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Abstract. Fractal image compression is an engaging and worthwhile technology that may be suc-
cessfully applied to still image coding, especially at high compression ratios. Unfortunately, the
large amount of computation needed for the image compression (encoding) stage is a major obsta-
cle that needs to be overcome. In spite of numerous and many-sided attempts to accelerate fractal
image compression times, the “speed problem” is far from being carried to its conclusion.

In the paper, a new version (strategy) of the fractal image encoding technique, adapted to pro-
cess bi-level (black and white) images, is presented. The strategy employs the necessary image
similarity condition based on the use of invariant image parameters (image smoothness indices,
image coloration ratios, etc.). It is shown that no images can be similar (in the mean squared error
sense) if their respective parameter values differ more than somewhat. In the strategy proposed, the
necessary image similarity condition plays a key role – it is applied to speed-up the search process
for optimal pairings (range block-domain block), i.e., it enables to narrow the domain pool (search
region) for each range block. Experimental analysis results show that implementation of the new
fractal image encoding strategy accelerates bi-level image compression times considerably. Excep-
tionally good results (compression times and quality of restored images) are obtained for silhouette
images.
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1. Introduction

Throughout the last two short decades development and implementation of fractal image
processing technologies was an area of increasing interest. Much was done in preparing
and maturing diversified fractal image encoding schemes (Jacquin, 1992; Fisher, 1994;
Saupe, 1995; Wohlberg and Jager, 1999; Tong and Wong, 2002; Furao and Hasegawa,
2004; Žumbakis and Valantinas, 2005). Constant attention was paid to the development
of fractal modelling techniques, to the analysis and synthesis of fractal images (Peitgen
et al., 1992; Turner et al., 1998; Kaandorp and Kuebler, 2001; Valantinas and Žumbakis,
2004). Elements and thoughts of fractal geometry (fractal dimension, fractal interpo-
lation, fractional integrals and derivatives) were put to work in real-world applications
(Yokoya et al., 1989; Samko et al., 1993; Evans, 1997; Dimri, 2000; Blackledge et al.,
2004).
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In the field of digital images (real-world image models) the fractal approach is of
outmost importance, because it facilitates interpretation of the information content of an
image. To say more, it provides us with a powerful tool to catch sight of a fundamen-
tal real-world image property generally known as self-similarity. Due to this property,
the research and development of algorithms (“fractal techniques”) to extract important
fractal characteristics from appropriate digital data has received significant attention in
recent years. One of the most rapidly developing areas is the use of fractal geometry for
performing image data compression.

Those, who are gone deep into the essence of the matter, comprehend that merely the
extractability of self-similarity, found within images, made it possible to construct the
fractal representation of an image. A. Jacquin was the first to propose a practical block
based fractal image coding scheme (idea) in 1992, basis of most published fractal image
coding schemes. A detailed introductory review on fractal image coding techniques can
be found in (Fisher, 1994; Saupe and Hamzaoui, 1994).

However, the encoding complexity of the fractal image coding is extremely high and
has become the major obstacle for its workable practical applications. The most computa-
tionally intensive part of the fractal encoding process is the searching step. If a brute force
approach (exhaustive search) to the detection of optimal pairings “range block–domain
block” is used, the fractal encoding complexity is always dominated by this searching
process. In the past ten years, many interesting and promising strategies (searching al-
gorithms) have been developed to get over the heavy computation of exhaustive search.
Block categorization is the most commonly used method in speeding up the searching
process (Bani-Eqbal, 1995; Hamzaoui, 1997; Wohlberg and Jager, 1999; Hamzaoui and
Saupe, 2000). The main idea of block categorization is to sort out the fixed size range
and domain blocks into different classes according to the image features (mean, variance,
edge types, etc.). The searching process is then restricted to the same category (class),
i.e., only those domain blocks which belong to the same class as the encoded range block
will be matched, and the others are not considered. The computational complexity is re-
duced because fewer domain blocks are compared with the given range block. Another
idea to accelerate the searching process at the encoding stage is bound up with a help-
ful observation that if the search is not totally exhaustive the resulting pairings may not
be optimal but could be very close, with the result that only a minor loss of quality will
occur. The simplest implementation of the idea goes under the name – “the nearest neigh-
bor search strategy” (Caso et al., 1996; Polvere and Napi, 2000; Tong and Wong, 2002;
Saupe, 2002). The essence of the latter – only those domain blocks which partially over-
lap the encoded range block to some extent (or, lie at a certain distance away) are taken
into consideration and analysed.

The design of efficient domain search strategies (searching algorithms) has conse-
quently been one of the most active areas of research in fractal coding, resulting in a
wide variety of solutions (Truong et al., 2000; Tong and Pi, 2001; Furao and Hasegawa,
2004; Hassaballah et al., 2005). In parallels, we must admit that, despite all enumerated
attempts to accelerate fractal image compression times, the “speed” problem is far from
being carried to its conclusion.



