others are of the Schnorr-like signature scheme. For
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i = 1, 2, 3, (SKi, PKi) = (di, (ni, ei)), where ei ∈ Zφ(ni) and di = e−1
i mod φ(ni).

For i = 4, 5, (SKi, PKi) = (xi, (gi, qi, pi, yi)), where gi is the primitive element with
the order qi and the modulus pi, qi is a large prime factor of φ(pi), and yi = gxi

i mod pi.
Let p′ be a prime greater than n1, n2, p3, p4 and p5. Let H0, H1, H2, H3, H4 and
H5 be six hash functions with the hashing results in Zp′ , Zn1 , Zn2 , Zn3 , Zq4 , and Zq5 ,
respectively.

Suppose that U1 and U4 are two real signers who are going to sign the message m.
The following procedure is performed.

Step 1: U1 chooses a1 from Zn1 . U4 computes a4 = gr4
4 mod p4.

Step 2: For i = 2, 3, zi is randomly chosen from Zp, si is chosen from Zni , and ci =
Hi(zi) and ai = (sei

i − ci) mod ni are computed. z5 is randomly chosen from Zp,
s5 is chosen from Zq5 , c5 = H5(z5) and a5 = gs5

5 y−c5
5 mod p5 are computed.

Step 3: z0 = H0(L, t, m, a1, a2, a3, a4, an) is computed, and a 3-degree polynomial P

over Zp′ is found, where P (0) = z0, P (2) = z2, P (3) = z3, and P (5) = z5.
Step 4: U1 computes c1 = H1(P (1)) and s1 = (a1 + c1)d1 mod n1. U4 computes

c4 = H4(P (4)) and s4 = (r4 + c4x4)mod q4.
Step 5: Finally, the signer-ambiguous signature α = (p, s1, s2, s3, s4, s5) is obtained.

When the verifier wants to verify the signature α, he/she performs as follows:

Step 1: The verifier computes ai = (sei
i − Hi(P (i))) mod ni for i = 1, 2, 3.

Step 2: The verifier computes ai = gsi
i y

−Ki(P (i))
i mod pi for i = 4, 5.

Step 3: The verifier checks if P (0) = H0(L, t, m, s1, s2, s3, s4, s5). If it holds, the veri-
fier ensures that the obtained signature α is valid.

4. The Proposed Concealed Threshold Signer-Ambiguous Signature Scheme

In this section, the details of our proposed scheme are presented. Let the set of the in-
volved public keys be L = {PK1, PK2, . . . , PKn}, where the first v public keys in L

are of type-OW and the others are of type-3M. Note that at least t corresponding private
keys are known to the signers. Let p be a prime larger than any number in the challenge
space Ci determined by PKi ∈ L for i = 1, 2, . . . , n. Let H0 and Hi be hash functions
with the hashing results in Zp and Ci, respectively for i = 1, 2, . . . , n. For i = 1, 2, . . . , n,
Pi denotes the operation field determined by PKi ∈ L.

The proposed signature scheme consists of two phases, the signature generation phase
and the verification-retrieval phase, described in Subsections 3.1 and 3.2, respectively. In
Subsection 3.3, an example is given.

4.1. The Signature Generation Phase

Suppose that (L, t, M) are given, the corresponding signature α is generated as follows,
where M is the message about the signature and it may contain some keywords to be
hints for the receivers.
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For the keys of type-OW

Step 1: For the real signer Ui, Ui chooses ai ← Ci.
Step 2: For other signer Uj who is the receiver, the following procedure is executed:

z′2j−1 ← Cj ;
z2j−1 = z′2j−1 + b2j−1Pj , where z2j−1 ∈ Zp and b2j−1 ∈ {0} ∪ N ;
z′2j = Fj(PKj , mj) − z′2j−1, where mj is the message for the receiver Uj ;
z2j = z′2j + b2jPj , where z2j ∈ Zp and b2j ∈ {0} ∪ N ;
cj = Hj(z2j−1||z2j), where || is the concatenation symbol;
sj ← Sj , and
aj = Fj(PKj , sj) − cj .
Note that if the receiver Uj’s keys are of type-OW, the secret message must be
modified irregularly such as appending a random string to it. As a result, mj’s of
different receivers with type-OW keys will differ from one another.

