
INFORMATICA, 2007, Vol. 18, No. 3, 363–374 363
© 2007 Institute of Mathematics and Informatics, Vilnius

Internationalization of Compilers

Valentina DAGIENĖ
Vilnius University, Faculty of Mathematics and Informatics
Naugarduko 24, 03225 Vilnius, Lithuania
e-mail: dagiene@ktl.mii.lt

Rimgaudas LAUCIUS
Institute of Mathematics and Informatics
Akademijos 4, 08663 Vilnius, Lithuania
e-mail: rimga@ktl.mii.lt

Received: January 2007

Abstract. Internationalization of compilers and localization of programming languages is not a
usual phenomenon yet; however, due to a rapid progress of software and programming technolo-
gies it is inevitable. The new versions of wide used programming systems already allow using the
identifiers written in the native language, and partially supports Unicode standard, but still have
many internationalization deficiencies.

The paper analyses the main elements of internationalization of compilers and their localization
possibilities. According to contemporary standards, existing practices of software internationaliza-
tion and tendencies there are given recommendations how compilers should be internationalized.
The paper gives arguments of the importance of localization of lexical elements of the program-
ming languages, and presents solutions that enable to solve the problems of portability of programs
developed using localized compiler as well as problems of compiler’s compatibility with other
compilers.

Key words: localisation, internationalisation, design of compilers, translation, open source.

1. Introduction

Beginning with the last decade most of the software developers conceived the importance
of the localization of their products. This is one of the most efficiently ways of expanding
the software market and getting more revenues. Based on the statistics of the USA soft-
ware developers, their localized software market exceeds 60% and is constantly growing.
When localizing software the needs of a particular cultural divide are taken into account.
This increases its usability and therefore people all over the world give a priority to it
contrary to non-localized software (Esselink, 2002).

Software localization is a complex task. This process requires a contribution not only
from a provider of localization services, but also from the software developer. The expen-
diture and success of localization strongly depends on the software internationalization
level which is the prerogative of developer.



364 V. Dagienė, R. Laucius

Localisation Industry Standards Association (LISA) defines internationalization as
follows: “Internationalization is the process of generalizing a product so that it can handle
multiple languages and cultural conventions without the need for re-design. Internation-
alization takes places at the level of program design and document development“.

The study on internationalisation that has been performed in Finland (Immonen and
Sajaniemi, 2003) reveals that the majority of Finish software producers, who took partic-
ipation in the survey, understand the importance of internationalization for their software
however most of them restrict themselves only to establishing features for its text trans-
lation. Features for localization of the rest of software elements are established only by
several developers and only in rare cases. The main reason is rather a high percent of
investments necessary for internationalization, – it amount up to 10–20% of software
production expenses.

During the interviews different developers pointed on to various reasons that deter-
mine that high percent of expenditure for internationalization. The main reasons, how-
ever, were named technical, such as: the lack of methods and standards for developing
the internationalized software, the problems of character coding, and insufficient support
of internationalization by programming tools, and so on (Immonen, Sajaniemi, 2003).

Software internationalization is part of its development process, so an international-
ization of software development tools is a very important factor (Dagiene, 2006). If the
tools are not internationalized then it is impossible to create internationalized software
using them or otherwise this process requires additional investments. For example, it is
obvious that a programmer will face difficulties in developing internationalized software,
if the programming tools do not support usage of a multilingual text.

Most of researchers present internationalization process as additional to software de-
velopment process and tries to improve it (Young, 2001; Sullivan, 2001). But most of the
internationalization problems may be effectively solved only by internationalizing soft-
ware development tools. By that may be achieved that development of internationalized
software would be as natural process as that of non-internationalized.

The investigations revealed that the majority of contemporary programming tools are
insufficiently internationalized. It could by partly explained by the fact that international-
ization itself is rather a new phenomenon. The delayed interest in the internationalization
of compilers, compared with the usual software, was determined by other factors as well.
For instance, stagnation: programmers are frequently ill disposed towards any novelties
(Trillo, 1999).

The greatest part of software is being developed by using compilers. The princi-
pal modern compiler consists of three main parts: 1) translator, 2) runtime library, and
3) linker (Fig. 1). A translator translates a program written in human readable program-
ming language into program meant for linker. Linker uses this program and fragments
of code prepared in advance and stored in runtime library to generate the final products,
generally these are executable files or libraries.

