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Abstract. One of the tasks of data mining is classification, which provides a mapping from at-
tributes (observations) to pre-specified classes. Classification models are built by using underlying
data. In principle, the models built with more data yield better results. However, the relationship
between the available data and the performance is not well understood, except that the accuracy of
a classification model has diminishing improvements as a function of data size. In this paper, we
present an approach for an early assessment of the extracted knowledge (classification models) in
the terms of performance (accuracy), based on the amount of data used. The assessment is based on
the observation of the performance on smaller sample sizes. The solution is formally defined and
used in an experiment. In experiments we show the correctness and utility of the approach.
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1. Introduction

The ability to distinguish between objects is the fundamental to learning and intelligent
behavior in general. Being able to act intelligently in an environment relies basically on
the ability to distinguish things. If we can distinguish things and events – to classify
them according to their specific features, we are able to react. Thus, the study of relations
between objects (i.e., their dominant features) is interesting. The similarities and discrep-
ancies are many times the information we seek. They can only be found based on past
experiences (knowledge), adequate observing (where the presence of contrast is essen-
tial) and the ability to distinguish among objects. We humans are able to find solutions
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to complex problems based on our own experiences, experiences of other humans and
information. The term “knowledge” thus denotes the results of such a further analysis of
the information (patterns) (Witten and Frank, 2000). Automated extraction of knowledge
has been in interest ever since the advent of computing and has regained the focus of the
research community in the last decade with several successes in the area of data mining.

Classification, the most common data mining task, seems to be a human imperative
(Berry and Linoff, 1997). In order to understand and to communicate about the world, and
to cope with its complexity, we are constantly classifying things. Classification provides
a mapping from attributes (observations) to pre-specified groupings or classes. Classi-
fication is considered to be supervised learning (Cabena et al., 1997). For supervised
learning, the model takes in the independent variables, produces a guess for the depen-
dent variable that is compared to the actual dependent variable and an error-correction is
made; hence, the study is supervised. Supervised learning is a process of automatically
creating (by using a learning algorithm) a model from a set of records (examples) called
a training set. In other words, it is a process of extracting the knowledge from data.

The performance of the model can be measured in the terms of accuracy – the number
of correctly classified items over the total number of items in a set. The problem is that
there is no way of telling in advance, what the performance will be on the given (real
life!) data. Namely, the final performance may be below the requirements of the user,
so the early assessment may prevent waste of time and other resources. In this paper, we
address the problem of assessing the performance of classification models based on small
amounts of data.

Paper contribution. In the paper, we give a method for an early assessment of the
classification performance. The method is based on the solid formal background, which
is extended with the observations of the learning curve while the models are built with
smaller sample sizes.

Paper organization. In the following section we outline and further define the open re-
search problem. In Section 3, we describe a formal setting for the solution of the problem
and in Section 4 we develop a solution based on the formal description. With the solution
we are able to make estimates for model’s performance – we describe our experiment and
the results in Section 5. We conclude the paper with final remarks in Section 6.

2. Problem of Learning in Small l Regime

The learning curve depicts a relationship between the sample size and the model perfor-
mance (see Fig. 1). The horizontal axis represents l, the number of instances in a given
training set (l can vary between zero and L, the total number of available instances).
The vertical axis represents the performance (e.g., accuracy, or error rate) of the model
produced by an algorithm when given a training set of size li.

We can model the learning curve with a function, which takes in as an independent
variable the sample size l. Many authors have tried to do so with a limited set of functions
(see, e.g., Harris-Jones and Haines, 1997; Frey and Fisher, 1999). When measuring the
accuracy of a classification model, we build a so-called learning curve.
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Fig. 1. A typical learning curve.

Learning curves typically have a steeply sloping portion early in the curve, a more
gently sloping middle portion, and a plateau late in the curve. This resembles the way
humans learn – Anderson and Schooler reviewed a number of paradigms in which a
power law appears to describe human performance (Anderson and Schooler, 1991). For
this reason the curve is called a learning curve. The plateau level can be considered as
the capacity or the final performance of the combination of the data and the learning
algorithm (Brumen et al., 2001a; Brumen et al., 2005b).

