
INFORMATICA, 1991, Vol. 2 , No.3, 4~4-454 

ON THE EFFECTIVENESS OF PARZEN 

WINDOW CLASSIFIER 

Sariinas RA UD YS 

Institute of Mathematics and Informatics, . 
Lithuanian Academy of Sciences, 
2600 Vilnius, Akademijos St.4, Lithuania 

Abstract. The smoothing constant A is the most impor
tant characteristic of the non parametric Parzen window classifier 
(PWC). The PWC tends to a one-nearest neighbour classifier as A 

tends to zero and to a parametric linearEucliden distance classifier 
as A tends to infit:lity. An asymptotic probability of misclassifica
tion of the PWC decreases with the decrease in A. A s·ensitivity of 
the PWC to a finiteness of the training data depends on a true
intrinsic dimensionality of the data; and it increases with the de
crease in the value of A. It is proposed to determine an optimal 

. value of the smoothing constant from a smoothed empirical graph 
of the dependence of an expected probability of misclassification 
on the value of A. The graph can be estimated by means of leaving
one-out or hold-out methods simultaneously for a number of values 
of A chosen from the interval (0.001-1000) in a logarithmic scale. 

Key words: Parzen window elascifier, the density estimate, 
probability density function, kernel function, smoothing parameter, 
classification error, probability of misclassification. 

1. Introduction. Parzen window classifier (PWC) is 
one of the most popular classification rules in statistical pat
tern recognition. Its performance is rarely significantly less 



S.R~udys 435 

than that of .other classification rules (see, e.g. Table 1 of 
comparison of several classification rules by using 19 arrays 
of rea} data (Ceponis, 1980)). PWC is based on a Parzen: or 
kernel estimate of the multivariate density function at X 

(1) . 

where X = (Xl,X2,'" ,xp)' - is a p-variate vector to be clas

sified; X?) - is aph p-variate vector of the learning sample 
of the ith class ITi; K(· ) is a window or kernel function with 
+=. . 
J K(t)dt = 1, and ,\ is a window-width or smoothing pa-

-= 
rameter. 

Most often the Gaussian kernel is used 

K } C .}. } (
X - X~i») { (X - X~i»)'(X _ X~i»)} 

,\ . . 1 exp. - ,\2 ' 

where C1 is a Rormalizing constant. 
A more general form of the .kernel function is 

(2) 

where S is a scaling matrix. One may use here a pooled sample 
covariance matrix or a diagonal variance matrix. 

There are more modifications ofPWC, where other types 
of ketn~l functions or only part of learning· sample vectors are 
used (see, e.g. Fukunaga, 1972, section 6.1). Our- experience 
with several arrays of real and artificial data and 13 types of 
kernel function have shown (Skurikhina, 1990) that the ker
nel (2) is the best after optimisation of '\, resulting the smallest 



436 On the efectivenessof Parzen window classifier 

Table 1. The values of the learning quantity 
Ii = Eyp''«(>')!Poo(>') of the Parzen window clas
sifier for Gaussian kemel and spherically Gaus
sian distributions of pattern vectors. 

. (p) 
8 = 2.56 . PO~ = 0.1 \ 6 = 4.65 p~~) = 0.01 

k =N!p p=3 p= 5.p 8 .p= 3 p=5 p=8 

>. = 0.1 
0.6 1.97 2.15 2.28 3.53 3.55 4.29 
1 1.90 1.98 2.13 2.92 . 3.24 3.48 
2 1.78 1.87 1.95 2.61 3.07 3.18 
5 1.64 1.71 1.91 2.32 2.56 2.72 

10 1.50 1.66 1.84 2.15 2.16 . -2.28 
50 1.39 1.62 1.81 1.53 1.86 2.14 

A = 0.2 
0.6 1.97 2.15 2.28 . 3.53 3.55 4.29 
1 1.90 1.98 2.13 2.92' 3.24 3.48 
2 1.78 1.87 1.95 2.60 3.07 3.18 
5 1.64 1.71 1.91 2.31 2.56 2:72 

10 1.49 1.66 1.84 2.14 2.16 2.28 
50 1.37- 1.62 1.81 1.52 1.86. 2.13 

A= 0.4 
0.6 1.97 2.15 2.27 3.53 3.53 4.28 
1 1.88 1.98- 2.12 2.90 3.22 3.47 
2 1.75 1.87 1.94 2;58 3.05 3.17 
5 1.60 1.70 1.88 2.28 2.52 2.68 

10 1.35 1.63 1.82 2.07 2.14 2.22 
50 1.25 1.51 1.78 1.48 1.77 2.09 . 

