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Abstract. In this paper we recall the notion of weakly decomposition, we recall some necessary
and sufficient conditions for a graph to admit such a decomposition, we introduce the recognition
algorithm for the diamond-free graphs which keeps the combinatorial structure of the graph by
means of the decomposition, as well as an easy possibility to determine the clique number for the
diamond-free graphs.
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1. Introduction

Let G = (V, E) be a finite undirected graph without self-loops and multiple edges. In
different problems in the theory of graphs, particularly in the building of some recognition
algorithms, frequently appears a type of partition of the set of vertices in tree classes A,
B, C such that A induces a connected graph, and C is totally adjacent to B and totally
nonadjacent to A.

We recall some results concerning the diamond-free graphs, but which are also prime.

Theorem (see (Brandstadt, 2002)). If G is a prime {diamond, co-diamond}-free graph
then G or G is a co-matched bipartite graph or has at most nine vertices.

(A graph G is a matched co-bipartite graph if G is partitionable into two cliques C1,
C2 with |C1|=|C2| or |C1|=|C2| + 1 such that the edges between C1 and C2 determine a
matching and at most one vertex in C1 and C2 is not covered by the matching. A graph G

is a co-matched bipartite graph if it is the complement of a matched co-bipartite graph).

Theorem (see (Brandstadt et al., 2003)). If G is a prime {P5, diamond}-free graph
then G is a thin spider or G is an enhanced bipartite chain graph or G has at most nine
vertices.

(G is a thin spider if its vertices set is partitionable into a clique C and a stable set S

with |C|=|S| or |C|=|S| + 1 such that the edges between C and S determine a matching
and at most one vertex in C is not covered by the matching. G is an enhanced bipartite
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chain graph if it is the complement of an enhanced co-bipartite chain graph. G is an
enhanced co-bipartite chain graph if it is partitionable into a co-bipartite chain graph with
clique C1, C2 and three additional vertices a, b, c (a and c optional) such that N(a) =
C1 ∪ C2, N(b) = C1 and N(c) = C2, and there are no other edges in G, G is a co-
bipartite chain graph if it is the complement of a bipartite chain graph. A bipartite graph
B = (X, Y, E) is a bipartite chain graph if there is an ordering x1, x2, . . . , xn of all
vertices in X such that N(xi) ⊆ N(xj) for all 1 � i < j � k).

Theorem (see (Brandstadt et al., 2003)). The classes of graphs {diamond, co-diamond}-
free, {diamond, co-paw}-free, {diamond, 2K2}-free, {K4, co − diamond}-free have
bounded clique-width.

Theorem (see (Brandstadt et al., 2003)). The class of graphs {K4, diamond, C4, claw}-
free has unbounded clique-width.

Theorem (see (Kloks et al.)). There exists an O(e3/2 + nα) algorithm that checks if a
graph has a diamond and produces one if it does.

In (Brandstadt, 2002), A. Brandstadt gives the structure and linear time optimization
of the (P5, diamond)-free graphs.

A question is arises: what properties have the diamond-free graphs, but which are not
also prime.

2. Notations and Fundamental Definitions

Throughout this paper (see (Berge, 1985)) G = (V, E) is a simple (i.e., finite, undirected,
without loops and multiple edges) graph. Let co-G = G denote the complement graph
of G. For U ⊆ V let [U ] denote the subgraph of G induced by U . Throughout this paper,
all subgraphs are understood to be induced subgraphs. By G − X we mean the graph
[V − X], whenever X ⊆ V , but we shall often denote it simply G − v (∀v ∈ V ) when
there is no ambiguity. If v ∈ V is a vertex in G, the neighborhood NG(v) denotes the
vertices of G − v that are adjacent to v. We shall write N(v) when the graph G appears
clearly from the context. The neighborhood of the vertex v in the complement of the graph
G will be denoted by N(v). For any subset S of vertices in the graph G the neighborhood
of S is N(S) = ∪v∈SN(v) − S and N [S] = S ∪ N(S). A clique is a subset of V with
the property that all the vertices are pairwise adjacent. The clique number of G, denoted
by ω(G) is the size of the maximum clique. By Pn, Cn, Kn we mean a chordless path
on n � 3 vertices, the chordless cycle on n � 3 vertices, and the complete graph on
n � 1 vertices. If e = xy ∈ E, we shall also write x ∼ y, and x �∼ y whenever x, y