In order to plot the learning curve we need to measure the performance of a learning
algorithm for various sample sizes. The research question here is whether (and how) is
it possible to estimate the performance of a learning algorithm (more specifically, the
model it builds) without too many measurements. Namely, doing the measurements is
costly, especially when the human experts need to prepare the data (Brumen et al., 2002a;
Brumen et al., 2003; Brumen et al., 2005a). Thus, we need to do as few measurements
as possible to gain an insight into an algorithm’s future performance. For this reason we
propose an approach where we do the measurements with low amounts of data and try to
make an estimate.

In the continuation, we will describe the problem of learning when the amount of data
is low. First, we will give a definition of a database, where the data (the training set) –
to be fed into a learning algorithm – reside. Next, we formalize the learning algorithm’s
performance, specifically the error rate. With this set-up, we explain why the work from
others can not solve the problem and outline the solution for making estimates when
learning with small amounts of data.

DEFINITION 1 (relational database). A relational database R is a set of relational tables,
R = {T1, . . . , Ti, . . . , Tl}. Each relational table (also called search table) Ti consists of
a table scheme TSi, which is invariant over the life of the table and, at any point of time,
a set of tuples consistent with the scheme. Such a set of tuples is called the current value
or instance of table Ti.

DEFINITION 2 (relational database schema). The relational database schema RS is de-
scribed by a set of relational table schemas, RS = {TS1, . . . , TSi, . . . , TSl}. A table
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schema of Ti, TSi, is described by a finite set of attributes, TSi = {Ai1, . . . , Ain, . . . ,

AiN}. Each attribute Ain is the name of a role played by some domain Din in the rela-
tion schema TSi. We assume that any attribute name Ain appears only once within table
schema TSi. Din is called the domain of Ain and is denoted by Din = dom (Ain). A do-
main is simply a set of values and can be finite or infinite. In a relational database, we have
a set of domains, D = {D1, . . . , Dk, . . . , DK}. A table Ti consists of a table scheme TSi

and a set of N -tuples ti, ti = {ti1, . . . , tim, . . . , tiM}. Each N -tuple tim (belonging to
the search table Ti) is an ordered list of N values, tim = 〈νim1, . . . , νimn, . . . , νimN 〉,
where each value vimn is an element of dom (Ain), or is a special null value. The nth
value of the mth tuple (tim) of search table Ti, which corresponds to the attribute Ain, is
referred to as νimn = tim(Ain).

DEFINITION 3 (training set). The training set consists of l pairs zi ∈ Z:

Z =
{
(xi, yi)|xi ∈ TS1 × TS2 × . . . × TSk, 1 � k � I ∧ yi ∈ R, 1 � i � l

}
, (1)

where xi are feature vectors from the database and the labels yi are continuously valued
for regression tasks and discrete (e.g., Boolean) for classification tasks. The training set
is assumed to be generated through random independent samples from a stationary but
unknown probability distribution:

P (x, y) = P (y|x)·P (x). (2)

The probability P (x) describes the region of interest in the input space (the database) and
the distribution P (y|x) describes the desired functional dependency.

The learning algorithm (machine) is characterized by the family of functions fw it can
realize; the family is parameterized through weights w ∈ Rm. The goal of the learning
is to pick a function from the family fw it can realize such that the generalization error is
minimized, for given size of region of interest l:

εgen(w) =
∫

dxdy·P (x, y)· ε
(
w, (x, y)

)
, (3)

where ε(w, (x, y)) is the error or cost function which measures the loss on pattern (x, y)
when the parameters of the learning algorithm are set to w. The generalization error
measures the expected value of the performance of the implementation w of the learning
algorithm.

Since the distribution P (x, y) is unknown, the only way to access εgen(w) for a fixed
family of functions fw is through the error on the training set:

εtr(w, l) =
1
l

l∑
i=1

ε
(
w, (xi, yi)

)
, (4)

where l is the size of the training set.
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The law of large numbers ensures that the difference between the mean error on the
training set and the generalization error of the learning algorithm goes to zero as the size
l of the training set goes to infinity for fixed setting of the parameters w (Vapnik, 1982).

lim
l→∞

(
εgen(w, l) − εtr(w, l)

)
= 0. (5)

For practical purposes this limit is never reached, since only a limited set of training
patterns may be available, and even if infinite size training set were available, training on
such a set would be limited by time.