Step 3: For other signer Uj who is not the receiver, the following procedure is executed:
z2j−1 ← Zp,
z2j ← Zp,
cj = Hj(z2j−1||z2j),
sj ← Sj , and
aj = Fj(PKj , sj) − cj .

For the keys of type-3M

Step 4: For the real signer Ui, Ui chooses ai ← Ai(SKi; ri).
Step 5: For other signer Uj who is the receiver, the following procedure is executed:

z′2j−1 = a′
j ← A′

j(SKj ; rj),
z2j−1 = z′2j−1 + b2j−1Pj , where z2j−1 ∈ Zp and b2j−1 ∈ {0} ∪ N ,
z′2j = Ej(PKj , r

′
j , mj), where mj is the message for the receiver Uj ,

z2j = z′2j + b2jPj , where z2j ∈ Zp and b2j ∈ {0} ∪ N ,
cj = Hj(z2j−1||z2j),
sj ← Sj , and
aj = Vj(PKj , cjsj).

Step 6: For other signer Uj who is not the receiver, the following procedure is executed:
z2j−1 ← Zp,
z2j ← Zp,
cj = Hj(z2j−1||z2j),
sj ← Sj , and
aj = Vj(PKj , cjsj).
Then the real signer performs as follows.

Step 7: z0 = H0(L, t, M, a1, a2, . . . , an) is computed, and a 2(n−t)-degree polynomial
P over Zp is obtained, where P (i) = zi for the known zi’s.

Step 8: For the real signer Ui, he/she computes z2i−1 = Hi(P (2i − 1)), z2i =
Hi(P (2i)), ci = Hi(z2i−1||zi) and si = Ii(SKi, ai+ci) if Ui’s key is of type-OW,
or he/she computes z2i−1 = Hi(P (2i− 1)), z2i = Hi(P (2i)), ci = Hi(z2i−1||zi)
and si = Zi(SKi, ri, ci) if Ui’s key is of type-3M.

Step 9: Finally, the signer-ambiguous signature α = (P, s1, s2, . . . , sn) is obtained.
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4.2. The Verification-Retrieval Phase

While given (L, t, M) and the signature α = (P, s1, s2, . . . , sn), the verifier verifies the
signature as follows.

Step 1: If Ui’s key is of type-OW, the verifier computes ai = Fi(PKi, si)−Hi(P (2i−
1)||P (2i)) = Fi(PKi, si) − ci.

Step 2: If Ui’s key is of type-3M, the verifier computes ai = Vi(PKi, Hi(P (2i −
1)||P (2i)), si) = Vi(PKi, ci, si).

Step 3: The verifier checks if P (0) = H0(L, t, M, a1, a2, . . . , an). If it holds, the veri-
fier is ensured that the obtained signature α is valid.

If the receiver Uj wants to retrieve the encrypted message mj , he/she executes the
following.

For the keys of type-OW
z′2j−1 = P (2j − 1)mod Pj ,
z′2j = P (2j)mod Pj , and
mj = Ij(SKj , z

′
2j + z′2j−1)mod Pj .

For the keys of type-3M
z′2j−1 = P (2j − 1)mod Pj ,
z′2j = P (2j)mod Pj , and
mj = Dj(SKj , z

′
2j−1, z

′
2j)mod Pj .

4.3. An Example of the Proposed Scheme

We extend the example in Subsection 3.3, where t = 2 and n = 5. Let G =
{PK1, PK2, PK3, PK4, PK5}. The key types for U1, U2, and U3 are of RSA signa-
ture scheme, and the others are of the Schnorr-like signature scheme. For i = 1, 2, 3,
(SKi, PKi) = (di, (ni, ei)), where ei ∈ Zφ(ni) and di = e−1

i mod φ(ni). For i = 4, 5,
(SKi, PKi) = (xi, (gi, qi, pi, yi)), where gi is the primitive element with the order qi

and the modulus pi, qi is a great prime factor of φ(pi) and yi = gxi

i mod pi. Let p′ be
a prime greater than n1, n2, p3, p4 and p5. Let H0, H1, H2, H3, H4 and H5 be six hash
functions with the hashing results in Zp′ , Zn1 , Zn2 , Zn3 , Zq4 , and Zq5 , respectively.