In the paper, we shall overview the issues of translator’s internationalization, actu-
ally without touching issues of internationalization of runtime library and linker; namely,
we are going to analyse these issues: data encoding, implementation of locale elements,
internationalization of lexical elements.



Internationalization of Compilers 365

Fig. 1. Compilation process.

2. Data Encoding

Data encoding is one of the most important issues of compiler internationalization. The
features of compiled program to process data properly depend on that as well as the pos-
sibility to input source code of program containing elements written in native language
or even multilingual text. Improperly selected encoding method may even cause data loss
during its encoding from one code table to other. Because of that the right choice is to use
universal encoding method.

There are 6,912 known living languages in the world (Gordon, 2005) however most of
software is developed in the English language. Based on statistics, the initial language of
more than 80% of localization projects is English (Esselink, 2002). This is the reason of
insufficient software internationalization as well. English language almost do not require
internationalization, hence when designing software the needs of other people are often
disregarded. It is often supposed to be the problem of localizers but not developers. Such
attitude is wrong.

The most frequent error when creating software is an improper choice of 8 bit data
encoding. That is indirectly determined because of use of 8 bit encoding by the most of
the wide used compilers. It is possible to encode only 255 characters by 8 bits, which
is sufficient for encoding script characters of the English and many other languages by
using different code tables, but far from all languages (ISO 8859). There are scripts that
use several hundreds and even thousands of characters (e.g., Chinese, Japanese). That is
why the internationalized compiler should use universal method for data encoding.

Such universal method is proposed in Unicode standard. The Unicode standard was
created and is further improved by the consortium under the same title name in 1991. It
defines quite a large code table (including 111412 code units) which encompasses all the
characters used in the world.

The Unicode standard base code table is equivalent to the ISO 10646 standard subset
UCS-2. Differently than the ISO 10646 standard, which only describes the set of charac-
ters, the Unicode standard presents in addition, the rules and specifications related with
the standard implementation, e.g., combined character sequence normalization, bidirec-
tional text display specifications, and the like. Due to this, the Unicode standard became
more wide known and used. It is also implemented by the majority of modern operating
systems (OS).

The Unicode standard presents three character encoding methods: UTF-32, UTF-16,
and UTF-8. The digit in the title of method means the number of bits allocated to express
a code unit. It suffices only 32 bits in order to express all the Unicode characters by
separate code units. Meanwhile, by using other methods part of characters is expressed
by sequences of code units. It suffices 16 bits to express the characters present in the base



366 V. Dagienė, R. Laucius

multilingual plane of Unicode code table by separated code units. Characters beyond this
limit are encoded using sequences of code units from surrogates’ area. Most often there
is no need to do that because characters beyond base plane are employed very rarely.
8 bits are sufficient to code only ASCII character, while the remaining ones are coded by
sequences of 2–6 code units. By mutually comparing the Unicode methods with respect
to implementation in software, one can find both merits and demerits, whereas in terms
of internationalization they are equivalent.

With respect to compiler, data can be divided into two types: external and internal.
The source code, configuration, messages, log files and like are considered as external
data. The data used in the compiler memory, e.g., lexical elements, messages, and like,
are regarded as internal data. In terms of internationalization it is not important which of
the Unidode encoding methods is chosen for encoding the external data. When reading
data it makes no difficulty to recode it. However, it is reasonable to choose a method
for encoding external data coincident with that of internal data encoding. In that case, a
syntax analyser will operate more efficiently.

In order to code internal data, it is expedient to select UTF-16 method because it is
implemented by most modern OS APIs. Therefore using OS services there will be no
need to recode them.

As an example it may be presented several contemporary programming systems such
as Visual Studio 2003 .NET1, Delphi 2005 .NET2, Java Studio 83 that are using Unicode
encoding already.

3. Implementation of Locale Elements

The subset of software user’s environment dependent on the customs of language and cul-
ture is defined by a locale. Locales may be implemented in different ways. One can rely
on generally accepted international standard – POSIX (IEEE Standard 1003, ISO/IEC
9945), C++ (ISO/IEC 14882), FDCC-set (ISO/IEC 14652), or de-facto standards (these
models of locales are not formally standardized, but very important): Windows, Java lo-
cales. We should also mention here the standard (ISO/IEC 15897) for registration proce-
dure of cultural elements. That defines the registration of locale elements described not
only in a formal form (based on the POSIX or computer readable format, e.g., XML), but
also in an informal way, by natural language (Dagienė, Laucius, 2004). But it is a bit ob-
solete. Unicode technical standard #35 “Locale Data Markup Language” is considered as
more actual at this time. The data prepared according to this standard may be submitted
to “Common Locale Data Repository” and is publicly available.