Different theoretical approaches provide estimates for the size of the confidence inter-
val on the training error under various settings of the problem of learning from examples.
Vapnik–Chervonenkis theory (Vapnik, 1982) is the most comprehensive description of
learning from examples. VC-theory provides guaranteed bounds on the difference be-
tween the training and generalization error. For regression as well as classification VC
theory asserts the results, that with probability larger than 1 − η, the inequality

sup
w

∣∣εgen(w, l) − εtr(w, l)
∣∣ � 2τ

√
h
(
ln 2l

n + 1
)
− ln η

9

l
(6)

is satisfied. Here h is the VC-dimension of the learning algorithm. The parameter τ is an
upper bound on the error function ε, so τ = 1 for classification task.

From Eq. 6 it follows (Vapnik, 1982) that the asymptotic convergence of the worst-
case difference between the generalization and the training error for the realizable task is
given by

sup
w

∣∣εgen(w, l) − εtr(w, l)
∣∣ � 2τ

ln 2l
h

l/h
(7)

for large l.
The logarithmic dependency on the ratio (2l/h) present in (7) is removed when the

mean case difference between the training and generalization error is investigated instead
of the worst-case scenario. For classification tasks, an asymptotic (h/l)α convergence
of the difference between the training and generalization error is predicted for selected
learning problems, when l is large.

In practice, however, there are several limitations to the mentioned theory. First, the
VC-dimension can be analytically described only for a limited number of very simple
learning algorithms (i.e., single-layer neural networks). Second, the VC-dimension is in
general not constant with respect to l for all learning algorithms. For example, the pruned
decision trees have a variable capacity, as opposed to neural networks; thus, the weights
w are different for each sample size. Finally, when does l actually become large is unclear
and of course not defined. There is no description of behavior of a learning algorithm in
so-called “small l” regime, neither analytical nor empirical.
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3. Description of Learning Curve in Small l Regime

For this reason, there is a need to formally define the behavior of the learning algorithm in
“small l” regime. The (h/l)α convergence is predicted for large l, but we cannot assume
that this function will also best describe the learning curve in the small l regime.

Thus, we need to have a generic description that will conform to the theoretical back-
ground on one hand and to the real-life situations on the other. The learning machine is
in practice taken as a black box. The way the weights w are calculated and assigned is
unknown; it is not necessary that the selection of weights w is optimal. Thus, we can
only estimate the theoretical (best) value of εgen(w, l). However, when training data are
abundant, the difference between generalization and training error diminishes to zero, as
in Eq. 5, so the estimate ε′gen(l) (which is based on training error) is as close to the theo-
retical εgen(w, l) as desired. In the following definitions, we shall outline an estimate for
εgen(w,l), the ε′gen(l). First, we will use a generic function f(l), which we define so that
it is consistent with the general properties of the theoretical εgen(w, l). Next, we add a
constant a, which enables a better modeling when the l is small. Finally, we add a part
that models the noise, which is present in data in the small l regime (e.g., outliers, miss-
ing values). Throughout the definitions, we show that such a model is consistent with the
theoretical εgen(w, l).

DEFINITION 4 (generic generalization error estimation function). Let us define a generic
function f(l) that estimates the generalization error based on training size l.

ε′gen(l) = f(l), (8)

ε′gen(l) is an estimation of generalization error.
Function f(l) must have the following properties to be consistent (i.e., has the same

limit) with the finding that for large l the convergence is described by (h/l)α:

lim
l→∞

εgen(w, l) = lim
l→∞

ε′gen(l) = lim
l→∞

f(l) =
(h

l

)α

= 0. (9)

Next, the error function should return value 1 (100% error) if no data are available, that
is f(0) = 1.

Obviously,

sup
l

f(l) = 1 (10)

and

inf
l

f(l) = 0. (11)

Lemma 1. Function f(l) is decreasing.