.x = 0.8 
0.6 1.96 2.i2 2.26 3.51 3.51 4.21 
1 1.80 1.94 2.05 2.86 3.15 3.41 
2 1.68 .1.80 1.90 2.51 2.87 3.08 
5 1.46 1.58 1.76 2.18 .2.38 2.46 

10 1.23 1.44 1.65 1.71 1.90 2.10 
50 1.06 1.12 1.29 1.20 1.27 1.54 
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classification error. This paper analyses the simplest form of 
kernel function (2) with respect to· its width. 

Section 2 discusses the features of the PWC rule. The 
dependence of the classification error of PWC on the learning 
sample size, and the winQ-ow width ..\, is discussed in section 3. 
In section 4 we discuss the criteria and methodi? used to de
termine the optimal value of ..\. 

2. Features of the PWG rule. The Parzen window 
classification rule has some attractive features. If certain spe
cific conditions for the kernel function K(· ) and the smooth
ing parameter ..\ are satisfied (the most important one being 
..\ -+ 0 as N -+ 00), the estimate of the probability density 
function (1) is .consistent and asymptotically unbiased. Then 
the classification error of the PWC rule tends to the Bayes 
error (Wolverton and Wagner, 1969). 

Some other properties of the Parzen window classifier 
may be mentioned without detailed investigation. Suppose 
at first that ..\ -+ 0, while the learning sample size Ni remains 
constant. When the parameter ..\ is very small, we have no 
smoothing and the PWC rule classifies an unknown vector X 
according to the class index of its nearest neighbour. There-

. fore, as ..\ -+ 0, the PWC rule tends to the 1-NN classification 
rule. 

Suppose now that ..\ -+ 00 and let us analyse the PWC 
rule with G.aussian kernel (2). As ..\ -+ 00, 

.(X - X~i»)'(X - X~i» 
J J -+ 0 

..\2· . 

Using only the first two terms of the Taylor expansion 

exp _ J J {
. (X - X~i»'(X _X~i» } 

..\2 

. (X - Xji»'(X - X?») 
= 1 - ..\2 +... (3) 
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we have: 

l(xITIi ) =1 ~ ).2~V. t [(X ~ XCi)) + (X'(i) ~ X;i))]' 
I j=l ' 

x [(X - .. Y(i») + (X(i) _ x;i)] , 
, . Ni " 

=1- :2[~' 2)X -c"y(i»)'(X - ~y(i)) 
I j=l . 

Ni 

+ ~,2) .. y(i) - Xji»),(X - XU») 
.L I ' 

3=1 

Ni ' 

+ ~, L)X(i) - X}i))'(X(i)_ Xji»)] 
. I j=1 

, =1 - (X - X(i»)'(X - XCi)) + tr Si, 

N; (') 
where XU) = J, L: X/ is the sample mean and 

• j=1 

Si = 1:; ~ (XJi) - "y(i))(X?) - X(i»)' 
3=1 ' 

is the sa.mple covariance matrix. ' 
'\iVhen sample covariance ma.trices are equal for all classes" 

the P\VC rule classifies X according to the distance between 
X and means X(i). When Sj are different, we obtain a bias 
of the hyperplane. Thus, with an increa.se in the smoothing 
pa.rameter )., the P\VC tends to the well known Euclidean
dista.nce classifier. 

3. Dependence of the classification error on the 
learning sample size and the value of the smoothing 
parameter. One can distinguisn several sorts of the proba
bility of misclassifica.tiol1 (P~fC) in classifier design. 

If the underlying probability density functions f( X ITId 
are known an optimal Bayes classifier can be constructed. Its 



· S.Raudys 439 

,performance (PWC), denoted by PB, is referred to as Bayes 
PM C. ~n the case the classif].er is determined on the particular 
learning sample X, the PMC will depend on the characteristics 
of this sample. Then PMC may be regarded as a random vari
able Px(A), the distributIon of which depends on the learning 
sample size. This PMC. will be called conditional PMC. Its 
expectation EXPX(A) over all learning samples will be called 
e~pected PMC. The theoretical limit POO(A) = . lim EXPx(A) 

'. . Ni-+OO 

is called asymptotic PMC. 
We shall analyse the dependence of the expected PMC 

on the learning sample size, the dimensionality p, the value 
of the smoothing parameter X and the configuration of the 
pattern classes. . . 