On the Application of Invariant Image Parameters to Fractal Encoding of Bi-Level Images465

Not long ago, we have developed a new strategy for the fractal encoding of grey-level
images (Valantinas et al., 2002; Žumbakis and Valantinas, 2005). The range blocks and
corresponding domain blocks were categorized depending on their smoothness parameter
values, introduced, from the first, to characterize manifestation of high frequency com-
ponents in the image. The searching of the best matched domain block was carried out
between the neighboring (or, within the same) smoothness classes. The computational
complexity of the fractal image encoding process has been reduced considerably.

In the paper, a new version of the developed strategy (Žumbakis and Valantinas,
2005), this time oriented to process bi-level (black and white) images, is presented and
analysed. The version is based, mainly, on the use of reasonably defined invariant im-
age parameters (image smoothness indices, image coloration ratios, etc.). These param-
eters are employed to state the necessary image similarity condition, which is used later
on to achieve image compression speed gains in the search for optimal pairings “range
block-domain block”. Theoretical and experimental analysis results show that the devel-
oped bi-level image coding technique is rather efficient in solving the earlier mentioned
“speed” problem, i.e., in achieving fractal image compression speed gains. Exceptionally
good results (image compression times and quality of restored images) are obtained for
silhouette images.

The rest of this paper is organized as follows. Section 2 introduces some invariant
image parameters, associated with bi-level images, describes procedures for finding pa-
rameter values, formulates their properties and interprets possible application areas. Sec-
tion 3 reviews the basic scheme of fractal image coding (Jacquin’s idea) and presents a
new approach to achieving fractal (bi-level) image compression speed gains. In the centre
of attention – application of the necessary image similarity condition to the development
of an efficient search technique. Experimental results and some reconstructed images are
shown in Section 4.

2. Invariant Image Parameters – Definition, Evaluation, Properties

Consider a set of digital images S2(n) = {[X(m)] |m = (m1, m2) ∈ I2}, where I =
{0, 1, . . . , N − 1}, N = 2n, n ∈ N; X(m) ∈ {0, 1, . . . , 2p − 1}, for all m ∈ I2; p

(p � 1) equals the number of bits per pixel in the image (for bi-level images, p = 1).
The distance (mean squared error) δ between any two elements of the set S2(n) –

images [X1(m)] and [X2(m)] – is specified by

δ = δ(X1, X2) =
(

1
N2

∑
m∈I2

(
X2(m) − X1(m)

)2
)1/2

. (1)

Let us denote the two-dimensional discrete spectrum (Walsh-Hadamard (WHT), co-
sine (DCT), etc. (Ahmed and Rao, 1975)) of the image [X(m)] ∈ S2(n) by [YX(k)]. It is
well known that the spectral coefficients YX(k) (k = (k1, k2) ∈ I2) decrease in absolute
value, as their serial numbers k (indices k1 and k2) increase, provided the basis vectors of
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the discrete transform in use are presented in a frequency order. The latter circumstance
implies that there exists a hyperbolic surface

z = z(x1, x2) = C/(x1 · x2)α (C � 0, α � 0), (2)

which approximates the ordered array of spectral coefficients {|YX(k)| | k = (k1, k2) ∈
I2, k2

1 + k2
2 �= 0} in the mean squared error sense, i.e.,

(
1

N2 − 1

∑
k∈I2

(k2
1+k2

2 �=0)

(
|Y (k)| − C

(k1 · k2)α

)2
)1/2

→ min; (3)

here ki = max{ki, 1}, i = 1, 2.
The quantity α (expression (2)), characterizing the shape of the hyperbolic surface,

i.e., the rate of decay of spectral coefficients, as their serial numbers increase, is assumed,
in what follows, to be the smoothness parameter (class) of the image [X(m)] ∈ S2(n).
This assumption is intuitively understandable – the more intense manifestation of high
frequency components in the discrete spectrum of the image, the more noticeable changes
of pixel intensity values (sharp edges) are detected in the image.

Below, we present a means solely for finding the very first approximation of the image
smoothness parameter value α. Let us designate the set of indices of nonzero spectral
coefficients, in the discrete spectrum [YX(k)] of the image [X(m)] ∈ S2(n), as H , i.e.,

H =
{
k = (k1, k2) ∈ I2 |YX(k) �= 0, k2

1 + k2
2 �= 0}. (4)

Then, application of the least squares method leads to the following result

α = α0 =
1

AN

∑
k∈H

(
BN − |H| · P (k)

)
· log |YX(k)|, (5)

where AN = |H| · CN − B2
N ; BN =

∑
k∈H P (k); CN =

∑
k∈H P 2(k); P (k) =

log(k̄1 · k̄2), for all k ∈ H; by the way, AN = 0 if and only if the set H is empty, i.e.,
the digital image [X(m)] is absolutely smooth. It is worth emphasizing that the above
“rough” image smoothness estimate (expression (5)) sometimes serves the purpose, es-
pecially, when one is interested in the difference between the smoothness classes of par-
ticular digital images.