Assessment of Classification Models with Small Amounts of Data 349

Proof 1. A function is decreasing if f(x) � f(x + Δx). The lim l→∞ f(l) = 0 says that
for a selected 0 < δ < 1 (being as small as desired) there exists an l, so that f(l) < δ. If
we use f(0) = 1 and f(l) = δ, it follows that Δl = l.

DEFINITION 5 (non-zero generalization error estimation function). Since, in practice,
the generalization error rarely reaches zero, we add a constant a to the Eq. 8:

ε′gen(l) = a + f(l). (12)

Thus,

lim
l→∞

ε′gen(l) = a. (13)

Lemma 2. We can find such constant a that Function ε′gen(l) is consistent (has the same
limit) with Eq. 9.

Proof 2. From Eq. 9 and Eq. 13 it follows that such a constant exists and that a = 0.

The reason why the final error, even in the limit, is not zero may be in the quality of
training data. Suppose we have two elements from the set Z (see Definition 3), (a, La)
and (b, Lb) where a = b and La �= Lb. It is to note that the database elements are labeled
in a wrong way, but this can often happen when the labeling is done by an expert or by a
pool of experts. Now, whenever the learning algorithm comes across the first example, the
weights are adjusted so that the model will label and c, c = a, with label La. The same
will happen with b, so b will be misclassified and there will be at least one error. In this
case, the error will be at least 1/l. We may expect that the misclassified data items are
evenly distributed throughout the sample, so the function describing the generalization
error should have the form as in Eq. 12.

In practice, however, the learning curve is not monotonically decreasing as the sam-
ple size increases, especially when l is small. This is caused by the local variance, first
observed (but not explained) by Provost et al. (1999).

The variation in measurements within the samples (local variance) is resulting from
noise variables, which we cannot control directly; we can treat them as a random variable
(Cohen, 1995). The noise variables are the consequence of the sampling in small l regime
and the structure of the learning algorithms.

The sampling may build the learning set out of the total population so that only some
features are included, and others are not, for a given sample size li. When we increase the
sample size to li+1, it can happen that more unseen features are left out as in the sample of
size li, so the performance will decrease. The decrease can be lowered by using statistical
approaches such as cross-validation or bootstrapping, but it cannot be totally removed,
especially not in the small l regime.

Additionally, some of the learning algorithms may have a fixed capacity, so the whole
training set up to the size of li is memorized. A relatively low overall generalization error
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is yielded when using the cross-validation. Then, when the capacity is exceeded, the new
features are not included in the model, so the generalization error rises.

These practical observations in a way contradict the requirement that the function
describing the generalization error is monotonically decreasing. To model the real life
cases and situations more effectively, we need to ease this requirement and at the same
conform to the theoretical findings. For this reason we extend the Definition 5 with an
addition that will take care of the local variance.

DEFINITION 6 (small l generalization error estimation function). Since we cannot con-
trol the noise variables directly, we need to describe their effects. The effects are described
by the ν(l) part in the following equation:

ε′gen(l) = a + f(l) ± r· ν(l). (14)

The ν(l) part is actually the deviation of the measurements, defined as

ν(l) =

√√√√ 1
l − 1

l∑
i=1

(ei − e)2, (15)

where

e =
1
l

l∑
i=1

ei (16)

and

ei = f(li). (17)

The constant r is the range of confidence interval, to be explained later.

Lemma 3.

lim
l→∞

a + f(l) ± ν(l) = a. (18)

Proof 3. From Eq. 9 it follows that lim l→∞ f(l) = 0, and obviously, lim l→∞ a = a.
Thus, we need to prove that lim l→∞ ν(l) = 0. We use the Chebychev’s Inequality (Bron-
shtein and Semendjajev, 1987), which implies the weak law of large numbers, i.e.,

∀ε > 0: lim
l→∞

p

(∣∣∣1
l

l∑
i=1

ei − e
∣∣∣ � ε

)
= 0. (19)

Thus,

lim
l→∞

ν(l) = lim
l→∞

√√√√ 1
l − 1

l∑
i=1

(ei − e)2 = lim
l→∞

√√√√1
l

l∑
i=1

(ei − e)2. (20)
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Since

0 � ei � 1 for ∀i ⇒ 0 � e � 1 for ∀i (21)

it follows:

0 � (ei − e)2 � |ei − e| � 1 for ∀i. (22)

Following from Eqs. 19 and 21, we develop Eq. 22 into

lim
l→∞

ν(l) = lim
l→∞

√√√√1
l

l∑
i=1

(ei − e)2 � lim
l→∞

√√√√∣∣∣1
l

l∑
i=1

ei − e
∣∣∣ = 0. (23)

By adding the ν(l) part to the Eq. 14 we have not changed the general description
of the learning algorithm, which holds for large l. For small l, however, we have added
the ability to assess the deviation of the error rate. In other words, if we use range r

and calculate the deviation, we have a confidence interval in which the error rate can be
expected. However, since the number of samples is low, we need to use the confidence
intervals for t-tests (which, when the number of samples grows to infinity, converges to
confidence intervals for z-test).

The learning curves, if sampled at too high frequency (“too locally”), do not behave
well, i.e., the error rate may increase as the sample size l increases (due to irregularities
in data). We prove that there exists such a sampling frequency Δl so that the graph of the
learning curve is always decreasing, i.e., the measured error rates are decreasing and that
this is possible if we model the generalization error rate using the Eq. 14.

Lemma 4. It is possible to find such Δl, so that

ε′gen(l) � ε′gen(l + Δl) for ∀Δl � lδ � 0. (24)

Proof 4. We need to prove that (in worst case)

∀Δl � lδ: a + f(l) − r· ν(l) � a + f(l + Δl) + r· ν(l + Δl) (25)

holds. To rewrite,

f(l) − r· ν(l) � f(l + Δl) + r· ν(l + Δl). (26)

Since, by the definition of a limit,

lim
x→∞

f(x) = L ⇐⇒ ∀ε > 0: ∃δ > 0: x > δ ⇒
∣∣f(x) − L

∣∣ < ε (27)

and since, by Proof 3,

lim
x→∞

ν(x) = 0 (28)
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we can select

εr > 0: ∃δlr > 0 ⇒
∣∣ν(x)

∣∣ < εr (29)

or analogously,

εν > 0: ∃δlν > 0 ⇒
∣∣ν(x)

∣∣ <
εr

r
,∣∣ν(x)

∣∣ < εν

∣∣εr

r
= εr. (30)

Additionally, since – from Eq. 9

lim
x→∞

f(x) = 0, (31)

we can select

εf > 0: ∃δlf > 0 ⇒
∣∣f(x)

∣∣ < εf . (32)

If we select δl = MAX(δlf , δlν ), we can rewrite Eq. 25 as

f(l) − r· ν(l) > εf + εν . (33)

Since the expression f(l) − r· ν(l) describes the error rate, it has to be positive, i.e.,

∀l: f(l) − r· ν(l) > 0. (34)

We can always calculate the values of functions f(l) and ν(l), i.e.:

f(l) = α, r· ν(l) = β. (35)

Now, we can always select such small εf and εν so that

∀δl: α − β > εf + εν . (36)

From δl we can calculate

Δl = δl − l. (37)

From Lemma 4 it follows that we can develop such a sampling schedule so that even-
tually the error rate drops for every sample size, from a given sample size on. This means
that once we have the monotonically decreasing error rate, the graph – learning curve – is
decreasing. Thus, the learning curve starts to “behave well” and the principal component
in Eq. 14, the f(l), describes the general behavior of the learning algorithm, without the
impact of the variance in local measurements.
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4. Foundations for Practical Observation of a Model’s Performance

The formal model for description of learning in the small l regime was described in the
previous section. Here, we develop a foundation for the tool with which we can do prac-
tical observations of the algorithm’s performance based on small samples, i.e., in small
l regime (Brumen et al., 2004). First, we need to observe the algorithm’s performance
by measuring the error rate (e) versus the sample size (l). To observe the performance,
we need to sample the data from the database. The sampled data need to be manually
prepared by an expert or a group of experts. Once the data are properly prepared, the
algorithm is used and the model based on the prepared data is built. The model’s perfor-
mance is measured, and the error rate for the given sample size is obtained. The procedure
needs to be repeated so that several points (error rate, sample size) are available and the
graph of the learning curve can be plotted. When the graph has the proper shape (i.e.,
the learning curve is well-behaved), the estimate for the future performance can be cal-
culated. Finally, when the estimate is close enough to the real values (or the resources are
exhausted), the process can terminate.

