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Abstract. The notion of concurrent signatures was introduced by Chen, Kudla and Paterson in
their seminal paper in Eurocrypt 2004. In concurrent signature schemes, two entities can produce
two signatures that are not binding, until an extra piece of information (namely the keystone) is
released by one of the parties. Upon release of the keystone, both signatures become binding to
their true signers concurrently. In ICICS 2005, two identity-based perfect concurrent signature
schemes were proposed by Chow and Susilo. In this paper, we show that these two schemes are
unfair. In which the initial signer can cheat the matching signer. We present a formal definition of
ID-based concurrent signatures which redress the flaw of Chow et al.’s definition and then propose
two simple but significant improvements to fix our attacks.
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1. Introduction

1.1. Background

The problem of fair exchange of signatures is a fundamental and well-studied problem in
cryptography, with potential application in a wide range of scenarios in which the parties
involved are mutually distrustful. Early work on solving the problem of fair exchange of
signatures was based on the idea of timed release or timed fair exchange of signatures
(Boneh and Naor, 2000; Even et al., 1985; Garay and Pomerance, 2003). Such proto-
cols are highly interactive with many message flows and may be too interactive for many
applications. Another approach to solving this problem involves the use of a trusted (or
semi-trusted) third party or arbitrator who can be called upon to handle disputes between
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signers (Asokan et al., 1998; Boneh et al., 2003; Camenisch and Shoup, 2003; Garay
et al., 1999; Goldreich, 1983). The main problem with such an approach is the require-
ment for a dispute-resolving third party with functions beyond those required of a normal
Certification Authority. In general, appropriate third parties may not be available.

Concurrent signatures were introduced as an alternative approach to solving the prob-
lem of fair exchange of signatures by Chen, Kudla and Paterson (Chen et al., 2004) in
their seminal paper in Eurocrypt 2004. In concurrent signature schemes, two entities can
produce two signatures that are not binding, until an extra piece of information (namely
the keystone) is released by one of the parties. Upon release of the keystone, both sig-
natures become binding to their true signers concurrently. Concurrent signatures have a
benefit that they have none of the disadvantages of previous fair exchange protocols: they
require neither special trusted third party nor highly interactive.

The concept of identity-based (simply ID-based) public key cryptosystem was intro-
duced in 1984 by Shamir (1985). ID-based cryptosystems (Gangishetti et al., 2006; Kan-
charla et al., 2007) have a property that a userÆs public key can be easily calculated from
his identity by a publicly available function, while his private key can be calculated for
him by a trusted authority, called Key Generation Center (KGC). They enable any pair of
users to communicate securely without exchanging public key certificates, without keep-
ing a public key directory, and without using online service of a third party, as long as
a trusted key generation center issues a private key to each user when he first joins the
network, so they can be a good alternative for certificate-based public key infrastructure,
especially when efficient key management and moderate security are required.

1.2. Previous Works

In (Chen et al., 2004), Chen et al. proposed a concrete concurrent signature scheme based
on a variant of Schnorr based ring signature scheme. In their scheme, before the keystone
is released, any third party cannot be convinced that a signature has indeed been signed
by one particular signer, since any signer can always generate this signature by him-
self/herself. Later, Susilo et al. pointed out that in a situation where the initial signer
and the matching signer are known to be honest players (Susilo et al., 2004). In Chen et
al.’s scheme, any third party can be sure that both signers have signed the messages even
before the keystone is released. Then, they extended the notion of concurrent signatures
to a stronger notion of perfect concurrent signatures, which will allow full ambiguity of
the concurrent signatures, even both signers are known to be trustworthy. They proposed
two concrete schemes to satisfy this model. The first scheme is based on a variant of
Schnorr ring signature scheme, and the second scheme is based on bilinear pairing. In
2005, there are four concurrent signature schemes have been proposed. Susilo and Mu
proposed a tripartite concurrent signature scheme from bilinear pairings (Susilo and Mu,
2005). In tripartite concurrent signatures, three parties can exchange their signatures in
such a way that their signatures will be binding concurrently. Chow and Susilo proposed
two identity-based (simply ID-based) perfect concurrent signature schemes based on two
major paradigms of ID-based ring signature schemes (Chow and Susilo, 2005). Previ-
ous concurrent signature schemes use the concept of ring signatures in their construction.
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Nguyen proposed a new concurrent signature (namely asymmetric concurrent signatures)
scheme which is independent of the ring signature concept (Nguyen, 2005). This scheme
based on Schnorr signature scheme and Schnorr-like signature scheme. Recently, Tonien
et al. proposed a multi-party concurrent signature scheme using techniques of ring signa-
tures and bilinear pairings (Tonien et al., 2006).

1.3. Contribution

In this paper, we show that Chow et al.’s two ID-based perfect concurrent signature
schemes (Chow and Susilo, 2005) are unfair, in their schemes the initial signer Alice
can cheat the matching signer Bob. We will show that. In their schemes, by carefully
choosing some communication values, Alice can perform the signature protocol with
Bob on messages mA and mB , but outputs a valid signature pair (σ̃, σB) on (m̃, mB)
with m̃ �= mA. We give two attacks for each Chow et al.’s schemes, respectively.

For the case of one keystone only, Chen et al. presented a formal definition of fairness
in (Chen et al., 2004), but it is no longer appropriate in the case of two or more keystones.
Chen et al. did not present any new definition of fairness (Chow and Susilo, 2005). As
a result, their schemes are unfair. Furthermore, the definition of ID-based concurrent
signatures given by (Chow and Susilo, 2005) implies that two keystones kI and kM are
chosen by the initial signer. As mentioned above, it may cause unfair. In this paper, we
present a formal definition of ID-based concurrent signatures which redress the flaw of
Chow et al.’s definition. We then propose two simple but significant improvements to fix
our attacks.