To make the estimate more precise, various approaches are applied, namely: succes-
sive coordinate optimization procedures, the least squares method, special iterative tech-
niques, etc. (Valantinas and Žumbakis, 2004). Experimental results show that the real
world image smoothness parameter values, obtained using DCT or WHT, fall into the
interval [0; 3).

The smoothness class of bi-level (black and white) images can be defined in a new way
as well. Here, we present one criterion for smoothness analysis of black and white images.
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Let [X(m)] ∈ S2(n); X(m) = X(m1, m2) ∈ {0, 1}, for all m1, m2 = 0, 1, . . . , N − 1;
n = log2 N . The quantity (criterion)

α = αX = 1 −
( N−1∑

m1=0

N−2∑
m2=0

X(m1, m2) ⊕ X(m1, m2 + 1)

+
N−1∑
m2=0

N−2∑
m1=0

X(m1, m2) ⊕ X(m1 + 1, m2)
)

1
2N(N − 1)

, (6)

that expresses the total number of changes (in pixel values) along the spatial axes of the
image, is assumed to be the smoothness index (parameter, class) of the bi-level image
[X(m)]; here “⊕” signifies the logical operation “EXCLUSIVE-OR”. It can be easily
seen that the introduced image smoothness index (expression (6)) takes values from the
interval [0, 1].

Image smoothness parameters α (expressions (5) and (6)) possess two exceptionally
important (from the standpoint of practical applications) properties:

– invariance with respect to the isometric transformations (rotation, reflection, in-
version, etc.), acting upon the image [X(m)], i.e., if [X̂(m)] ∈ S2(n) represents a
transformed version of the initial image [X(m)], then smoothness parameter values
of [X̂(m)] and [X(m)] coincide, i.e., αX̂ = αX ;

– continuity of α: S2(n) → R, grasped in the way that small changes in the image
[X(m)] ∈ S2(n) call forth small changes in the smoothness parameter value α, i.e.,
if [X̃(m)] = [X(m)+ΔX(m)] ∈ S2(n) and δ(X, X̃) � δ0, then |αX−αX̃ | � ε0;
here ε0 and δ0 are small positive numbers.

The detailed proof of the above properties (for the case of grey-level images (expres-
sion (5)), as well as explanatory description of usable isometric transformations, can be
found in (Valantinas and Žumbakis, 2004). In the case of bi-level images, the invariance
property of the image smoothness index α (expression (6)) follows directly from its defi-
nition. Continuity of α is ensured by a simple observation – inversion of k (1 � k < N2)
pixel values in the (bi-level) image [X(m)] results in an increment Δα of the smoothness
index α, that never exceeds 2k/N(N − 1).

On the basis of continuity property of the smoothness parameter (index) α, we can
immediately state the necessary image similarity condition

(
δ(X1, X2) � δ0

)
⇒

(
|αX1 − αX2 | � ε0

)
(7)

(here αX1 and αX2 are smoothness parameter (index) values for images [X1(m)] ∈
S2(n) and [X2(m)] ∈ S2(n), respectively), which asserts that two particular images
cannot be similar if their smoothness classes (smoothness parameter values) differ more
than somewhat. The relationship between ε0 and δ0, obviously, should be established
experimentally.
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For stating of the necessary image similarity condition, the use can also be made of
the invariant (bi-level) image parameter ν, specified by the following formula:

ν = νX =
∣∣∣∣1 − 2

N2

N−1∑
m2=0

N−1∑
m1=0

X(m1, m2)
∣∣∣∣. (8)

The introduced parameter ν = νX expresses the relative number of “ones” (or “ze-
ros”) in the image [X(m)] and is called the image coloration ratio.

From (8) it directly follows that the image coloration ratio ν continuously depends on
the changes in the image [X(m)]. Moreover, the ratio ν is invariant with respect to the
isometric transformations (rotation, reflection, inversion, etc.), acting upon the image.

Despite the fact that ν cannot be used in the role of the image smoothness parameter
value, it gives us a chance to formulate anew the necessary image similarity condition.
Really, for two bi-level images [X1(m)] ∈ S2(n) and [X2(m)] ∈ S2(n), we have

(
δ(X1, X2) � δ0

)
⇒

(
|νX1 − νX2 | � ε0

)
(9)

(here νX1 and νX2 are coloration ratio values for images [X1(m)] and [X2(m)], respec-
tively).

Now, a truly valuable conclusion can be made – since the transformed (rotated, re-
flected, etc.) bi-level images preserve smoothness parameter values, the necessary image
similarity condition (expression (7) or (9)), based on the application of invariant image
parameter values, can be efficiently employed to accelerate the searching process in block
based fractal image coding procedures, i.e., to narrow the search region for the best pair-
ings “range block – domain block”.

3. Accelerating Fractal Compression Times for Bi-Level Images

The fractal image encoding (compression) principle consists in finding a construction
rule that produces a fractal image which approximates the original image. Fractal image
compression is based on the mathematical theory of iterated function systems (IFS), de-
veloped by M. Barnsley (1993). A. Jacquin was the first to propose a practical block based
fractal image compression scheme (idea, strategy) based on the so-called partitioned it-
erated function systems (PIFS) (Jacquin, 1992; Barnsley, 1993).