Suppose that U1 and U4 are two real signers who are going to sign the message M ,
and U2 and U5 are the receivers of m2 and m5, respectively. The following steps are
performed.

Step 1: U1 chooses a1 from Zn1 . U4 computes a4 = gr4
4 mod p4.

Step 2: For U2, z
′
3 is randomly chosen from Zn2 , and z3 = z′3 + b3n2 is computed,

where z3 ∈ Zp and b3 ∈ {0} ∪ N . z′4 = (me2
2 − z′3) mod n2 and z4 = z′4 + b4n2

are computed, where z4 ∈ Zp and b4 ∈ {0} ∪ N . c2 = H2(z3||z4). s2 is chosen
from Zn2 , and a2 = (se2

2 − c2) mod n2.
Step 3: For U3, z5 and z6 are randomly chosen from Zp. c3 = H3(z5||z6). s3 is chosen

from Zn3 , and a3 = (se3
3 − c3) mod n3.
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Step 4: For U5, r′5 is randomly chosen, where r′5 is in Zq5 and z′9 = a′
5 = g

r′
5

5 mod p5.

z9 = z′9 + b9p5 is computed, where z9 ∈ Zp and b9 ∈ {0}∪N . z′10 = m5y
r′
5

5 mod
p5 and z10 = z′10 + b10p5 are computed, where z10 ∈ Zp and b10 ∈ {0} ∪ N .
c5 = H5(z9||z10). s5 is chosen from Zq5 , and a5 = gs5

5 y−c5
5 mod p5.

Step 5: z0 = H0(L, t, M, a1, a2, a3, a4, a5) is computed, and a 6-degree polynomial
P over Zp′ is found, where P (0) = z0, P (3) = z3, P (4) = z4, P (5) = z5,
P (6) = z6, P (9) = z9 and P (10) = z10.

Step 6: U1 computes c1 = H1(P (1)||P (2)) and s1 = (a1+c1)d1 mod n1. U4 computes
c4 = H4(P (7)||P (8)) and s4 = (r4 + c4x4)mod q4.

Step 7: Finally, the signer-ambiguous signature α = (P, s1, s2, s3, s4, s5) is obtained.

When the verifier wants to verify the signature α, he/she performs as follows:

Step 1: The verifier computes ai = (sei
i −Hi(P (2i−1)||P (2i))) mod ni for i = 1, 2, 3.

Step 2: The verifier computes ai = gsi
i y

−Ki(P (2i−1)||P (2i))
i mod pi for i = 4, 5.

Step 3: The verifier checks if P (0) = H0(L, t, M, s1, s2, s3, s4, s5). If it holds, the
verifier makes sure that the obtained signature α is valid.
As to U2, he/she retrieves m2 as follows:
z′3 = P (3)mod n2,
z′4 = P (4)mod n2, and
m2 = (z′3 + z′4)

d2 mod n2.
As to U5, he/she retrieves m5 as follows:
z′9 = P (9)mod p5,
z′10 = P (10)mod p5, and
m5 = ((z′9)

x5)−1z′10 mod p5.

5. Discussions

In this section, we are going to make discussions on our proposed scheme to demonstrate
that it is not only secure but also efficient.

Property 1: At least t private keys are known
This property denotes that there are at least t real signers to generate the signature. To

determine one k-degree polynomial, (k+1) points are needed. As a result, (2(n− t)+1)
points are needed in advance to determine the 2(n − t)-degree polynomial P . First, the
real signers Ui’s generate the partial signatures, aj and sj , of cj for Uj’s. Second, the
real signers Ui’s need to choose or compute ai’s in advance. Third, cj = Hj(z2j−1||z2j),
P (2j − 1) = z2j−1 and P (2j) = z2j . Forth, z0 = H0(L, t, M, a1, a2, . . . , an). Since
(2(n− t)+1) points are available, the 2(n− t)-degree polynomial P will be determined
at once. Since ci = Hi(z2i−1||z2i) and P have been determined, we have P (2i − 1) =
z2i−1, P (2i) = z2i, and ci = Hi(z2i−1||z2i). As a result, the real signers Ui’s need to
sign ci’s to generate si’s. Therefore, at least t private keys must be known; otherwise, the
valid signer-ambiguous signature cannot be generated.
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Property 2: No one can get the knowledge of who the receivers are except for the
real signers