Standard models of locales define a generalized set of cultural elements. The main
parts that are included by the majority of locales are:

1Visual Studio 2003 .NET, Windows, .NET Framework are the registered trademarks of Microsoft Corpo-
ration.

2Delphi 2005 .NET is a registered trademark of Borland International, Inc.
3Java Studio 8, Java are the registered trademarks of Sun Microsystems, Inc.



Internationalization of Compilers 367

1. Language and country. In what language a user keeps a dialogue with software.
The names of language and country and their translations into English.

2. Characters encoding, classification, and collation. Which characters are letters,
numbers, or punctuation marks? Has a language got capital and lower-case letters
and how are they mutually converted? What is collation order of characters?

3. Formats (of numbers, currency, date and time, addresses, telephone numbers, etc.).
How are the integer and real numbers, money sums, dates, and time represented?
In what order are addresses and telephone numbers written?

4. Calendars, time zone. Which calendar is used? Are the week days showed in it and
in which way? Information on summer/winter time.

5. Measurement units, paper formats. Which measure units are used in measuring
length, weight, sound, speed etc?

The key elements that identify a locale are language and country. For instance, despite
that USA and United Kingdom use same language they have different locales, because
their cultural conventions are different. A similar situation is in Finland where two differ-
ent state languages (Finnish and Swedish) are used, so two different locales are needed.
To identify locales in a computer a combination of language and country codes defined
by the standards ISO 639 and ISO 3166 is usually used. RFC 3066 and XPG4 documents
define such identification of locales and it is widely applied. Though, e.g., in the Windows
locales are identified by special digital constants LCID.

A compiler as any other software also depends from a locale. It may use date, time,
number and other formats when formatting messages. Messages may contain grammat-
ically changeable parts (e.g., quantitative nouns). Differently from usual software com-
pilers may include the code fragments of standard functions, operations, data types’ re-
alization and etc. that may be locale dependent as well. These code fragments is being
included into produced binaries during compilation hence the internationalization of com-
piler may impact the internationalization of produced software as well. That makes the
internationalization of compilers a bit harder in compare with the internationalization of
usual software. It may be called a meta-internationalization in some way.

Information stored in standard locales is not always sufficient. For example, a great
many of additional cultural dependent elements may be used in office programs: date,
address, and other formats, templates of documents, and the like. In such cases, one has
to look for other ways of realisation of additional elements (Laucius, Dagienė, 2004). It
might be necessary also in those cases, if the program runs on various platforms, because
most of them use different locale models.

4. Internationalization of Lexical Elements

The difference of internationalization of compilers in comparison with internationaliza-
tion of usual software is that programming language syntax requires internationalization
as well. Because of singularity of compilers’ functional logic usual internationalization
methods do not suit for its internationalization.



368 V. Dagienė, R. Laucius

Lexical elements of the programming language may also be regarded as additional el-
ements of locale. Though official descriptions of programming languages typically omit
localization capabilities of lexical elements, however, often there is a provided possibil-
ity that they might be selected during the programming language implementation during
compiler design. In such a case, lexical elements can be selected so that they would corre-
spond to the language and culture of particular locale. In fact, that would be programming
language localization (Grigas, 2000).

Localization of programming languages is not yet a usual phenomenon there exist
very few internationalized compilers that allow it. One of the programming languages
most known and used in the world which supposed to be localized is LOGO. It is used in
general education schools in Lithuania for teaching algorithms students of lower grade.
Localization gives an advantage to it against non-localized programming languages, be-
cause the vocabulary of a localized language is clearer and simpler, it can be easier mem-
orized and learned. The elements of a program written in the native language are more
natural and easier conceivable.

We seek similar aims localizing another programming system – Free Pascal. It is used
for teaching algorithms in higher grades in Lithuanian schools of general education. Free
Pascal compiler is not sufficiently internationalized hence some problems were faced in
the process of its localization. Since it is open source compiler, we decided to interna-
tionalize it ourselves and investigated the ways of doing that. The investigation revealed
a lot of useful information related with compilers’ internationalization (Laucius, Dagienė,
2001).