To introduce the relevant terminology and notations, a brief explanation of the
Jacquin’s basic idea is presented below.

3.1. The Block Based Fractal Image Encoding Idea

In its simplest form (Jacquin’s approach), the image to be processed [X(m)] ∈ S2(n)
is partitioned at two scales (one twice the other), i.e., into the fixed size range blocks
[U(m)] ∈ S2

1(3) ⊂ S2(3) and domain blocks [V (m)] ∈ S2
1(4) ⊂ S2(4). The for-

mer (range) blocks are non-overlapping and contain every pixel. The latter ones (do-
main blocks) may overlap and not necessarily contain every pixel. The essence of the
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approach is the pairing of each range block [U(m)] to a domain block [V (m)] such that
δ = δ(U, V ) is minimal.

The search for the best domain block for a particular range block is complicated by the
requirement that the range block, in general, matches the transformed version of a domain
block. In other words, the problem is to find for each range block the domain block
that can be made closest (in the sense of δ) by an admissible isometric transformation
(rotation, reflection, etc.). Without any doubt, computation required is enormous (“speed
problem”; ∼ 0.5 · 109 pairings, for images 256 × 256; ∼ 8.1 · 109 pairings, for images
512 × 512).

To accelerate the pairing process in the encoding stage, a helpful observation is that
if the search is not exhaustive the resulting PIFS may not be optimal but could be close
enough, and a minor loss of quality will likely occur at the image decompression stage.

As it was mentioned above, the searching process may be simplified by introducing
an appropriate invariant representation for each image block. Transforming range and
domain blocks to this representation allows direct distance comparisons between them to
find out the best possible match.

We here present a new development (approach, strategy) in overcoming the “speed
problem” mentioned above. The proposed approach is oriented to process bi-level (black
and white) images, employs regular segmentation of the image into non-overlapping
range blocks and applies the necessary image similarity condition, based on the direct
use of invariant image parameter values (Section 2). It is shown that image compression
time savings are obtained irrespectively of the size of range (domain) blocks the image
under processing is partitioned into.

3.2. Implementation of the Necessary Image Similarity Condition

In most cases, the similarity between any two images (or, between any two fragments
(blocks) of the same image) is confirmed (or, denied) using the earlier introduced metrics
δ (expression (1); Section 2), i.e., two bi-level images, [U(m)] ∈ S2(n) and [V (m)] ∈
S2(n), are considered to be similar, if and only if δ = δ(U, V ) � δ0(δ0 being a priori
fixed small positive number); otherwise (δ(U, V ) > δ0), images [U(m)] and [V (m)] are
said to be dissimilar.

The necessary image similarity condition follows directly from the continuity prop-
erty stated above (Section 2), i.e.,

(
δ(U, V ) � δ0

)
⇒

(
|θU − θV | � ε0

)
, (10)

where θU and θV signify the invariant parameter values – smoothness indices α (expres-
sion (7); Section 2), or coloration ratios ν (expression (9); Section 2) – for images [U(m)]
and [V (m)], respectively. In other words, two bi-level images (blocks) can not be similar
if their respective parameter values differ more than somewhat (|θU − θV | > ε0).

Particularly important detail – the invariance property of image smoothness estimates
(Section 2) makes the above necessary condition adaptable with the earlier mentioned



470 J. Valantinas, T. Žumbakis

transformations (rotation, reflection, etc.), acting upon the image (domain block) [V (m)]
(Section 3.1).

The developed fractal (bi-level) image encoding strategy employs the necessary image
similarity condition (expression (10)), which makes it possible to reduce the domain pool
for each range block to a considerable extent. At the same time, the best pairings “range
block – domain block” are not missed (Fig. 1).

The main points of the developed strategy are presented below.
Firstly, for finding numerical values of the invariant image parameters in use, each

range block [Ui(m)] ∈ S2
1(n1) ⊂ S2(n1), as well as each domain block [Vj(m)] ∈

S2
1(n2) ⊂ S2(n2), in the bi-level image [X(m)] ∈ S2(n) is looked over only once

(here i = 1, 2, . . . , 4n−n1 ; j = 1, 2, . . . , (2n − 2n2 + 1)2; usually, n1 ∈ {2, 3} and n2 =
n1+1)). As a result, two sequences of invariant image parameter values, {θUi} and {θV̂j

},

are formed ([V̂j(m)] ∈ S2(n1) is a shrunken copy of the domain block [Vj(m)]). So,
domain and range blocks are categorized into a finite number of classes, according to their
invariant representations – image smoothness index values (or, image coloration ratio
values). The latter circumstance makes unnecessary repeated evaluation of values of δ =
δ(U, V̂ ) in the searching process of optimal pairings “range block-domain block”. Each
range block, now, is immediately associated with a set (pool) of candidate domain blocks,
by comparing numerical values of their invariant parameters, i.e., all the blocks falling
into the domain pool, associated with a particular range block, satisfy the necessary image
similarity condition (expression (10)).