In Steps 2 and 5 of the signature generation phase, the secret messages mj’s are all
encrypted by the receivers’ public keys. And the products z′2j−1 and z′2j are all modified
to be z′2j−1 and z′2j , respectively. Since both of z′2j−1 and z′2j are in Zp, users cannot
know who the receivers are. On the other hand, it is wondered whether the receiver can
learn the knowledge of other receivers. Suppose that a receiver Uj has obtained mj . If Uj

wants to know whether Ui is the receiver or not, where i �= j, he/she cannot succeed. The
reasons are given as follows. If Ui’s key is of type-OW, mi must be different from mj

as shown in Step 2 of the signature generation phase. Moreover, mi is the product of the
secret message modified irregularly, so Uj cannot determine mi. As a result, even if Uj

computes z′2i−1 = P (2i − 1)mod Pi, z′2i = P (2i)mod Pi, and z′′2i = Fi(PKi, mj) −
z′2i−1, z′′2i and z′2i must be different. If Ui’s key is of type-3M, Uj computes z′2i−1 =
P (2i− 1)mod Pi and z′2i = P (2i)mod Pi. Nevertheless, Uj cannot know r′i to compute
z′′2i = Ei(PKi, r

′
i, mi)mod Pi and check if z′′2i and z′2i are equal to determine whether

Ui is the receiver or not.

Property 3: The receiver Uj can retrieve the secret message mj correctly
In Steps 2 and 5 of the signature generation phase, the secret message mj has been

encrypted by the Uj’s public key. Moreover, the polynomial P is determined by all known
z′′i s including z′2j−1 and z′2j . As a result, Uj can get z′2j−1 and z′2j to retrieve mj correctly
unless P is modified illegally. Even if P is modified on purpose, Uj can detect easily since
the verification of the signature α will fail.

Property 4: The signature size of our proposed scheme is still small
As shown in Section 4, the signature size of our scheme is almost the same as that of

Abe et al.’s except the polynomial P . The polynomial P is 2(n−t)-degree in our scheme
while it is (n − t)-degree in Abe et al.’s. That is, the size of the digital signature in our
scheme is still proportional to n.

Property 5: Our scheme is efficient
As shown in Sections 3 and 4, the computation load of our scheme is almost the same

as that of Abe et al.’s. In the signature generation phase, only extra n hash operations,
w F function operations, hA′ function operations and hE function operations are needed
in our scheme, where w is the number of receivers with keys of type-OW and h is the
number of receivers with keys of type-3M. It is quite reasonable since the secret message
should be encrypted with the receivers’ keys, respectively. In the verification-retrieval
phase, only extra n hash operations are needed in our scheme.

6. Conclusions

A number of signer-ambiguous signature schemes are proposed to protect the signer,
but these schemes cannot keep the essential message secret. This property still results
in disputes. In this paper, we have presented a new version which can have the original
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message concealed and the anonymity of the receivers can also be confirmed at the same
time. Moreover, the signature size is still linear to n, and the computation load of our
scheme is light as well. In a word, the proposed scheme is secure, efficient, and practical.
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Paslėpta t-iš-n pasirašanči ↪uj ↪u paraš ↪u schema su ↪ivairiais raktais

Ya-Fen CHANG, Chin-Chen CHANG, Pei-Yu LIN

2004 metais Abe ir kiti pasiūlė slenkstin ↪e paraš ↪u schem ↪a su ↪ivairiais raktais. J ↪u schema yra
ciklo parašo schemos apibendrinimas ir leidžia naudoti raktus, paremtus vienos krypties kėliniais
ar sigma-protokolais, tarp kuri ↪u yra ir Schorr’o parašo schema. Tačiau pasirašytas pranešimas yra
viešas visiems, dėl ko gali kilti ginč ↪u. Šiame straipsnyje pasiūlyta nauja slenkstinė paraš ↪u schema,
užtikrinanti pasirašyto pranešimo ir gavėj ↪u slaptum ↪a.