1.4. Organization

The rest of this paper is organized as follows. The notions of Bilinear Pairings, a comp-
lexity assumption and Chow et al.’s schemes are given in Section 2. Attacks on the fair-
ness of Chow et al.’s schemes are given in Section 3. We give a modified definition
of perfect concurrent signatures in Section 4. In Section 5, we propose two improved
identity-based perfect concurrent signature schemes with proofs of their securities. Sec-
tion 5 concludes this paper.

2. Review of Chow et al.’s Schemes

2.1. Bilinear Pairings and Complexity Assumption

Let G1 be a cyclic additive group generated by P with order prime q, and G2 be a cyclic
multiplicative group with the same order q. A bilinear pairing is a map ê: G1×G1 → G2

with the following properties:
Bilinear: For all P, P1, P2, Q, Q1, Q2 ∈ G1,

ê(P1 + P2, Q) = ê(P1, Q)ê(P2, Q), ê(P, Q1 + Q2) = ê(P, Q1)ê(P, Q2).
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Non-degenerate: There exists P, Q ∈ G1 such that ê(P, Q) �= 1;
Computable: There is an efficient algorithm to compute ê(P, Q) for all P, Q ∈ G1.
Modified Weil pairing and Tate pairings are examples of bilinear maps.
Computational Co-Diffie-Hellman (Co-CDH) Problem. Given a randomly cho-

sen (P1, P2, aP1, bP2), where P1, P2 ∈ G1, a, b ∈ Z
∗
q , and a, b are unknown, compute

abP2 ∈ G2.
Co-CDH Assumption. For every probabilistic polynomial-time algorithm A, the ad-

vantage of A to solve Co-CDH-Problem is negligible.

2.2. Chow et al.’s Scheme 1

2.2.1. Concurrent Signature Algorithms
• SETUP: Choose (G1, G2, ê, q, P ) as subsection 2.1. The Private Key Generator

(PKG) selects a random number s ∈ Z
∗
q and sets Ppub = sP . It selects three cryp-

tographic hash functions H0: {0, 1}∗ → G1 and H1: {0, 1}∗ → Zq and H2:
{0, 1}∗ → G1. It publishes system parameters params = {G1, G2, ê, q, P, Ppub,

H0, H1, H2}, and keeps s as the master private key. The algorithm also sets
M = KI = KM = F = Zq and K′ = G1.

• EXTRACT: The EXTRACT algorithm is defined as follows:

– a user Ui submits his or her identity IDi to the PKG;
– the PKG generatesUi’s private key as SIDi = sQIDi , where QIDi =H0(IDi).

• FIX-INITIAL-KEYSTONE: Assuming a keystone kI ∈ Zq is randomly selected, this
algorithm outputs fI = H1(kI) as the keystone fix.

• ASIGN : The ASIGN algorithm accepts the following parameters (IDi, IDj , SIDi ,

α, f, m), where SIDi is the private key associated with QIDi , α, f ∈ F and
m ∈ M. The algorithm will perform the following:

– select a random point Z ∈ G1;
– set uj = α · f ;
– compute u0 = H1(H2(m)||(IDi ⊕ IDj)||ê(Z, P )ê(ujQIDj , Ppub));
– compute V = u−1

0 (Z − (u0 − uj)SIDi);
– output σ = (ui = u0 − uj , uj , V ) as the signature on message m.

• ENC-MATCHING-KEYSTONE: Assuming a keystone kM ∈ Zq is randomly se-
lected, this algorithm outputs KM = kMP as the encrypted keystone.

• FIX-SECRET-KEYSTONE: This algorithm returns fS = H1(ê(KM , SIDj )).
• AVERIFY: The algorithm accepts (σ, IDi, IDj , m), where σ = (ui, uj , V ), and

verifies whether

ui + uj = H1

(
H2(m)||(IDi ⊕ IDj)||R

)
,

where R = ê(V, P )ui+uj ê(uiQIDi , Ppub)ê(ujQIDj , Ppub). If so, then output
accept. Otherwise, output reject.

• VERIFY-INITIAL-KEYSTONE: This algorithm outputs accept if fI = H1(kI),
reject otherwise.
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• VERIFY-SECRET-KEYSTONE: It outputs accept if fS = H1(ê(Ppub, QIDj )
kM),

reject otherwise.
• VERIFY-CONNECTION: This algorithm outputs accept if uj = fI and u′

i = uj ·fS ,
reject otherwise.

• VERIFY: The algorithm accepts (kI , kM , S′), where kI ∈ KI and kM ∈ KM

are the keystones and S′ = (σi, σj , IDi, IDj , mi, mj). The algorithm verifies
whether (kI , kM ) is valid and the connection between σi and σj is valid by us-
ing the above three algorithms. If it does not hold, then output reject. Otherwise,
run AVERIFY(S). The output of VERIFY is the output of AVERIFY algorithm.

2.2.2. Concurrent Signature Protocol
• Alice performs the following:

– picks a random keystone (kI , kM ) ∈ Zq × Zq;
– computes keystone fix fI = H1(kI);
– selects a message mA ∈ M, computes her ambiguous signature as σA =

(uA, uB , V ) ← ASIGN(IDA, IDB , SIDA
, 1, fI , mA);

– computes encrypted keystone KM = kMP ;
– sends σA and KM to Bob.

• Bob performs the following:

– verifies the signature σA by testing whether AVERIFY(σA,IDA,IDB ,mA) =
accept. Aborts if the equation does not hold.

– computes secret matching keystone fix fS = H1(ê(KM , SIDB
));

– selects a message mB ∈ M, and computes his ambiguous signature as σB =
(u′

B , u′
A, V ′) ← ASIGN(IDB , IDA, SIDB

, uB, fS , mB);
– sends σB and fS to Alice.

• Alice verifies σB by testing whether fS = H1(ê(Ppub, QIDB
)kM ), u′

A = uB · fS ,
and AVERIFY(σB , IDB , IDA, mB) = accept are held. If not, then Alice aborts.
Otherwise, Alice releases the keystone (kI , kM ) to Bob and both signatures are
binding concurrently.