In the case of two equiprobable pattern classes IIia:nd 
II2 the expected PMC ExPx(A) can be written as 

ExPx(A) . (4) 

= ~ f f(X III2)Probx{ fcXIII1 ) > 1(X'III2) IX, X eII2 }dX 
o . 

+ ~ J f(XIIIl)~robx{f(XIIIt) ~ 1cX III2)IX,XeII1 }dX: 
o 

The difference fcXIII1)- f(XIII2},' asymptotically (when 
Nt- -+ 00 and N2 -+ 00) has the Gaussian distribution. There
fore 

P(X)= Probx {f(X Illd > fcXIII2)!X,X E II2},-

= tP { Exf(XIII 2 ) - Ex1cXIII1 ) }, (5) 

VVx!(XITI2 ) + VxfcXIIId ' 

where'the density estima:te fcXIII1 ) at a fixed point of the 
multivariate space n is regarded as a random variable, whos~ 
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distribtltion depends on the lea.rning sample size Ni, a.nd 
Q 

q>( a) = J n( a, 0, 1 )da is the standard univariate. Gaussian 
-00 

distribution function. Here and below, n(a, Il,~) denotes a 
multivariate Gaussian d~nsity with the mean vector fl and 
covariance matrix E. When we use the Gaussian kernel (2) 

and f(XIII i ) = n(X, fli, E), the mean of the estimate 

(6) 

and the variance 

'" . 1 12E+[.,\211/ 2 2. 2 
Vxf(XIIId = Ni [ . ,\2 n (X, fli, 2E + [. X ) 

- Exf(xIII i )]. (7) 

Let T be a p X P orthogonal matrix such that T~T' = D 
(D is a diagonal matrix with the elements d1 , d2 , • •• ,dp ). For 
small values of ,\ we can write 

where Ci(X) is a function of X. Then the probability (5) is 
asymptotically (when Ni -+ 00) proportional to 

q>{ _ YN 
IT Jw + 1 

j=l 

n(X, /l2, ~ + [,\2) - n(X,Pl, E +1,\2)} (8) 
x .jC1(X) + C2(X) . 
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Above we assumed N2 = Nl = N. 
Equation (8) shows the relation between the learning 

sample size N and the dimensionality p. Let d1 = d2 = ... = 
dp = d and the number of variables, p, be increased. Then, in 
order to keep P(X) constant, the learning sample size should 
be increased to the degree of p 

( 2d )P 
N == ,\2 + 1 . (9) 

Equation (8) also shows that small eigenvalues d j have little 
influence on an increase of the classification error. Therefore 
the sensitivity of the PWC rule to the learning sample size 
depends not on the formal dimensionality p but on the true -
intrinsic dimensionality. The term "intrinsic dimensionality" 
is not defined exactly, and we shall not do this here. Note that 
when d1 = d2 = ... = d r = d and d r +1 = d r +2 = ... dp = 
do < < d, the intrinsic dimensionality is r. 

Equation (5) is an asymptotic one. For fixed N and small 
,\ the distribution !(!(XIIIi)) of a random variable !(X) can 
have a very large positive asimmetry, e.g. when p = 10, 
the coefficient of asimmetry " = P3/(/-t2)3/2 at the sphere 
(X - /-t)'(X - /-t) = 4 is 

" = 6651/VN when ,\ = 0.01, 
" = 13.1/VN when ,\ = 0.8. 
Therefore approximate formulae or asymptotic expan

sions for the expected PMC of the PWC rule (see, e.g. Raudys 
1976; Kharin, 1983) can show only the asymptotic qualitative 
conclusions. The only way to obtain quantitative results for 
finite learning sample sizes is a simul~tion experiment. 

The most simple case: two spherically Gaussian 
distributions. !(XIIIi ) = n(X, /-ti, I), N2 = Nl = N, equal 
the prior probabilities of the classes. It is obvious that, when 
,\ -+ 00 and the PWC rule becomes similar to the Euclidean 
distance classifier (EDC), the sensitivity of the PWG rule to 
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0.2 p=5 N=50 
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Fig. 1. Dependence of the learning quantit.y Ii 

ExPx/P= on the value of smoothing parame
ter A two 5-variate spherically Gaussian popula
tions. 

the finiteness of the learning sample size coincides with that 
of EDC. The dependence of the expected pMc of EDC on N 
is obtained and tabulated in the paper of Raudys and Pikelis, 
1980. vVhen A -+ 0, the sensitivity increases to that of the 
NN classification rule. In Figure 1 we present three graphs of 
the dependence of a ratio Ii = E"Px.(A)/P=(A)" on the value 
of the smoothing parameter A. . 