Simple k-fold cross validation procedure tests the performance of a classifier after a
given amount of training. To chart a learning curve, however, it is desirable to measure the
performance repeatedly as the amount of training is increased. For this purpose, Lehnert
and McCarthy (Lehnert et al., 1993) introduced a variant of a cross validation, called in-
cremental k-fold cross-validation, which is a widely adopted method. Their method, how-
ever, has a fixed, known number of iterations (because the size of the data set is known).
We modify the McCarthy’s and Lehnert’s procedure (Brumen et al., 2001b; Brumen et
al., 2002b) to be able to cope with the fact that in general, the database size is not known
in advance, and that only the current sample size is known. Additionally, we want to use
as many items as possible in the learning phase, and especially the testing phase. When
we have a large data set, we need to analyze the performance of the algorithm on-line,
so that we can stop the process if the costs are exceeded, or the performance is on the
appropriate level.

For this reason we developed an adaptive incremental k-fold cross-validation method
(Procedure 1), which takes into the account the requirements set in the framework.

The main modification we made to the incremental k-fold cross-validation is the adap-
tive increment and the stopping criteria. We still get to see the cumulative effects of train-
ing. The procedure repeatedly (k times) trains a classifier on n − n/k items, then tests it
on n/k from the test set (and records the ith performance). The overall performance on
n items is calculated by averaging the k intermediate results.

Afterwards, the size of the original sample is incremented by a factor, which is calcu-
lated adaptively, based on the properties of the performance curve built in run-time. This
new sample is composed of old items (used in the previous iteration) plus some new ones,
picked randomly from the samples. We added some “new knowledge” to the knowledge
base. When the classifier is run on the new sample, we get to see a cumulative effect of
the new knowledge on the performance. The effect can be either positive (e.g., the error
rate decreases) or negative (e.g., the error rate increases).
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Procedure 1. Adaptive incremental k-fold cross-validation.

Repeat

1. Shuffle the items in the training set.
2. Divide the training set into k equal parts of size n
3. Do i = 1 to k times:

a. Call the ith set of n samples the test set and put it
aside.

b. Train the system on the remaining k - 1 sets; test the
system on the test set, record the performance.

c. Clear memory, that is, forget everything learned during
training.

4. Calculate the performance of training averaged over the
k test sets.

5. Increment the size of the training set (i.e., add additional
data to the existing training set) based on the properties
of the performance curve
Until (performance is satisfactory) or (costs are exceeded)

In the adaptive incremental k-fold cross validation procedure the performance is cal-
culated each time on different training and test set, since both are increased in size from
the previous step. Thus, the error rate is more accurate from step to step because more
items are available to check the performance of the learning algorithm.

The adaptive incremental cross-validation is an improved version of a standard incre-
mental cross validation because we do not need to know in advance the exact number of
items in a sample. This is especially advantageous when the items for the sample need to
be prepared or pre-processed. Additionally, we can observe the cumulative effect of train-
ing on-line (after each set of k-fold cross-validations), instead of at the end of the whole
incremental cross-validation procedure. Our approach increases the test (and training)
sample size in every step, while the original one keeps the test size constant, and only
increases the training sample size.

The learning curve depicts the performance of the learning algorithm. Observation
of the learning curve is a very important task, because the learning curve explains the
behavior of the learning algorithm. Based on the properties of the learning curve, the
adaptive incremental k-fold cross validation loops. When the loop conditions are met, the
measurement of the points of the learning curve stops and the points can be used to build
the estimation model for the curve. In this sub-section, we develop and devise the loop
conditions.

In the step of observing the learning curve, the shape and the quality of the learning
curve is monitored. The most important task is to detect the point where the learning
curve starts to behave well. Since we do not have any analytical function to observe (the
description of which, by the way, we want to obtain as soon as possible), we need to
observe the graph of the points that are (later) used to build the analytical model of the
learning curve.