Secondly, a simple analysis of algebraic expressions used in finding numerical values
of the invariant parameter θ for all bi-level image blocks, in obtaining shrunken copies of
domain blocks, as well as in establishing the fact of block similarity, shows that the time
expenditures, associated with these steps, are equal to (suppose: n1 = 3; n2 = 4; τa and
τm denote the time expenditure required to perform a single addition and multiplication
operations, respectively; θ = ν):

(1) 256 · τa + 64 · τm (for obtaining the shrunken copy [V̂ (m)] of [V (m)]);
(2) 65 · τa + 2 · τm (for computing coloration ratio value ν of [U(m)] (or [V̂ (m)]);
(3) 1024·τa+2·τm (for establishing image similarity fact between two blocks, [U(m)]

and [V̂ (m)]; isometric transformations inclusive).

Combining these results, under assumption that τa = τm, the following expression
for the total image compression time expenditure τtotal is obtained:

Fig. 1. Fractal bi-level image encoding scheme – implementation of the necessary image similarity condition.
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τtotal =
(67

64
N2 + 387(N − 15)2 +

513
328

N2M
)
· τa; (11)

here M stands for the averaged number of domain blocks [V (m)] ∈ S2
1(4) ⊂ S2(4),

contained in the domain pool (search region) of the range block [U(m)] ∈ S2
1(3) ⊂

S2(3); N × N is the size of the initial image [X(m)] ∈ S2(n).
On the other hand, the total time expenditure (τ◦

total), associated with the exhaustive
search for optimal pairings “range block–domain block” (Jacquin’s approach), equals:

τ◦
total =

(
320(N − 15)2 +

513
64

· N2(N − 15)2
)
· τa. (12)

The comparative analysis of expressions (11) and (12) gave prepossessing results for
the prospective fractal image compression speed gains, i.e., for the acceleration of image
encoding times – for the ratio k = τ◦

total/τtotal (Table 1). As it can be seen, even for
N = 256, the ratio k = τ◦

total/τtotal exceeds 200, provided M � 103; for M � 104,
“success” (speed gains) is ensured unconditionally.

Similar reasoning can be applied to derive quantitative time expenditure results for
other cases (including new sizes of the range (domain) blocks and other invariant image
parameters).

It was found out that for black and white images, additional image compression time
gains are achievable. They have links with slight modifications of the proposed fractal
image coding strategy (Fig. 1). The main change – only non-monochrome range blocks
of the binary image are processed at the encoding stage, whereas monochrome range
blocks escape analysis, i.e., they are marked by the value 0 (black block) or 1 (white
block) at once. One can easily ascertain that such a modification (in many cases) leads
to noticeable improvements of the bi-level image compression effect. Suppose, the size
of the image under processing [X(m)] is 256 × 256, and the size of the range block U

is 8 × 8. If the format of the compressed data (describing the set of best pairings “U −
V ”) is chosen to be <e, f, t, o> (here e and f specify coordinates of the domain block
V for a current range block U (8 × 2 = 16 bits needed), t specifies the type of the
isometric transformation (3 bits) and o characterizes the type of the range block U (2 bits
needed)), then the total number of bits attached to encode the given image [X(m)] equals

Table 1

Fractal image compression speed gains (in the sense of k = τ◦
total/τtotal; θ = ν)

Image size, N × NThe averaged number of blocks

in a domain pool, M 128×128 256×256 512×512

102 223.50 930.88 3792.78

103 54.96 244.14 1026.17

104 6.44 29.14 123.72

105 – 2.97 12.63
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21 · (256/8) · (256/8) = 21504. So, the image compression ratio equals 65536/21504 ∼=
3.05. The result, evidently, doesn’t meet any requirements. Is it possible to make the
image compression effect better? The answer is positive, provided the bi-level image
under processing is of silhouette type. In the latter case, the bi-level image contains quite
a number of monochrome (absolutely black or absolutely white) blocks. Consequently,
the earlier mentioned format for data storing becomes surplus and can be optimized.
Evidently, it suffices to store (memorize) parameter values, specifying types of successive
range blocks, and 3-tuples <e, f, t> for non-monochrome (mixed) range blocks only. For
instance, let us take a silhouette image 256×256 (Fig. 3, b). Image content analysis shows
that it contains 899 monochrome blocks and 125 non-monochrome blocks. Application
of the fractal coding procedure (with the range blocks of size 8×8 and the domain blocks
of size 16 × 16) leads to the following result – 4423 bits for stored data, and the image
compression ratio reaches 14.82, i.e., turns out to be nearly five times better than in the
previous case.

In general, amounts of stored data (compressed images) highly depend on both the
internal structure of the image under processing and the size of the range (domain) blocks
explored. In a particular case (for the bi-level image [X(m)] of size N ×N ), the number
of bits for individual parameters, entering the earlier discussed format, can be defined
this way: 2 · log2 N (bits), for the parameters e and f ; 2 (bits), for the parameter o; 3 or
4 (bits), for the parameter t.