There is an important relation between the human thinking and language. A man
uses language in order to explicitly express what he has in mind. Analogously when
developing program a programmer is also thinking in constructions and concepts of the
language he is programming. That is why it is of utmost importance that these concepts
(denoting various lexical elements) where as close to the native language as possible.

Language localization is especially important for the peoples who have different than
Latin script writing system (e.g., Cyrillic, Arabic, etc.). In that case, to write lexical ele-
ments denoted by Latin characters they have to use additional, according to they locale,
Latin input methods. Text typesetting problems may arise even for the peoples that use
the Latin script writing system, but do not use all the letters of English alphabet, e.g.,
there no “w, q, x“ letters in the Lithuanian alphabet (LST 1852).

The locale should include the following lexical elements: reserved words, operators,
number, punctuation marks, and standard names. With a view to localize them properly,
the compiler has to support the Unicode standard. For example, Unicode Standard Annex
#31 describes syntax rules for formation of the identifiers of programming languages.
Based on them identifiers can be formed from the Latin character as well as from other
scripts characters (Cyrillic, Greek, Chinese, etc.) (Unicode, 2005).

Reserved words. In many programming languages English words or their abbre-
viations serve as basic words. There is an opinion that these should play a unification
role among different programming languages and possibly they have not to be localized.
However, as Grigas’ research has shown, a variety of reserved words among different



Internationalization of Compilers 369

languages is very great indeed (only 3,3% of common reserved words were used in 13
programming languages, while 56% are used only in particular languages), so that this
opinion has no ground (Grigas, 2000).

Internationalization of the reserved words is not complicated as they are only symbols
denoting programming language syntax. Therefore, it suffices to implement a mechanism
into a compiler that would dynamically load localized reserved words from a certain
locale.

Operators. A part of operators in programming language are taken over from mathe-
matics and are international. However, there are some exceptions, e.g., some peoples use
different symbols of division and multiplication.

The majority of programming languages were created on the basis of ASCII code ta-
ble that has only several principal symbols of operations. Therefore part of the symbols
were encoded in pairs of characters (:=, <>, and so on) or were denoted by names (div,
or, and, and so on). After internationalizing a compiler, there will appear an opportunity
to proceed to natural operators’ notation by mathematical symbols (Table 1). However,
in order to avoid possible text typesetting problems, it is reasonable to implement math-
ematical symbols as synonyms to the former ones.

Numbers. Figures of digits just like script characters may differ in different writing
systems (Table 2). Therefore their localization features should be foreseen as well.

Formats of writing numbers also pose some problems, e.g., punctuation mark of dec-
imal fraction. For instance, in the USA, a period plays its role, while a comma is used
in most of European peoples. In programming languages a comma typically performs
the punctuation function of list elements. Therefore, the use of comma as a punctuation
mark of a decimal fraction will result in ambiguity. For instance, the note 0,12 can be
treated both as a decimal fraction and as a list of two numbers. The note 0, 12, however,
is unambiguous, since there is an interval after a comma which is inadmissible in writing

Table 1

Examples of operators

Operation Pascal operators Mathematical operators

Assignement := ← (U+2190)

Ordinal division Div ÷ (U+00f7), \ (U+0092)

Multiplication * · (U+2219), × (U+00d7)

Table 2

Examples of digits

Latin Arabic Thai

5 (U+0665) (U+0E55)

7 (U+0667) (U+0E57)

9 (U+0669) (U+0E59)



370 V. Dagienė, R. Laucius

Table 3

Examples of digits grouping

Nation Examples Remarks

British 1,234,567,890.12 Groups by 3 digits. Groups are set off by various
marks, dependent on a locale.Germans 1.234.567.890,12

Swiss 1’234’567’890,12

Lithuanian 1 234 567 890,12

Chinese, Japanese 12 3456 7890.12 or Groups by 4 digits, separated by ideographic marks.
Sometimes even thousands may be set off.12 3,456 7,890.12

Hindu 1,23,45,67,890.12 Groups by 3 digits in the first group, and in 2 in the
next ones, separated with commas.

numbers. Thus this problem could be solved by extending the syntax of a programming
language according to which the first note could be treated only as number (Grigas, 2000).