2.3. Chow et al.’s Scheme 2

2.3.1. Concurrent Signature Algorithms
• SETUP: Basically it is the same as Scheme 1, but the description of spaces becomes
M = KI = KM = Zq,F = K′ = G1.

• EXTRACT: The same as Scheme 1.
• FIX-INITIAL-KEYSTONE: Assuming a keystone kI ∈ Zq is randomly selected, this

algorithm outputs fI = H2(kI) as the keystone fix.
• ASIGN: The input of this algorithm includes two identities IDi and IDj , a private

key SIDi , a message m and α, f ∈ G1.

– Compute Uj = α + f and hj = H1(m||(IDi ⊕ IDj)||Uj).
– Choose r′i ∈ Z

∗
q randomly, compute Ui = r′iQIDi − Uj − hjQIDj .

– Compute hi = H1(m||(IDi ⊕ IDj)||Ui) and V = (hi + r′i)SIDi .
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– Output the signature σ = (Ui, Uj , V ).

• ENC-MATCHING-KEYSTONE: The same as Scheme 1.
• FIX-SECRET-KEYSTONE: This algorithm returns fS = H2(ê(KM , SIDj )).
• AVERIFY: The input of this algorithm includes two identities IDi and IDj , a mes-

sage m, and a ring signature σ = (Ui, Uj , V ).

– Compute hi = H1(m||(IDi ⊕ IDj)||Ui) and hj = H1(m||(IDi ⊕ IDj)||Uj).
– Return accept if ê(Ppub, Ui + hiQIDi + Uj + hjQIDj ) = ê(P, V ), reject

otherwise.

• VERIFY-INITIAL-KEYSTONE: This algorithm outputs accept if fI = H2(kI), re-
ject otherwise.

• VERIFY-SECRET-KEYSTONE: It outputs accept if fS = H2(ê(Ppub, QIDj )
kM),

reject otherwise.
• VERIFY-CONNECTION: This algorithm outputs accept if Uj = fI and U ′

i = Uj +
fS , reject otherwise.

• VERIFY: The algorithm accepts (kI , kM , S′), where kI ∈ KI and kM ∈ KM are
the keystones and S′ = (σi, σj , IDi, IDj , mi, mj). The algorithm verifies whether
(kI , kM ) is valid and the connection between σi and σj is valid by using the above
three algorithms. If it does not hold, then output reject. Otherwise, run AVER-

IFY(S). The output of VERIFY is the output of AVERIFY algorithm.

2.3.2. Concurrent Signature Protocol
Alice performs the following:

– picks a random keystone (kI , kM ) ∈ KI ×KM ;
– computes keystone fix fI = H2(kI);
– selects a message mA ∈ M, computes her ambiguous signature as σA =

(UA, UB, V ) ← ASIGN(IDA, IDB , SIDA
,OF , fI , mA), where OF denotes

the identity element of the group F ;
– computes encrypted keystone KM = kMP ;
– sends σA and KM to Bob.

• Bob performs the following:

– verifies the signature σA by testing whether AVERIFY(σA,IDA,IDB ,mA) ?=
accept holds; aborts if the equation does not hold;

– computes secret matching keystone fix fS = H2(ê(KM , SIDB
));

– selects a message mB ∈ M, and computes his ambiguous signature as σB =
(U ′

B , U ′
A, V ′) ← ASIGN(IDB , IDA, SIDB

, UB , fS , mB);
– sends σB and fS to Alice.

• Alice verifies σB by testing whether fS = H2(ê(Ppub, QIDB
)kM ), U ′

A = UB +fS

and AVERIFY(σB , IDB , IDA, mB) = accept are held. If not, then Alice aborts.
Otherwise, Alice releases the keystone (kI , kM ) to Bob and both signatures are
binding concurrently.
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3. Attacks on the Fairness of Chow et al.’s Schemes

In Chow et al.’s schemes, both keystones kI and kM are chosen by the initial signer Alice,
so she can cheat the matching signer Bob by carefully choosing some communication
values. We will show that Alice can perform the signature protocol with Bob on messages
mA and mB , but outputs a valid signature pair (σ̃, σB) on (m̃, mB) with m̃ �= mA. Bob
can still obtain a signature pair (σA, σB) on (mA, mB), but (σA, σB) can not be accepted
by verifying algorithm VERIFY.

3.1. Attacks against Chow et al.’s Scheme 1

3.1.1. Attack 1 against Chow et al.’s Scheme 1
In Chow et al.’s Scheme 1, if Alice let fI be equal to H1(kI)f ′

Sf−1 instead of H1(kI)
and let KM = k′P , where f ′

S = H1(ê(Ppub, QIDB
)kM ), f = H1(ê(Ppub, QIDB

)k′
),

then Bob will send a signature σB = (u′
B , u′

A, V ′) with u′
A = H1(kI)f ′

S back to Alice.
Then Alice can generate a new signature σ̃ = (ũA, ũB , Ṽ ) on a new message m̃ with
ũB = H1(kI). The result is: the signature pair (σ̃, σB) with keystone (kI , kM ) should
be accepted by VERIFY while the signature pair (σA, σB) with keystone (kI , kM ) should
be rejected by VERIFY since the outputs of VERIFY-INITIAL-KEYSTONE and VERIFY-
CONNECTION are “reject”. Following is the detail.

• Alice performs the following:

– picks three random keystones kI , kM , k′ ∈ Zq;
– computes f ′

S = H1(ê(Ppub, QIDB
)kM ), f = H1(ê(Ppub, QIDB

)k′
);

– computes keystone fix fI = H1(kI)f ′
Sf−1;

– selects a message mA ∈ M, computes her ambiguous signature as σA =
(uA, uB , V ) ← ASIGN(IDA, IDB , SIDA

, 1, fI , mA);
– computes encrypted keystone KM = k′P ;
– sends σA and KM to Bob.