vVe performed simulation studies for a number of different 
values of PB = Poo(A), and dimensionality p. The results are 
presented in Table 1. This data was used to find the relation
ship between t.he learning sample size N and dimensionality p. 
:For getting this, we have drawn graphs ExP(A) = f(N) and 
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found the learning sample size that was required to achieve 
a given expected PMC. E.g., for Poo("\ = 0.8) = 0.1 and 
ExPx("\ = 0.8) = 0.15 we got 

N = 12 when p = 3; 
N = 38 when p = 5; 
N = 210 when p = 8. 
Approximately for this data N = 2.2· (1.77)p. When 

Poo(,x = 0.8) = 0.01 and ExPx('x = 0.8) = 0.015 
N = 55 when p = 3; 
N = 140 when p = 5; 
N = 500 when p = 8. 
Approximately N = 15· (1.55)p. 
The same results (N = a· bP) were obtained for other 

combinations of the values of Poo("\), ExPx("\) and"\. Thus 
the above simulation studies confirm the theoretical conclu
sion: when .,\ is sufficiently small and fixed, the learning sam
ple size required to achive the given learning accuracy should 
increase exponentially with the growth of dimensionality p. 

A more complex ca;e. Classes distributed near 
two arcs. In the simulation studies we generated bi-variate 
data according to the following formula 

Xl =Ri sina + 6 
(10) 

X2 =Ricosa+e2, i = 1,2, 

where 6 and 6 and a are independent random variables; 
ei "" N(O,l), and a is uniformly distributed at the interval 
(-Il/3, +Il/3), RI = 10, R2 = 6.2. 

Here and below, before applying the Parzen window clas
sifier, the data is normalized in such a manner that the vari
ances of all variables are equal to 1. The Bayes error PB, corre
sponding to this distribution, PB = ~(-t(RI - R2 )) ::::::: 0.028. 
The dependence of the asymptotic PMC on the value of the 
smoothing parameter ,X is estimated using very large learn
ing and test sets and is depicted in Figure 2 (curve 1). We 
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0.20 

0.-15 

O.Q5 

DeDO.! O,DO! 0:01 o:t j 1.0 0100 lO~O :10000 A 
Fig. 2. Dependence of the expected P~Ii!C E\ P, on the 

value of smoothing parameter ..\ (articial bivari
ate data, learning sample size N L = NI = N z = 
50,200 and 1000). 

can notice that when ,\ is small, the asymptotic PMC Poo('\) 
coincides with the Bayes error. The asymptotic error Poo (..\) 
increases with an increases in ..\ until it reaches some limit. 
Such behaviour (the soft limited threshold function) of the 
asymptotic PMC is common for many real and artificial data 
sets studied in our experiments. The main difference between 
such curves is the interval of '\, where POQ (,\.) increases and 
the values Poo(,\ -+ 00) and Poo(,\ -+ 0). 

The dependence of the learning quant.ity 1\(..\) 
EXP\ ('\)j Poo (,\.) on ,\ is also a smoothed threshold function 
(see Fig. 1). Therefore the product of both functions -- the 
expected PMC ExP,(,\.) = Poo(..\)· ~(..\), usually has a min
imum (see curves 2, 3 and 4 in Fig. 2). Depending on the 
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O.:!O 

0.06 

0.04 0.4 1. 10 1.00 1000 A. 
Fig. 3. Dependence of 5 conditional PMC P-x on the 

value of smoothing parameter>' (real PRG-76 
data). 

interval, the curve EyP\(>.) = i(>') can have a maximum 
(see curves 1, 2 in Fig. 3, which were obtained for real data 
of Pattern Recognition Competition -- 1976 (PRC-76 data)). 
The expected PMC EPx for artificial data (curves 2, 3, 4 in 
Fig. 2) were estimated as an arithmetic mean of 5 conditional 
probabilities of misclassification (CPM) p\i(i = 1,2,3,4,5), 
obtained during 5 independent experiments. In each exper
iment the learning sampes (N1 = N2 = Nd were different 
and the test sample (Nt = N2t = NT = 900) was common. 
In Fig. 4 we present 5 graphs of CPM PA i and their arithmetic 
mean E P \, obtained for p = 2, N L = 50. We see that a devi
ation of values P~ is rather great. Hmvever, the optimal value 
of the smoothing parameter is practically the same for all 5 
curves. The graphs of EPx for the real data were obtained by 
the leave-One-Ol,lt method. 
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'..-:;;--- .~ 

_---.. .2 
__ --1. 