Finally, not going into details, we note that the fractal image decoding process starts
with an initial image, comprising absolutely white and absolutely black blocks (depend-
ing on the stored values of the parameter o (Section 3.2)). Then the set of PIFS transforms
(stored 3-tuples of data; Section 3.2) are repeatedly applied until the attractor is closely
reached. The collage theorem tells us that this set of transforms, one for each range block,
will have an attractor that is similar to the original image (Barnsley, 1993).

4. Experimental Results

To corroborate theoretical analysis results obtained, a few many-sided experiments were
carried out. The main goal in those experiments was to find out which one of the proposed
two invariant image parameters (image smoothness index α, or image coloration ratio ν;
Section 2), being implemented into the fractal image encoding scheme (Fig. 1), gave the
best results in the sense of image compression time savings and the quality of restored
images. In connection with this, we here observe that no trials were made to compare
efficiency of the proposed approach in the light of varying sizes of range (domain) blocks.
Firstly, it is not a matter of great importance and, secondly (it goes without saying), the
larger sizes of range (domain) blocks, the faster image encoding process and the lower
quality of restored images (image estimates).

So, to carry out an experiment, quite a number of bi-level images, falling into different
smoothness classes, were processed (Computer simulation was performed on a PC with
CPU AMD1800+(@2800+), RAM 512MB, OS Windows XP)), namely: butterfly.bmp,
girl.bmp, car.bmp, debate.bmp, face.bmp and dragon.bmp (Fig. 2, 3).
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Fig. 2. Black and white images 256 × 256: (a) butterfly.bmp, α = 0.536;
(b) girl.bmp, α = 0.577; (c) car.bmp, α = 0.685.

Fig. 3. Black and white silhouette images 256 × 256: (a) debate.bmp, α = 0.980;
(b) face.bmp, α = 0.990; (c) dragon.bmp, α = 0.991.

All the selected images (Fig. 2, 3) were processed using two approaches: Method 1
– detection of best pairings (range block – domain block) in the image is based on the
use of image smoothness index α (expression (6); Section 2); Method 2 – detection of
best pairings is based on the use of image coloration ratio ν (expression (8); Section 2).
Experimental analysis results (with range blocks U and domain blocks V of size 8 × 8
and 16 × 16, respectively) are presented in Table 2.

As it can be seen (Table 2), better compression outcomes (for all images) were
produced by Method 2. An essential detail – for non-silhouette images (butterfly.bmp,
girl.bmp, car.bmp) the results, obtained using Method 1 and Method 2, turned out to be
terribly bad (the number of wrong pixels is very high), whereas, for silhouette images,
both methods lead to quite reasonable results (the quality of restored images is good
enough, time expenditures are tolerable). For instance, application of the totally exhaus-
tive search (Table 3) and application of Method 2 gave (for silhouette images) approxi-
mately the same result – the difference in the percentage of wrong pixels doesn’t exceed
0.09% (the human eye is not sensitive to changes at such scale!). But, image compression
time savings (in the sense of k = τ◦

total/τtotal; Section 3.2) are more than obvious – vary
from 165 to 475.

The serious conclusion can be made – the fractal image coding technique (strategy),
in general, is inapplicable to bi-level images, but it is efficient enough in the case of
silhouette images.
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Table 2

Preliminary experimental results (with the threshold value ε0 fixed)

Method 1, |αU − αV | � 0.013 Method 2, |νU − νV | � 1

Images
Compression

ratio (bpp)Wrong
pixels (%)

Time (s)
Wrong

pixels (%)
Time (s)

butterfly.bmp 47.096 12.813 50.767 7.687 0.086

girl.bmp 27.136 13.703 27.136 2.797 0.089

car.bmp 56.109 13.734 30.017 9.422 0.064

debate.bmp 2.709 9.250 2.248 1.720 0.077

face.bmp 0.861 3.172 0.395 0.593 0.046

dragon.bmp 0.853 3.547 0.464 0.610 0.046

Table 3

Totally exhaustive search (Jacquin’s approach)

Silhouette imagesExperimental

results debate.bmp face.bmp dragon.bmp

Wrong pixels (%) 2.167 0.378 0.374

Time (s) 285.189 282.164 287.523

Compression ratio (bpp) 0.077 0.046 0.046

Also, efforts were made to find out what is the influence of the threshold value ε0 on
the overall performance (percentage of wrong pixels and compression time expenditures)
of the proposed fractal image coding strategy (Fig. 1). Two bi-level images – butterfly.bmp
(Fig. 2, a) and dragon.bmp (Fig. 3, c) – were analysed. The results obtained confirmed
once again that application of the fractal approach to encoding of non-silhouette images
is deplorable (Table 4; range blocks and domain blocks were chosen to be of size 4 × 4
and 8 × 8, respectively). As it can be seen (Table 4), for bi-level silhouette images, the
best outcomes were fixed in the case of Method 2.