• Bob performs the same as that of the original scheme. Note that, in this case, the
secret matching keystone fix fS = H1(ê(KM , SIDB

)) = f , so Bob will return a
signature σB = (u′

B , u′
A, V ′) with u′

A = H1(kI)f ′
S .

• Alice verifies Bob’s ambiguous signature σB . If it is invalid, then she aborts. Oth-
erwise, she performs following attack:

– computes keystone fix f̃ = H1(kI);
– selects a new message m̃ ∈ M, computes her ambiguous signature as σ̃ =

(ũA, ũB , Ṽ ) ← ASIGN(IDA, IDB , SIDA
, 1, f̃ , m̃);

– releases the keystone (kI , kM ) publicly, and both signatures σ̃ and σB are
binding concurrently.

REMARK. By releasing kI , kM , K = ê(KM , SIDB
) such that fI = H1(kI)

H1(ê(Ppub, QIDB
)kM )H1(K)−1, Bob can prove that the signature σA was indeed is-

sued by Alice, but he can not make σA accepted by VERIFY. According to the definition,
σA is invalid. We would like to point out that the attack above is harmful. Getting a valid
signature pair (σ̃, σB), one may not have his wits about the potential cheat.
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3.1.2. Attack 2 against Chow et al.’s Scheme 1
We can also implement an attack against Scheme 1 by letting fI = H1(kI)
H1(ê(Ppub, QIDB

)kM )−1. In this case, Bob will send a signature σB = (u′
B , u′

A, V ′)
with u′

A = H1(kI) back to Alice. In the end, Alice produces a new signature σ̃ =
(ũA, ũB , Ṽ ) on a new message m̃ with ũB = H1(kI)H1(ê(Ppub, QIDA

)k̃). The signa-
ture pair (σB , σ̃) with keystone (kI , k̃) should be accepted by VERIFY. Here Bob is the
initial signer while Alice is the matching signer. Whereas the signature pair (σA, σB)
with keystone (kI , k̃) should be rejected by VERIFY. The detail is as follows.

• Alice performs the following:

– picks a random keystone (kI , kM ) ∈ Zq × Zq;
– computes f = H1(ê(Ppub, QIDB

)kM ) and keystone fix fI = H1(kI)f−1;
– selects a message mA ∈ M, computes her ambiguous signature as σA =

(uA, uB, V ) ← ASIGN(IDA, IDB , SIDA
, 1, fI , mA);

– computes encrypted keystone KM = kMP ;
– sends σA and KM to Bob.

• Bob performs the same as that of the original scheme. Note that, in this case, Bob
will return a signature σB = (u′

B , u′
A, V ′) with u′

A = H1(kI).
• Alice verifies Bob’s ambiguous signature σB . If it is invalid, then she aborts. Oth-

erwise, she performs following attack:

– picks a new random keystone k̃ ∈ Zq;

– computes keystone fix f̃ = H1(ê(Ppub, QIDA
)k̃);

– selects a new message m̃ ∈ M, computes her ambiguous signature as σ̃ =
(ũA, ũB, Ṽ ) ← ASIGN(IDA, IDB , SIDA

, u′
A, f̃ , m̃);

– releases the keystone (kI , k̃) publicly, and both signatures σB and σ̃ are bin-
ding concurrently.

3.2. Attacks against Chow et al.’s Scheme 2

3.2.1. Attack 1 against Chow et al.’s Scheme 2
Similar to the Attack 1 against Scheme 1, we can also implement a attack against Scheme
2. In this case, we let fI be equal to H2(kI)+f ′

S−f instead of H2(kI) and let KM = k′P ,
where f ′

S = H2(ê(Ppub, QIDB
)kM ), f = H2(ê(Ppub, QIDB

)k′
). Then Bob will send a

signature σB = (U ′
B , U ′

A, V ′) with U ′
A = H2(kI) + f ′

S back to Alice. Finally, Alice
generates a new signature σ̃ = (ŨA, ŨB , Ṽ ) on a new message m̃ with ŨB = H1(kI).
One can see that the signature pair (σ̃, σB) with keystone (kI , kM ) should be accepted by
VERIFY while the signature pair (σA, σB) with keystone (kI , kM ) should be rejected by
VERIFY. The detail is similar to that of Attack 1 of Scheme 1. Due to the space limitation,
we omit it here.

3.2.2. Attack 2 against Chow et al.’s Scheme 2
Similar to the Attack 2 against Scheme 1, let fI = H2(kI) − H2(ê(Ppub, QIDB

)kM ).
Then Bob will send a signature σB = (U ′

B , U ′
A, V ′) with U ′

A = H2(kI) back to Alice.
In the end, Alice produces a new signature σ̃ = (ŨA, ŨB , Ṽ ) on a new message m̃ with
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ŨB = H1(kI)H1(ê(Ppub, QIDA
)k̃). The signature pair (σB , σ̃) with keystone (kI , k̃)

is valid while the signature pair (σA, σB) with keystone (kI , k̃) is invalid. We omit the
detail due to the same reason.

4. Definition of Perfect ID-Based Concurrent Signatures

The definition of ID-based concurrent signatures given by (Chow and Susilo, 2005) im-
plies that two keystones kI and kM are chosen by the initial signer. As we have shown
above, it may cause unfair. In this section, we present a modified definition of ID-based
concurrent signatures which redress the flaw of Chow et al.’s definition.

4.1. Concurrent ID-Based Signature Algorithm

A concurrent signature protocol involves two parties Alice and Bob. Since one party
needs to create the keystone fix and send the first ambiguous signature, we call this party
the initial signer. The party who responds to this initial signature by creating another
ambiguous signature we call the matching signer.