Grouping digits also gives rise to similar problems. Digits are grouped differently in
various cultures. Various symbols may also play the part of a punctuation mark between
groups. As usual, programming languages do not provide any features for grouping digits,
despite that after expanding their syntax a little, it would not be difficult to introduce digit
grouping.

Punctuation marks. Along with the punctuation marks for a decimal fraction and
grouping, there exist other groups of punctuation marks that require internationalization
(e.g., an interval may be basic, connective, ideographic, etc.). These marks are not nu-
merous so their implementation is nor very complicated.

A part of punctuation marks in programming languages also play the role of lexical
elements. For instance, parentheses serve for grouping of elements, comments, etc., apos-
trophes denote string constants. It should be noted that in different locales different marks
may be used to denote the same. For example, commas may have various flourishes, they
can be written upper or lower, etc. (e.g., “English”, “Lithuanian“) (Unicode, 2005).

Standard names. The standards of programming languages describe not only the
rules of program syntax and semantics, but also they present a collection of means that
facilitate their realisation, such as standard data types, constants, functions, and modifiers.
Other than the reserved words, these are not fixed and can be described anew. Therefore
it is possible to install rather a simple mechanism that would re-declare these names, by
localized names.

It is a little more complicated to localize names of standard functions. In various com-
pilers they are realised in a different way, so it is difficult to offer a universal mechanism
for their internationalization. In most compilers, however, the standard functions are de-
noted by internal names, while the real names are only lexical symbols. In those cases,
they can be internationalized rather easily.

Directives. The names of directives usually are not described in the standards of pro-
gramming languages. They are meant for controlling the compilation process, so they
are closely connected with the realisation of a particular compiler. Therefore the right to



Internationalization of Compilers 371

Fig. 2. Locale data of compiler.

choose their names belongs to a developer, and usually directives are described in the doc-
umentation of compiler. They are also very important and frequently used construction
of programming language therefore they should be internationalized as well.

5. Framework of Internationalization of Lexical Elements

In order to allow complete localization of lexical elements, two possibilities should be
foreseen during the internationalization of compiler: 1) to replace them and 2) to attribute
synonyms to them. The possibility of using synonyms may solve possible text typesetting
in some cases (e.g., in typesetting a synonym of a mathematical symbol that is missing in
the computer keyboard).

Lexical elements are easily defined in a formal way; therefore their internationaliza-
tion is not a complicated task. Lexical elements can be treated as customary formal data
of locale. In this way, one can solve the problem of a portability of programs by loading
data of different locales dynamically at runtime of compiler. So compiler will become
independent from a particular locale and will be able to compile programs meant for var-
ious locales (e.g., indicating the program locale by directives or compiler switches). The
figure below (Fig. 2) illustrates the translation process. According to the main platform
locale or compiler switches, a compiler loads the data of a respective locale.

It is possible to retain the compatibility with previously developed programs by using
a fictional locale (in the figure it is conditionally denotes as “en-ST”) that would include
lexical elements corresponding to the standard functioning of the compiler, so as if the
compiler were not expanded in this case as well.

In order to retain the compatibility with other compilers of the same programming
language or merely to translate source code into another locale, one can employ a pre-
processor that would translate source code between locales.

6. Conclusions

Software internationalization is part of its development process, so internationalization
of software development tools is a very important factor to it. Internationalization and
further localization of compilers can improve software development process and its inter-
nationalization level.



372 V. Dagienė, R. Laucius

Internationalization of compiler differs from usual software internationalization be-
cause it additionally encompasses internationalization of lexical elements of program-
ming language. The localization of lexical elements may cause problems of source code
portability that can be solved by applying methods presented in this paper.

The most important task of the internationalization of compilers is the implementation
of Unicode encoding method. The features of compiled program to process data properly
depend on that as well as the possibility to input source code of program containing
elements written in native language or even multilingual text. It also provides features for
internationalization of lexical elements.

The localization of programming language gives an advantage to it against non-
localized programming languages, because the vocabulary of a localized language is
clearer and simpler, it can be easier memorized and learned. The programs written in
the native language are more natural and easier conceivable.

References

Dagienė, V., R. Laucius (2004). Internationalization of open source software: framework and some issues. In
T. Boyle, P. Oriogun, A. Pakstas (Eds.), 2nd International Conference Information Technology: Research
and Education, pp. 204–207.