O,OOi O.O.! O'.~ 1 iO 100 1000 ~oooo 1 
Fig. 4. Dependence of 5 conditional PMC p\ (graphs 

12345) and estimates of expected E\P\ (graph 6) 
on the value of smoothing parameter A. 

rt is interesting to trace the influence of dimensionalit.y 
on t.he character of the curve P\(A) = f(A). In Fig. 5 we 
present graphs for artificial nata obtained from the presented 
above bi-variate artificial data by adding 18 new variahles 

i = 3,4, ... ,20, (11) 

where ~i are independent standart Gaussian random variables 
and (72 is the variance of a noise, (7 = 1, 

In Fig. 6 we present graphs P \ (A) = f (X) for the real 
PRC-76 data after a linear transformation, perfomecl wit.h the 
help of the principal component method. 
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p::::;W 

O£ (0.001";"0.3) 

0.0.1 0.1 1. 10 .100 1000 ~DOOO A 

Fig. 5. Dependence of the conditional PMC PI( on the 
value of smoothing parameter A, dimensionality 

. and noise level (J (artificial data, p = 2 and 20, 
learning sample size N L = 50, test sample size 
Nr= 900). 

At the beginning of this section it was shown ~hat the 
sensitivity of the PvVC rule to the learning sample size for 
small A depends not on the true but on the intrinsic dimen
sionality of data. The graphs in Fig. 6 confirm this conclu
sion. This experiment was carried out with transformed data, 
where the variances of the last variables were many times less 
than those of the few first variables. Therefore the graphs 
ExPx(A) = f(A) for p = 10 and p = 27 are very close. 

A special simulation experiment to verify this conclusion 
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O . .iO 

0.05 

0.01 
. 

0.1 iO :100 .1DDO..A 

Fig. 6. Dependence of conditional PMC p\ on the value 
of smoothing parameter .A (real PR.C-76 data af
ter orthogonal transformation, learning sample 
size N L = 500, test sample size NT = 500). 

was performed on artificial data (formulae (11) and (10)) 'with 
20 variables. In a series of experiments the variance (72 of 
the noise ~i in (11) was changed. The graps of dependence 
Px(.A) = f(.A) for different values of (7 (Fig. 5) in the case, 
when (7 is very small ((7 = 0.001), indicate that the values of 
the expected PMC for p = 20 and small values of .A are very 
close to the values of P~iIC, obtained for p = 2. 

4. Determination .of the optiIllal value of a 
sUloothillg paralueter. The above simulation rt=sults show 
that the value of a smoothing parameter appears to be t.he cru
cial factor in det.ermining the performance of the PvVC rule. 
In most experiments the optimal value of the smoothing pa-
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rameter >'opt was found in the interval (0.1,5.). However for 
transformed PRC-76 data, >'opt has gradually changed from 
0.003 (for p = 1) up to 2 (for p = 25, see Fig 6.). 

Different criteria have been used to determine >'opt. Po
pular criteria ar~ the mean square error (MSE). 

MSE = E(I(X) -1cX»)2 

= J (I(X) -1cX»)2 = J(X)dX (12) 
{} 

and the integral square error (MISE) 

MISE = (I(x) - I(x»)' dX. J ...... 2 
(13) 

When the true density J(X) is multivariate Gaussian or 
a mixture of Gaussian densities and the Gaussian kernel is 
used, criteria (12) and (13) are easily computed. In Table 2 
we present the optimal values of >. found by minimizing MISE 
criterion, when J(X) = n(X, /-t, J). 

Table 2. Optimal values of >. from MISE criteria (Rau
dys, 1977) 

pN 
1 
5 
20 

30 
.584 
.767 

1.08 

80 
.468 
.663 

1.01 

200 
.383 
.582 
.947 

500 
.3.15 
.515 
.894 

2000 
.236 
.431 
.822 

10000 
.170 
.353 
.748 

The estimate of >'opt were obtained for the MISE crite
rion too. However, both criteria resulted different estimates 
of Aopt. In both criteria the values of Aopt do not depend on 
the configuration of the data to be classified and the distance 
between the pattern classes. The values of >'opt differ also 
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from the values of >"opt found from the experimental graphs, 
presented in Fig. 1-7. E.g., for two spherical distributions the 
optimal value of the smoothing parameter should possibly be 
large (see Fig. 1), etc. 

Therefore it follows a very important conclusion: opti
mization of the PWC rule should be car,ried out from the cri
terion of minimum classification error. 