A perfect ID-based concurrent signature scheme is a digital signature scheme that
consists of the following algorithms:

• SETUP: A probabilistic algorithm that on input a security parameter l, outputs the
system parameters params which is the descriptions of the message space M, the
signature space S , the private key space Ksk, the keystone-pair space KI ×KM ,
the keystone fix space F , the encrypted keystone space K′ and any additional sys-
tem parameters π. The algorithm also outputs an initial-keystone-fix function FI :
KI → F , a matching-keystone-fix function FM : KM × F → F , a keystone
encryption function Enc: KM → K′ and a keystone decryption function Dec:
K′ × Ksk → KM . (Note that we do not include params explicitly as the input in
the following descriptions.)

• EXTRACT: A probabilistic algorithm that on inputs a participant’s identity ID, out-
puts a public key QID and the corresponding private key SID.

• ASIGN: A probabilistic algorithm that on inputs (IDi, IDj , SIDi , f, m), where f ∈
F , IDi, IDj are the identities of the participants, SIDi is the private key associated
with IDi and m ∈ M, outputs an ambiguous signature σ = (ui, uj , V ) on m.

• AVERIFY: A deterministic algorithm that takes as input S = (σ, IDi, IDj , m) and
outputs accept or reject.

• VERIFY: A deterministic algorithm that takes as input (kI , kM , S′), where
(kI , kM ) ∈ KI × KM , S′ = (σI , σM , IDI , IDM , mI , mM ), and outputs accept
or reject.

4.2. Concurrent Signature Protocol

The concurrent signature protocol works as follows.

• The initial signer performs the following:
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– picks a random keystone kI ∈ KI , and computes the corresponding keystone
fix fI = FI(kI);

– picks a message mI ∈ M and computes her ambiguous signature σI =
(uI , uM , V ) = ASIGN(IDI , IDM , SIDI

, fI , mI);
– sends σI to the matching signer.

• The matching signer performs the following:

– verifies σI by checking whether AVERIFY(σI , IDI , IDM , mI) = accept; if
not, he aborts.

– picks a random keystone kM ∈ KM , and computes the corresponding key-
stone fix fM = FM (kM , uM );

– picks a message mM ∈ M and computes his ambiguous signature σM =
(u′

M , u′
I , V

′) = ASIGN(IDM , IDI , SIDM
, fM , mM );

– computes the encrypted keystone KM = Enc(kM );
– sends σM and KM back to the initial signer.

• The initial signer performs the following:

– computes the matching keystone kM = Dec(KM , SIDI
);

– verifies σM by checking whether AVERIFY (σM , IDM , IDI , mM ) = accept
and u′

I = FM (kM , fI) are held. If not, she aborts. Otherwise, she releases
the keystone pair (kI , kM ).

4.3. Security Model for Perfect Concurrent Signatures

A secure perfect concurrent signature scheme should have five properties: correctness,
unforgeability, ambiguity, unlinkability and fairness.

Correctness. If a signature σ has been generated correctly by invoking ASIGN algo-
rithm on a message m ∈ M, AVERIFY algorithm will return accept with an overwhelm-
ing probability, given a signature σ on m and a security parameter l. After the keystone
pair (kI , kM ) ∈ KI × KM is released, the output of VERIFY algorithm will be accept
with an overwhelming probability.

Unforgeability. Unforgeability for a concurrent signature under a chosen message
attack is defined by the following game between an adversary A and a challenger C.

• Setup: C runs SETUP for a given security parameter l to obtain the system param-
eters params.

• Queries: A can make the following types of query to the challenger C:

– Hash Function Query: A can request a value of Hash function for any input.
C computes and outputs the value of the Hash function for the requested input.

– EXTRACT Query: A can request a private key for any input ID. C runs
EXTRACT and outputs the corresponding private key SID.

– FI Query: A can request that C select a keystone kI and return the keystone
fix fI = FI(kI). If A wishes to choose his own keystone kI , then he can
request the keystone fix fI = FI(kI) by a FI Query with input kI .

– FM Query: A can request a matching keystone fix corresponding to a key-
stone fix f ∈ F . C selects a keystone kM and returns the keystone fix
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fM = FM (kM , f). If A wishes to choose his own keystone kM , then he
can request the keystone fix fM = FM (kM , f) by a FM Query with input
(kM , f).

– FI Reveal Query: A can request that C reveal the keystone kI that he used
to produce a keystone fix fI ∈ F in a previous FI query. If fI was not a
previous FI output, then C outputs invalid. Otherwise, C outputs kI where
fI = FI(kI).

– FM Reveal Query: A can request that C reveal the keystone kM and the key-
stone fix f that he used to produce a keystone fix fM ∈ F in a previous FM

query. If fM was not a previous FM output, then C outputs invalid. Otherwise,
C outputs kM and f such that fM = FI(kM , f).

– ASIGN Query: A can request an ambiguous signature for any input of the
form (IDi, IDj , fi, mi) where fi ∈ F , IDi, IDj �= IDi are the identities
of the participants and mi ∈ M. C responds with an ambiguous signature
σ = (ui, uj , V ).

• Output: Finally, A outputs a tuple σ = (uc, ud, V ) where uc, ud ∈ F , along with
identities IDc and IDd, and a message m ∈ M.
The adversary wins the game if AVERIFY(σ, IDc, IDd, m)= accept, and if either of
the following two cases hold:

– No ASIGN query with input either of the tuples (IDc, IDd, ud, m) or
(IDd, IDc, uc, m) was made by A and no EXTRACT query was made by
A on either IDc or IDd.

– No ASIGN query with input of the tuples (IDc, IDi, ud, m) was made by A
for any IDi �= IDc, no EXTRACT query was made by A on IDc and either
ud was a previous output from a FI ( or FM ) query or A produces a keystone
k such that ud = FI(k) ( or (k, k′) such that ud = FM (k, FI(k′))).