are not adjacent in G. A set A is totally adjacent (non adjacent) with a set B of vertices
(A ∩ B = φ) if ab is (is not) edge, for any a vertex in A and any b vertex in B; we note
with A ∼ B (A �∼ B). A vertex z ∈ V distinguishes the vertices x, y ∈ V if zx ∈ E and
zy �∈ E. A vertex set M ⊆ V is a module if no vertex from V − M distinguishes two
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vertices from M . A module is trivial if it is either the empty set, a one-vertex set or the
entire vertex set V . Nontrivial modules are called homogeneous sets. A graph is prime
if it contains only trivial modules. The distance d(u, v) between two vertices u and v is
the minimum of the lengths of the u − v paths of G. The diamond is K4 − e, i.e., a four
vertex clique minus one edge. The paw is the complement of K1 ∪P3. The claw (=K1,3)
is the complement of K1 ∪C3. Let F denote a set of graphs. A graph G is F -free if none
of its induced subgraphs is in F .

3. Basic Properties

Here we recall the notions and the results (see (Croitoru and Talmaciu, 2000), also (Tal-
maciu, 2002)) that are necessary in the next section. For this we define the notion of
weakly component and give a characterization for the weakly decomposition of a graph.

DEFINITION 1. Let G=(V,E) be a graph. A set of vertices, A, is called weakly set if
NG(A) �= V − A and the induced subgraph by A is connected. If A is a weakly set,
maximal with respect to the inclusion, the subgraph induced by A is called weakly com-
ponent. For simplification, the weakly component G(A) will be denoted with A.

The name of “weakly component” is justified by the next result.

Theorem 1. Any connected and incomplete graph G=(V,E) admits a weakly component
A such that G(V − A) = G(N(A)) + G(N(A)).

Proof. Because the graph G is incomplete, there are the vertices x �= y, nonadjacent.
We consider A = {x}, B = N(x), C = N(x). Clearly y ∈ C. While (∃b ∈ B,
∃c ∈ C such that bc �∈ E) it adds b to A (that is A = A ∪ {b}), it defines B as being
(B − {b}) ∪ (N(b) ∩ C) and C as being C − (N(b) ∩ C). Because G(A) is connected
and b has at least a neighbour in A it follows that G(A ∪ {b}) is connected. Clearly
N(A∪{b}) = B. Because bc /∈ E, c ∈ C and {c} �∼ A it follows that c ∈ C−(N(b)∩C),
that is C − (N(b) ∩ C) �= ∅. Because A ⊂ A ∪ {b} ⊂ . . . ⊂ V and |V | < ∞ it follows,
at last, that N(A) ∼ N(A).

Theorem 2. Let G=(V,E) be a connected and incomplete graph and A ⊂ V . Then A is
a weakly component of G if and only if G(A) is connected and N(A) ∼ N(A).

Proof. We suppose that there is n ∈ N(A) and n ∈ N(A) such that nn �∈ E(G). We
consider A′ = A∪{n} and N ′ = (N(A)−{n})∪ (N(n)∩N(A)). G(A′) is connected,
N(A′) = N ′ and {n} ⊆ V (G)− (A′ ∪N(A′)). So N(A′) �= V (G)−A′, contradicting
the maximallity of A. Let G(A) be connected and N(A) ∼ N(A). We show that G(A)
is weakly component. We consider A′ ⊃ A, a weakly component. Because A �∼ N(A)
and G(A′) is connected it results ∅ �= A′ − A ⊆ N(A). We consider n ∈ A′ − A. Then
N(A) ⊆ N(n). So N(A′) = ∅, contradicting the definition of the weakly component.
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DEFINITION 2. A partition (A, N(A), V −A∪N(A)), where A is a weakly set, is called
weakly decomposition of graph G in relation to A. We call: A the weakly component,
N(A) the minimal cutset, and V − N(A) the remote set.

The next result insures the existence of a weakly decomposition in a connected and
incomplete graph.

Theorem 3. If G = (V, E) is a connected and incomplete graph then the set of vertices
V admits a weakly decomposition (A, B, C) such that G(A) is a weakly component and
G(V − A) = G(B) + G(C).

(The proof is the one given in Theorem 1.)
Theorem 2 provides an O(n + m) algorithm for building a weakly decomposition for

an incomplete and connected graph.