The simplest way to find >"opt is to plot Px(>") against 
>.. and to choose that >.., which results the minimal value of 
EPx(>")· 

The PWC rule is usually used in the case of complicated 
multimodal distributions of pattern classes. Until now theo
retical results for a classification error of the ,PVVC rule are 
not obtained even for the most simple distributions f(XIIIi). 
In the case when such a formula is known, it would be very 
difficult to use it since the true distributions f(XIII i ) are un
known. Therefore in order to find in an optimal value of the 
smoothing parameter the no'nparametric estimates of the clas
sification error should be used. 

There are several nonparametric estimates of the expec
ted PMC. 

Hold out method H. Here the whole design sample is 
divided into two independent parts: a learning sample LS and 
a test sample TS. 

Cross validation method CV. Here the whole design 
sample is divided into R equal parts. The learning sample con
sists of R-1 parts and the test sampl~ consists of the remain
ing part. The procedure of designing and testing a classifier 
is carried out R times, changing the test sample each time. 

Leaving-one-out method L is a version of the CV 
method when R = Nl + N 2 • 

In the multidimensional case most of computer time in 
calculating the nonparametric Parzen window estimates 



S.Raudys 451 

j(X\ITi) is vasted to calculate Nl + N2 distances 

Thus, in order to reduce the computer time, it is conve
nient to calculate 

H(X, X?))/ >"s (5 = 1,2, ... ,r) 

right away after finding H(X, Xli)) and estimate all 2r esti

m"ates of the multivariate density j(X\IT l , Ad, ... , 
j(X\ITl' >"r), lcX\IT2' >"d,···, lcX\IT2' Ar) simultaneously. 

In order to determine the optimal value of the smoothing 
parameter of the PWC rule we propose the following proce
dure: 

1) to select several values of the smoothing parameter A 
in a logarithmic scale (from our experience with normalized 
data we propose to select 10 values at an interval (0.001, 100), 
e.g.: 0.001, 0.01, 0.03, 0.1, 0.3, 1.0, 3; 10, 30, 100). 

2) to obtain unbiased estimates of the expected PMC for 
all values of A simultaneously. If observations of the design 
sample are statistically independent, we propose to use the 
leaving-out-method which can very easily be implemented in 
the PWC rule. If observations are s~atistically dependent (e.g., 
the design sample consists of multivariate time series) CV or 
H methods are preferable. Note, when A is very large, i.e., we 
have very large smoothing, all the observations of the design 
sample have approximately equal contribution into the sum 
(1) and sometimes the L method results an 100 % error. 

3) to draw the graph Px = f(ln A) (when Nl +N2 exceeds 

100, the graph Px = f(ln>..) is rather smooth (see Fig. 7). 
4) to determine Aopt, where fix = f(ln A) has its mini

mum. 
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Fig. 7. Dependence of five leave-one-out estimates of 
the classification error of PWC on the value of 
smoothing parameter (artificial 5-variate data, 
5 samples, Nl = N2 = 50). 

5. Discussion. The Parzen window classification rule 
is one of the best among other statistical classification rules. 
\Vhen the learning sample size increases unlimitedly and the 
smoothing parameter A tends to zero, the P'VC rule tends 
to an optimal Bayes one. When A --l- 0, PvVC tends to the 
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nearest neighbour classification rule, and when ..\ ~ 00 - to 
the Euclidean distance classifier. When the learning sample 
size is limited, the expected probability of misclassification 
increases. The sensitivity of the PWC rule to the learning 
sample size depends on the value of the smoothing parameter, 
on the true-intrinsic dimensionality and other characteristics 
of pattern classes. The sensitivity of the PWC rule to the 
finiteness of the learning sample size is lowest, when ..\ ~ 00, 

and the PWC rule becomes Euclidean distance classifier, and 
it increases with a decrease of"\. The asymptotic PMC is low
est for very small ..\ and it increases with ..\. The dependence 
of the expected PMC on the value of smoothing parameter is 
a complex shaped function which has its minimum and maxi
mum, and this shape depends on the data significantly. 

Determining the optimal value of the smoothing parame
ter, where the expected PMC has its minimum, is the most 
important problem in practice. Therefore we have to obtain 
the graph of dependence of the expected PMC on parameter 
..\ and to find ..\opt from its minimum. Since the nonparamet
ric PWC rule is devoted to form complex nonlinear decision 
boundaries, we have to use nonparametric estimates of the 
expected probability of misclassification. 
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