DEFINITION 1. We say that an ID-based concurrent signature scheme is existentially un-
forgeable under a chosen message attack if the probability of success of any polynomially
bounded adversary in the above game is negligible.

Ambiguity. Ambiguity for a concurrent signature scheme is defined by the following
game between an adversary A and a challenger C.

• Setup: This is as above in the unforgeability game.
• Phase 1: A makes a sequence of EXTRACT, FI , FM , FI Reveal, FM Reveal,

ASIGN queries. These queries are answered by C as in the above unforgeability
game.

• Challenge: A selects a challenge tuple (IDi, IDj , m) where IDi, IDj are the iden-
tities of the participants and m ∈ M. In response, C randomly selects k ∈ KI

and computes f = FI(k) or randomly selects (k, k′) ∈ KM × KI and com-
putes f = FM (k, FI(k′)) (each with probability of 1/2), then randomly selects a
bit b ∈ {0, 1}. C outputs σ = ASIGN(IDi, IDj , SIDi , f, m) if b = 0; otherwise
C outputs σ = ASIGN(IDj , IDi, SIDj , f, m). Denoted the outputed signature σ

by (u1, u2, V ).
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• Phase 2: A may make another sequence of queries as in Phase 1; these are handled
by C as before.

• Output: Finally, A outputs a guess bit b′ ∈ {0, 1}. A wins if b′ = b and A has
made neither FI Reveal nor FM Reveal query on any of the values u1, u2.

DEFINITION 2. We say that an ID-based concurrent signature scheme is ambiguous if no
polynomially bounded adversary has non-negligibly advantage of winning in the above
game.

Unlinkability. Unlinkability for a concurrent signature scheme is defined by the fol-
lowing game between an adversary A and a challenger C.

• Setup: This is as above in the unforgeability game.
• Phase 1: A makes a sequence of EXTRACT, FI , FM , FI Reveal, FM Reveal,

ASIGN queries. These queries are answered by C as in the above unforgeability
game.

• Challenge:

– A selects a challenge tuple (IDi, IDj , mi0, mi1, σi0, σi1) such that AVER-

IFY(σia, IDi, IDj , mia)= accept for a = 0, 1, where σia = (uia, uja, Via).
– C randomly selects b ∈ {0, 1}, kj ∈ KM and computes fj = FM (kj , ujb).
– C selects mj ∈ M, outputs σj =(u′

j ,u
′
i ,V

′) = ASIGN(IDj ,IDi,SIDj ,fj ,mj).
• Phase 2: A may make another sequence of queries as in Phase 1; these are handled

by C as before.
• Output: Finally A outputs a guess bit b′ ∈ {0, 1}. A wins if b′ = b and A has not

made any FM Reveal query on fj .

DEFINITION 3. We say that an ID-based concurrent signature scheme is unlinkable if no
polynomially bounded adversary has non-negligibly advantage of winning in the above
game.

Fairness. For the case of one keystone only, Chen et al. presented a formal definition
of fairness in (Chen et al., 2004), but it is no longer appropriate in the case of two or
more keystones. Chow et al. (Chow and Susilo, 2005) did not present any new definition
of fairness, as a result, their schemes are unfair. Here we present a formal definition of
fairness for the case of two keystones. Our definition uses the following game between
an adversary A and a challenger C:

• Setup: This is as above in the unforgeability game.
• EXTRACT, FI , FM , FI Reveal, FM Reveal Queries: These queries are answered

by C as in the above unforgeability game.
• ASIGN Queries: In the case of fairness, we have two ASIGN Queries as follows.

– IASIGN Query: A can request an ambiguous signature for any input of the
form (IDi, IDj , mi) where IDi, IDj �= IDi are the identities of the partic-
ipants and mi ∈ M. C first gets a keystone-fix fi by a FI Query and then
returns an ambiguous signature σ = (ui, uj , V ).
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– MASIGN Query: A can request an ambiguous signature for any input of
the form (IDi, IDj , mi, f) where IDi, IDj �= IDi are the identities of the
participants, mi ∈ M and f ∈ F . C first gets a keystone-fix fi by a FM

Query with input f and then returns an ambiguous signature σ = (ui, uj , V ).
• Output: Finally, A chooses the challenge identities IDc and IDd, outputs a signa-

ture σ = (u, f, V ) along with a message m.
The adversary wins the game if AVERIFY(σ, IDc, IDd, m) = accept and if either of
the following cases hold:

– σ is a previous output from a IASIGN Query. No FI Reveal query on f was
made and A produces a keystone k such that f = FI(k) or produces a key-
stone pair (k, k′) such that f = FM (k, FI(k′)).

– σ is a previous output from a MASIGN Query. A produces a keystone k

such that f = FI(k) or produces keystones k1, k2 and k′ such that f =
FM (k1, FI(k2)) = FM (k′, f ′) but f ′ �= FI(k2), where f ′ is the keystone-fix
in the input of MASIGN Query. In which A gets the signature σ.

DEFINITION 4. We say that an ID-based concurrent signature scheme is fair if a polyno-
mially bounded adversary’s probability of success in the above game is negligible.

DEFINITION 5. A ID-based concurrent signature scheme is secure if it is existentially
unforgeable under a chosen message attack, correct, ambiguous, unlinkable and fair.

5. Improved ID-Based Perfect Concurrent Signature Schemes

In Chow et al.’s schemes, both keystones kI and kM are chosen by Alice, as a result,
Alice can cheat Bob by carefully choosing the keystone fix fI . If keystones kI and kM

are chosen by Alice and Bob, respectively, all attacks above can be avoided. We present
two simple but significant improvements as follows.