Referring to experimental analysis results, we observe that much more impressive
fractal image compression speed gains can be obtained for bi-level images of size 512 ×
512. For instance, for the silhouette image madam.bmp 512 × 512 (Fig. 4; Method 2;
range blocks and domain blocks were chosen to be of size 4× 4 and 8× 8, respectively),
the threshold value ε0 = 0 ensured very high image encoding time savings (k > 103),
moderate image compression ratio (0.049 bpp) and, above all, extremely high quality of
the restored image – 0.808% of wrong pixels. For larger sizes of range blocks and domain
blocks (8× 8 and 16× 16, respectively), application of Method 2 to the same image gave
the following results: compression time savings – k > 1.3 · 103, image compression ratio
– 0.017 bpp, quality of the restored image – 3.033% of wrong pixels.

Comprehensive analysis of these and many other bi-level images showed that the
appropriately chosen threshold values ε0, in many cases, paved the way for the detection
of (nearly) optimal pairings in images under processing, as well as comparatively high
overall performance of the proposed fractal image encoding strategy.
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Table 4

The influence of the threshold size on the bi-level image coding results

Method 1 Method 2

Images Wrong
pixels (%)

Time (s) ε0
Wrong

pixels (%)
Time (s) ε0

butterfly.bmp 50.577 10.326 0.001 51.597 2.969 0

47.849 12.625 0.01 50.767 7.687 1

44.879 57.203 0.05 50.573 12.141 2

44.206 91.641 0.1 50.233 20.797 4

42.418 307.235 0.4 50.031 78.156 16

dragon.bmp 0.940 1.265 0.001 0.540 0.344 0

0.864 2.250 0.01 0.464 0.610 1

0.764 4.172 0.05 0.406 0.906 2

0.661 7.766 0.1 0.368 1.422 4

0.389 25.265 0.4 0.374 3.844 16

Fig. 4. Fractal bi-level image compression speed gains (silhouette image madam.bmp 512× 512; range blocks
4 × 4, domain blocks 8 × 8).
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5. Conclusion

In the paper, a new version of the fractal image coding strategy, adapted to process bi-
level images, is presented. At the image encoding stage, the domain pools (limited search
regions) for particular range blocks of the image under processing are formed using some
newly introduced invariant image parameters (criteria), namely: (1) the total number of
changes (in pixel values) along the image spatial axes – image smoothness index (ex-
pression (6); Section 2); (2) the relative number of “ones” and “zeros” in the image –
image coloration ratio (expression (8); Section 2). Both criteria have been successfully
employed to formulate the necessary image (block) similarity condition, which plays a
key role in the developed strategy, i.e., in narrowing domain pools for the image range
blocks. Experimental analysis results showed that both criteria did their work sufficiently
well when applied to silhouette images. Exceptionally good performance was fixed in the
case of the second criterion (image coloration ratio) – best pairings (range block – domain
block) are searched among the image blocks containing comparatively the same number
of “ones” (“zeros”). In parallels, a new format (structure) for storing of compressed bi-
level images has been employed. An essential moment has been disclosed – application
of the fractal approach to encoding of non-silhouette bi-level images is deplorable.

Finally, one more interesting detail has been found out – higher quality of restored
bi-level images is obtained when (at the iterative image decoding stage) intermediate
computational results are presented as real numbers (not integers), with the round up
procedure at the very end.

In the future, some additional analysis, concerning the choice and substantiation of
partitioning schemes in fractal bi-level image coding procedures, as well as justified ap-
plicability of the earlier developed image synthesis approach to fractal image decoding
stage (Valantinas and Žumbakis, 2004), is supposed.

References

Bani-Eqbal, B. (1995). Enhancing the speed of fractal image compression. Optical Engineering, 34(6), 1705–
1710.

Barnsley, M.F. (1993). Fractals Everywhere. Academic Press Professional, Cambridge.
Blackledge, J.M., A.K. Evans and M.J. Turner (2004). Fractal Geometry: Mathematical Methods, Algorithms,

Application. Albion/Horwood.
Dimri, V.P. (2000). Applications of Fractals in Earth Sciences. Taylor&Francis, London.
Evans, A.K. (1997). Fourier dimension, fractal dimension and the fractional derivative. Technical Report, 23,

SERCentre, De Montfort University, Leicester LE 1 9BH.
Fisher, Y. (1994). Fractal Image Compression – Theory and Application. Springer-Verlag, New York.
Furao, S., and O. Hasegawa (2004). A fast no search fractal image coding method. Signal Processing: Image

Communication, 19(5), 393–404.
Hamzaoui, R. (1997). Codebook clustering by self-organizing maps for fractal image compression. In NATO

ASI Conf. Fractal Image Encoding and Analysis, vol. 5. Trondheim (supplementary issue).
Hamzaoui, R., and D. Saupe (2000). Combining fractal image compression and vector quantization. IEEE

Transactions on Image Processing, 9(2), 197–208.
Hassaballah, M., H.M. Makky and Y.B. Mahdy (2005). A fast fractal image compression method. Electronic

Letteres on Computer Vision and Image Analysis, 5(1), 30–40.