Dagienė, V., G. Grigas (2006). Quantitative evaluation of the process of open source software localization.
Informatica, 17(1), 3–12.

Esselink, B. (2002). Localization and translation. Computers and translation. John Benjamins Publ. Comp.,
67–87.

Gordon, R. G. (2005). Ethnologue: Languages of the World. 15th edition. Dallas: SIL International.
Grigas, G. (2000). Programavimo kalb ↪u leksikos element ↪u analizė mokymo požiūriu. Informatika, 1(35), 45–

67.
Hall, B. (2005). Developing software with internationalization in mind. MultiLingual Computing & Technology,

16(3), 10–13.
Hall, V., Hudson, R. (1997). Software without Frontiers. Chichester: Willey & Sons.
Immonen, J., J. Sajaniemi (2003). Software Globalisation in Finland: A State-of-the-Practice Survey. University

of Joensuu.
Laucius, R. (2003). Lokalės, j ↪u sandara ir ypatumai. Informacinės technologijos, Konferencijos pranešim ↪u

medžiaga. Kaunas, Technologija, I, 1–7.
Laucius, R., V. Dagienė (2001). “Free Pascal” panaudojimas informatikos kursui. Lietuvos matematikos

rinkinys, 41, 267–271.
Pat O’Sullivan (2001). A Paradigm for Creating Multilingual Interfaces. Dissertation, University of Limerick.
Trillo, N.G. (1999). The cultural component of designing and evaluating international user interfaces. In Pro-

ceedings of the 32nd Hawaii International Conference on System Science. Hawaii.
Unicode (2003). The Unicode Standard, Version 4.0. Boston, MA, Addison-Wesley.
Young, E. (2001). A Framework for the Integration of Internationalization into the Software Development Pro-

cess. Dissertation, South Dakota University.



Internationalization of Compilers 373

V. Dagienė is head of the Department of Informatics Methodology at the Institute of
Mathematics and Informatics as well as professor at the Vilnius University. She has pub-
lished over 100 scientific papers and the same number of methodical works, has written
more than 50 textbooks in the field of informatics and ICT for high school (part of them
is written together with co-authors).

She works in various expert groups and work groups, guides the activity of a Young
Programmer’s School, for many years, she has been organizing the Olympiads in Infor-
matics among students. Recently she is engaged in localization of software and education
programs, e-learning, and problem solving.

She is national representative of the Technical Committee of IFIP for Education
(TC3), member of the Group for Informatics in Secondary Education (WG 3.1) and for
Research (WG 3.3) of IFIP, member of the European Logo Scientific Committee, mem-
ber of International Committee of Olympiads in Informatics. She is an Executive Editor
of international journal “Informatics in Education“.

R. Laucius is PhD student (finishing) in the Department of Informatics Methodology
in Institute of Mathematics ans Informatics. His dissertation is on topic “International-
ization of compilers“. The results of his dissertation have been published in 8 scientific
papers. His research field is software and compilers internationalization and localization
as well as programming methodology. He has developed the internationalized software
for teaching programming that is used in Lithuanian schools. He is lecturer in Vilnius
University. Most of the subjects he lectures are related with programming.



374 V. Dagienė, R. Laucius

Transliatori ↪u internacionalizacija

Valentina DAGIENĖ, Rimgaudas LAUCIUS

Transliatori ↪u internacionalizavimas ir programavimo kalb ↪u lokalizavimas dar nėra ↪iprastas
reiškinys, tačiau sparčios programinės ↪irangos ir programavimo technologij ↪u pažangos dėka jis
tampa vis labiau būtinas. Naujausios populiarios programavimo sistem ↪u versijos (Delphi 8, Vi-
sual Studio 2003) leidžia naudoti nacionalinius žymenis, ↪ivairiomis kalbomis užrašytus kintam ↪uj ↪u,
procedūr ↪u ir kt. vardus. Straipsnyje argumentuojama programavimo kalb ↪u leksikos lokalizavi-
mo svarba, nagrinėjama, kaip turėt ↪u būti internacionalizuotas transliatorius, kad j↪i būt ↪u galima
lokalizuoti kuo mažesnėmis s ↪anaudois. Pateiktas spendimas leidžia spr ↪esti lokalizuoto transliato-
riaus bei juo sukurt ↪u program ↪u perkeliamumo ir suderinamumo su kitais transliatoriais problemas.