5.1. Improved Scheme 1

5.1.1. Concurrent Signature Algorithms
• SETUP:

– G1, G2, ê, q, P, Ppub, H0, H1,M,F ,K′ are the same as that of the original
scheme;

– sets KI = KM = G2;
– sets FI : G2 → Zq be a one-way permutation;
– sets FM (x, y) = FI(x) + y (mod q);
– sets Enc(k) = kP ;
– sets Dec(K ′, K ′′) = ê(K ′, K ′′);

• EXTRACT: The same as that of the original scheme.
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• ASIGN: The algorithm accepts (IDi, IDj , SIDi , fi, mi) and performs the follow-
ing:

– selects a random point Z ∈ G1;
– computes u0 = H1(H0(m)||(IDi ⊕ IDj)||ê(Z, P )ê(fiQIDj , Ppub));
– computes V = u−1

0 (Z − (u0 − uj)SIDi);
– sets ui = u0 − fi (mod q), uj = fi;
– outputs σ = (ui, uj , V ) as the signature on message m.

• AVERIFY: The same as that of the original scheme.
• VERIFY: The algorithm accepts (ki, kj , S

′), where ki ∈ KI and kj ∈ KM are
the keystones and S′ = (σi, σj , IDi, IDj , mi, mj). The algorithm verifies whether
fi = FI(ki), fj = FI(kj) + fi (mod q). If not, then outputs reject. Otherwise,
run AVERIFY on σi and σj respectively. If both outputs are accept, then outputs
accept. Otherwise, outputs reject.

5.1.2. Concurrent Signature Protocol
• Alice performs the following:

– picks a random keystone kI ∈ G2, computes keystone fix fI = FI(kI);
– selects a message mI ∈ M, computes her ambiguous signature as σI =

(uI , uM , V ) ← ASIGN(IDI , IDM , SIDI
, fI , mI);

– sends σI to Bob.

• Bob performs the following:

– verifies the signature σI by testing whether AVERIFY(σI ,IDI ,IDM ,mI)= ac-
cept. Aborts if the equation does not hold.

– picks a random number k ∈ Zq , computes keystone kM = ê(Ppub, QIDI
)k;

– computes encrypted keystone KM = kP ;
– computes matching keystone fix fM = FI(kM ) + uj (mod q);
– selects a message mM ∈ M, and computes his ambiguous signature as σM =

(u′
M , u′

I , V
′) ← ASIGN(IDM , IDI , SIDM

, fM , mM );
– sends σM and KM to Alice.

• Alice verifies σM by testing whether

– u′
I = FI(ê(KM , SIDI

)) + uM (mod q);
– AVERIFY(σM , IDM , IDI , mM ) = accept.

If not, then Alice aborts. Otherwise, Alice computes keystone kM = ê(KM,SIDI
)

and releases the keystone (kI , kM ), then both signatures are binding concurrently.

5.2. The Security

The correctness of the improved concurrent signature scheme 1 can easily be verified.
Since we do not make any change to the ASIGN algorithm, the unforgeability of our

improved scheme is kept the same as the original scheme. So, the same as that of (Chow
and Susilo, 2005), we have following lemma. Its proof follows the proof of the Lemma 1
in (Chen et al., 2004) given by Chen et al. Due to space limitation, the proof is omitted.
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Lemma 1 (unforgeability). The improved concurrent signature scheme 1 is existentially
unforgeable under a chosen message attack in the random oracle model, assuming the
hardness of Co-CDH problem.

Lemma 2 (ambiguity). The improved concurrent signature scheme 1 is ambiguous in the
random oracle model.

We consider the following distributions:

ξ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u1, u2, V )

∣∣∣∣∣∣∣∣∣∣

Z ∈R G1, k ∈R G2

u2 = FI(k)
u0 = H1

(
H0(m)||(IDi ⊕ IDj)||ê(Z, P )ê(u2QIDj , Ppub)

)
u1 = u0 − u2

V = u−1
0 (Z − u1SIDi)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

and

ζ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u′
2, u

′
1, V

′)

∣∣∣∣∣∣∣∣∣∣

Z ∈R G1, k ∈R G2

u′
2 = FI(k)

u′
0 = H1

(
H0(m)||(IDi ⊕ IDj)||ê(Z, P )ê(u′

2QIDi , Ppub)
)

u′
1 = u′

0 − u′
2

V ′ = u′−1
0 (Z − u′

1SIDj )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

In the random oracle model, the distributions of the outputs of FI and H1 are uniform,
so two distributions above are the same.

The distribution of FI(k) + FI(k′) is the same as the distribution of FI(k), so the
case of f = FI(k) + FI(k′) is the same as that of f = FI(k).

Hence, the adversary wins the game of Definition 3 with probability exactly 1/2, so
the scheme is ambiguous.

Lemma 3 (Unlinkability). The improved concurrent signature scheme 1 is unlinkable.
Since FI : G2 → Zq is a one-way permutation, given fj , fi0, fi1, there exist k0 and k1

such that fj = FI(k0)+ fi0 and fj = FI(k1)+ fi1, respectively. Such k0 and k1 always
exist regardless of the values of fj and (fi0, fi1), so fj and fib have exactly the same
relation defined by FM , (b = 0, 1). Therefore, even an infinitely powerful adversary wins
the game of Definition 4 with probability exactly 1/2, so the scheme is unconditional
unlinkable.

Lemma 4 (fairness). The improved concurrent signature scheme 1 is fair in the random
oracle model.

Suppose that there exists an algorithm A that with probability δ wins the game in
Definition 5, we show that δ is negligible. Let μI and μM are the numbers of FI and
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FM queries made by A and let μIS and μMS are the numbers of IASIGN and MASIGN
queries made by A, respectively.

If case 1 of the output conditions occurs, then σ is a previous output from a IASIGN
Query and f is a previous output of a FI query. We discuss the following two cases.

• A has found a keystone k such that f = FI(k) but without making any FI Reveal
query on input f . In the random oracle model, A’s probability of producing such a
kc is at most μISμI/q.