On the Application of Invariant Image Parameters to Fractal Encoding of Bi-Level Images477

Jacquin, A. (1992). Image coding based on a fractal theory of iterated contractive image transformations. IEEE
Transactions on Image Processing, 1(1), 18–30.

Kaandorp, J.A., and J.E. Kuebler (2001). The Algorithmic Beauty of Seaweeds, Sponges and Corals. Springer-
Verlag, Heidelberg, New York.

Peitgen, H.-O., H. Jurgens and D. Saupe (1992). Chaos and Fractals. Springer-Verlag.
Polvere, M., and M. Nappi (2000). Speed-up in fractal image coding: comparison in methods. IEEE Transac-

tions on Image Processing, 9(6), 1002–1009.
Rao, K.R. (1985). Discrete Transforms and Their Applications. John Wiley&Sons, Incorporated, New York,

NY, U.S.A.
Samko, S.G., A.A. Kilbas and O.I. Marichev (1993). Fractional Integrals and Derivatives: Theory and Appli-

cations. Gordon and Breach Scientific Publishers, Switzerland Philadelphia, Pa., USA.
Saupe, D., and R. Hamzaoui (1994). Complexity reduction methods for fractal image compression. In

J.M. Blackledge (Ed.), Proceedings of the IMA Conference on Image Processing: Mathematical Methods
and Applications. Oxford, England. pp. 211–229.

Saupe, D. (1995). Accelerating fractal image compression by multidimensional nearest neighbour search. In
J.A. Storer and M. Cohn (Eds.), Proceedings DCC’95 (IEEE Data Compression Conference). Snowbird,
UT, USA. pp. 222–231.

Saupe, D. (2002). Fractal image compression via nearest neighbour search. Fractals in Multimedia, The IMA
Volumes in Mathematics and its Applications, vol. 132. Springer Verlag.

Tong, C.S., and M. Pi (2001). Fast fractal encoding based on adaptive search. IEEE Transactions on Image
Processing, 10(9), 1269–1277.

Tong, C.S., and M. Wong (2002). Adaptive approximate nearest neighbor search for fractal image compression.
IEEE Transactions on Image Processing, 11(6), 605–615.

Truong, T.-K., J.-H. Jeng, I.S. Reed, P.C. Lee and A.Q. Li (2000). Fast encoding algorithm for fractal image
compression using the DCT inner product. IEEE Transactions on Image Processing, 9(4), 529–535.

Turner, M.J., J.M. Blackledge and P.R. Andrews (1998). Fractal Geometry in Digital Imaging. Academic Press,
Cambridge.
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Invariantini ↪u vaizdo parametr ↪u taikymas dvispalvi ↪u vaizd ↪u
fraktalinio kodavimo procedūrose

Jonas VALANTINAS, Tomas ŽUMBAKIS

Fraktalinis vaizd ↪u suglaudinimas yra viliojanti ir perspektyvi technologija, kuri gali būti
sėkmingai panaudota statiniams vaizdams koduoti, ypač esant aukštam informacijos suspaudimo
laipsniui. Pagrindinė kliūtis, kuri ↪a reikia ↪iveikti – didelės vaizdo kodavimo etapui tenkančios
laikinės s ↪anaudos. Nepaisant skaitling ↪u ir ↪ivairiapusišk ↪u pastang ↪u, siekiant pagreitinti fraktalin↪i
vaizdo kodavimo etap ↪a, „greičio problema“ iki šiol nėra pilnai išspr ↪esta.

Straipsnyje pateikiama nauja modifikuota fraktalinio vaizd ↪u kodavimo strategijos versija, orien-
tuota apdoroti dvispalviams (juodai-baltiems) vaizdams. Siūloma strategija remiasi būtina vaizd ↪u
panašumo s ↪alyga, kuri, savo ruožtu, grindžiama invariantini ↪u vaizdo parametr ↪u (vaizdo glodumo
indeksai, vaizdo spalviniai santykiai) taikymu. Parodoma, jog vaizdai negali būti panašūs (vidutinės
kvadratinės paklaidos prasme), jeigu j ↪u atitinkam ↪u parametr ↪u reikšmės kiek žymiau skiriasi.
Siūlomoje strategijoje būtina vaizd ↪u panašumo s ↪alyga vaidina svarb ↪u vaidmen↪i – ji panaudojama
optimali ↪u por ↪u (reikšmi ↪u srities blokelis–apibrėžimo srities blokelis) paieškos vaizde procesui grei-
tinti, t.y., leidžia sumažinti apibrėžimo srities basein ↪a (paieškos srit↪i) kiekvienam reikšmi ↪u srities
blokeliui. Eksperimentinės analizės rezultatai rodo, jog naujos fraktalinio vaizd ↪u kodavimo strate-
gijos panaudojimas žymiai sumažina dvispalvi ↪u vaizd ↪u fraktalinio kodavimo laikines s ↪anaudas.
Išskirtinai geri kodavimo rezultatai (kodavimo laikai, atkurt ↪u vaizd ↪u kokybė) siejami su siluetiniais
vaizdais.