Algorithm for the weakly decomposition of a graph
Input: A connected graph with at least two nonadjacent vertices, G = (V, E).
Output: A partition V = (A, N, R) such that G(A) is connected, N = N(A), A �∼ R =
N(A).

begin

A := any set of vertices such that
A ∪ N(A) �= V

N := N(A)
R := V − A ∪ N(A)
while (∃n ∈ N , ∃r ∈ R such that nr �∈ E ) do

A := A ∪ n

N := (N − {n}) ∪ (N(n) ∩ R)
R := R − (N(n) ∩ R)

end

One can observe that [A]G is connected, N = NG(A), R �= ∅ is an invariant of the
algorithm.

Corollary 1. If G is a connected graph and (A,N,R) a weakly decomposition with A

weakly component then the following holds:

ω(G) = max
{
ω([N ]) + ω([R]), ω([A ∪ N ])

}
.

Proof. Any clique of maximum cardinal either intersects R and so it has the cardinal
ω([N ]) + ω([R]) or it does not intersects R and so it has the cardinal ω([A ∪ N ]).

4. The Algorithm

In this section we establish the algorithms of recognition for the class of diamond-free
graphs.
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A diamond is the graph with vertices u, v, w, t and edges uv, vt, uw, tu, wt; a graph
is called diamond-free if it has no induced subgraph isomorphic to a diamond.

In what follows, we give a characterization of a diamond-free graph.

Theorem 4. Let G = (V, E) be connected with at least two nonadjacent vertices and
(A, N, R) a weakly decomposition with A weakly component. G is diamond-free if and
only if we have:

(a) G − A and G − R are diamond-free graphs;
(b) ∀e = ab ∈ E([N ]): N(a) ∩ N(b) ∩ A = ∅.

Proof. If G is diamond-free then G−A and G−R are diamond-free. If ∃ab ∈ E([N ]G):
N(a) ∩ N(b) ∩ A �= φ then for x ∈ N(a) ∩ N(b) ∩ A and ∀y ∈ R, the subgraph
[{a, b, x, y}] is diamond.

We suppose that (a) and (b) holds and show that G is diamond-free. We suppose,
however, that ∃[D] = [{t, u, v, w}] diamond in G: vw �∈ E, vt, vu, wt, wu, tu ∈ E.
Since G−A and G−R are diamond-free, G connected and A �∼ R results: D ∩A �= φ,
D ∩ N �= φ, D ∩ R �= φ. If (v ∈ A and w ∈ R) ( or w ∈ A and v ∈ R) does not
hold then, because {t, u} ∼ D − {t, u}, A �∼ R and N ∼ R results D ∩ R = φ or
D∩A = φ. We suppose: v ∈ A and w ∈ R. Because w ∈ R and A �∼ R results t, u �∈ A

and because v ∈ A and A �∼ R results t, u �∈ R. So: u, t ∈ N ; v ∈ A and w ∈ R. But
then tu ∈ E([N ]) for which N(u) ∩ N(t) ∩ A �= φ, contradicting (a).

The above result leads to the following recognition algorithm.
Input: G = (V, E) a connected graph with at least two nonadjacent vertices.
Output: An answer to the question: Is G a diamond-free graph?
1. { L = G; // L a list of graphs
2. while (L �= ∅)

{ extract an element H from L;
find a weakly decomposition (A, N, R) for H;
if (∃ab ∈ E([N ])G such that N(a) ∩ N(b) ∩ A �= ∅) then

Return: G is not diamond-free;
else introduce in L the connected components of G−R, G−A incomplete

3. Return: G is diamond-free }
}

Although the complexity of this algorithm – in the worst case – is not better than those
of the most efficient, known algorithms, its behaviour is superior in many implementa-
tions. This is because the above algorithm takes into account the combinatorial structure
of the graph, by means of the decomposition that has been used.
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Romb ↪u neturinči ↪u graf ↪u atpažinimo algoritmas

Mihai TALMACIU, Elena NECHITA

Straipsnyje pateikiamas silpnos dekompozicijos apibrėžimas bei būtinos ir pakankamos
s ↪alygos, kad būt ↪u ↪imanoma tokia grafo dekompozicija. ↪Ivedamas atpažinimo algoritmas romb ↪u ne-
turinči ↪u graf ↪u atpažinimui, kuris išlaiko kombinatorin ↪e grafo struktūr ↪a naudodamas minėt ↪a dekom-
pozicij ↪a. Algoritmas taip pat suteikia galimyb ↪e lengvai nustatyti rombo neturinčio grafo grupės
numer↪i.