• A has found a keystone pair (k, k′) such that f = FI(k)+FI(k′). In the random or-
acle model, A can get such (k, k′) by FM query with probability at most μISμM/q

or by FI query with probability at most μISμI(μI + 1)/2q, where μI(μI + 1)/2q

is the probability of two outputs of FI queries f ′ and f ′′ such that f = f ′+f ′′. So,
A’s probability of producing such (k, k′) is at most μIS(μI(μI + 1) + 2μM )/2q.

If case 2 of the output conditions occurs, then σ is a previous output from a MASIGN
Query. In this case, f is a previous output of a FM query on input of some f ′, so A
can get k′ and f ′ such that f = FI(k′) + f ′ by a FM Reveal query. We would like to
emphasize the fact that. In our scheme, the f ′ was set before choosing the k′, which is
the significant difference between our scheme and that of (Chow and Susilo, 2005). Thus
A can neither find the required keystone k by setting f ′ = FI(k) − FI(k′), nor find the
required keystones k1 and k2 by setting f ′ = FI(k1) + FI(k2) − FI(k′). So the case 2
was reduced to the case 1.

Since μI , μM , μIS and μMS are polynomially bounded in the security parameter
�log2 q	, the probability δ is negligible.

Theorem 1. The improved concurrent signature scheme 1 is secure in the random oracle
model, assuming the hardness of Co-CDH problem.

The proof follows directly from above lemmas.

5.3. Improved Scheme 2

Chow et al.’s Scheme 2 can be improved in the similar way as following.

5.3.1. Concurrent Signature Algorithms
• SETUP:

– G1, G2, ê, q, P, Ppub, H0, H1,M,F ,K′ are the same as that of the original
scheme;

– sets KI = KM = G2;
– sets FI : G2 → G1 be a one-way permutation;
– sets FM (x, y) = FI(x) + y;
– sets Enc(k) = kP ;
– sets Dec(K ′, K ′′) = ê(K ′, K ′′).

• EXTRACT: The same as that of the original scheme.
• ASIGN: The algorithm accepts (IDi, IDj , SIDi , fi, mi) and performs the follow-

ing:
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– sets Uj = fi, computes hj = H1(m||(IDi ⊕ IDj)||Uj);
– chooses r′i ∈ Z

∗
q randomly, computes Ui = r′iQIDi − Uj − hjQIDj ;

– computes hi = H1(m||(IDi ⊕ IDj)||Ui) and V = (hi + r′i)SIDi ;
– outputs the signature σ = (Ui, Uj , V ).

• AVERIFY: The same as that of the original scheme.
• VERIFY: The same as that of the improved scheme 1.

5.3.2. Concurrent Signature Protocol
• Alice performs the following:

– picks a random keystone kI ∈ KI , computes keystone fix fI = FI(kI);
– selects a message mI ∈ M, computes her ambiguous signature as σI =

(UI , UM , V ) ← ASIGN(IDI , IDM , SIDI
, fI , mI);

– sends σI to Bob.

• Bob performs the following:

– verifies the signature σI by testing whether AVERIFY(σI ,IDI ,IDM ,mI)
?= ac-

cept holds. Aborts if the equation does not hold.
– picks a random number k ∈ Zq;
– computes keystone kM = ê(Ppub, QIDI

)k;
– computes encrypted keystone KM = kP , computes matching keystone fix

fM = FI(kM ) + UM ;
– selects a message mM ∈ M, and computes his ambiguous signature as σM =

(U ′
M , U ′

I , V
′) ← ASIGN(IDM , IDI , SIDM

, fM , mM );
– sends σM and KM to Alice.

• Alice verifies σM by testing whether

– U ′
I = FI(ê(KM , SIDI

) + UM ;
– AVERIFY(σM , IDM , IDI , mM ) = accept.

If not, then Alice aborts. Otherwise, Alice computes keystone kM = ê(KM , SIDI
)

and releases the keystone (kI , kM ), then both signatures are binding concurrently.

Similar to the improved scheme 1, we have the following theorem.

Theorem 2. The improved concurrent signature scheme 2 is secure in the random oracle
model, assuming the hardness of Co-CDH problem.

6. Conclusion

Concurrent signatures were introduced as an alternative approach to solving the problem
of fair exchange of signatures and several concrete concurrent signature schemes have
been proposed. In this paper, we present attacks on the fairness of Chowet et al.’s identity-
based perfect concurrent signature schemes (Chow and Susilo, 2005). We also present a
modified definition of ID-based concurrent signatures which redress the flaw of Chow et
al.’s definition and propose two improved schemes to fix our attacks.
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Dviej ↪u tapatybe pagr ↪ist ↪u tobul ↪u konkuruojanči ↪u paraš ↪u schem ↪u
analizė ir pagerinimai

Zhenjie HUANG, Kefei CHEN, Xuanzhi LIN, Rufen HUANG

Konkuruojanči ↪u paraš ↪u s ↪avoka buvo pristatyta Chen, Kudla ir Paterson Eurocrypt2004 straip-
snyje. Konkuruojanči ↪u paraš ↪u schemoje dvi esybės gali sugeneruoti du parašus, kurie yra nesusieti,
kol papildoma informacija (kertinis akmuo) nėra paskelbiama vienos iš šali ↪u. Paskelbus kertin↪i
akmen↪i abu parašai tampa konkuruojančiai susieti su tikraisiais pasirašančiaisiais. ICICS2005 kon-
ferencijoje Chow ir Susilo pasiūlė dvi tapatybe pagr↪istas tobulas konkuruojanči ↪u paraš ↪u schemas.
Šiame straipsnyje mes parodome, kad šios dvi schemos yra neteisingos. Jose pirminis pasirašanty-
sis gali apgaudinėti antrin↪i pasirašant↪ij↪i. Mes pristatome formal ↪u ID paremt ↪a konkuruojanči ↪u paraš ↪u
apibrėžim ↪a ir tada pasiūlome du paprastus bet svarbius pagerinimus mūs ↪u atak ↪u sutvarkymui.