We found out empirically that in many cases the error-rate learning curve starts behav-
ing well when its graph becomes monotonically decreasing – see Eq. 38 – and concave
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up – see Eq. 39 – for a given number of points. In case the learning curve depicts the
accuracy, it is monotonically increasing and concave down.

yi−2 > yi−1 > yi, (38)
yi−1 − yi−2

xi−1 − xi−2
<

yi − yi−1

xi − xi−1
(39)

for 2 � i � m.
The task in the step of observing the learning curve is to observe whether the condi-

tions of discrete concavity are met. If they are, the estimation step is performed. In the
estimation step, we estimate the error rate for the next step and the “final step”. After
the estimation is made, the actual error rate, ei, the estimated error rate for the next step
enext and the estimated error rate for a large data size, elarge are compared. If they are
all within a limit (provided by the operator), we can conclude that the performance of the
algorithm will not improve drastically. To formalize, we check that the Eq. 40 holds:

MAX
(
|ei − enext|, |enext − elarge|, |ei − elarge|

)
< ε. (40)

If the criteria are not met, the amount of data is adjusted accordingly and the model
building and the performance measurement step loops once again – if the resources are
not exhausted.

The above equations are very important because they constitute the decision part of
the adaptive incremental k-fold cross-validation, making it distinct from the other cross-
validations. These equations enable the proactive development of the learning curve
model: hereby we answer the question “When to stop measuring the learning curve
points?” When the measurements stop (based on the properties of the learning curve,
of course), the model can be calculated (fitted) from the existing points and the future
performance can be assessed for an arbitrary sample size.

5. Experiment and Results

5.1. Data Source and Equipment Used

The approach was used and tested on five data sets – one from UCI Knowledge Discov-
ery in Databases Repository, and four from UCI Machine Learning Repository (Blake
and Merz, 1998). The datasets were chosen following these criteria that the datasets must
be public, must be of various sizes and from different domains. For the clarity of pre-
sentation, the results are shown only for one data set (“Adult”); the results for others are
available in (Brumen, 2004).

We have used the See5 classification algorithm by Quinlan (Quinlan, 2000) on a
Windows-based PC. The reason we chose this algorithm is that it is freely available for
time limited testing and because it is an improved version of the most popular classifica-
tion algorithm C4.5. Additionally, it has cross-validation built-in.
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We have built a prototype and implemented the method of the adaptive incremen-
tal approach. For calculation of the models’ parameters, we used Matlab’s LSQNONLIN
function from the Optimization Toolbox (Coleman et al., 1999).

5.2. Validity of Results

The results are statistically validated using built-in k-fold cross validation method and
the rσ confidence intervals.

The k-fold cross-validation method assures that each point (li, ei) in the learning
curve is statistically valid and that it truly represents the error rate for any sample of
size li.

The rσ confidence intervals assure that the estimated error rate is statistically valid,
meaning that the difference between the calculated (estimated) value and the actual value
is insignificant.

The probability threshold for rejecting the null hypothesis (i.e., the measured error
rate lies within the confidence interval) was chosen to be 0.001. Namely, the Bonferroni
adjustment requires that the probability of falsely rejecting the null hypothesis need to
be decreased by the number of measurements (Cohen, 1995), which in our case was 25.
The standard probability for a single test is p = 0.05 (divided by 25 yields approximately
0.002; due to unavailability of the t-tables we selected a more restrictive threshold of
0.001).

Since no approach that is like ours or even distantly similar was ever developed, we
do not include any comparisons of the results to other results.

5.3. Application of the Approach to the Dataset

The size of the data set was L = 48842 instances. We decided for the following amounts
of data to be used by the learning algorithm {80, 90, 100, 200, ..., 1000, 2000, ..., 10000,
20000, ..., 48842} and the ε in Eq. 40 was set to 0.02 (2%). The final error rate was
estimated for l = 500000, approximately 10-times the number of the available instances.

For each sample size we measured the error rate. We continued to do so until the
conditions for Eq. 38 and Eq. 39 were fulfilled. This first happened at l9 = 700. At this
point, we checked also the conditions of Eq. 40, which were not met. The second time the
conditions of the above mentioned equations were met at l14 = 3000. Again, the Eq. 40
was not met (MAX(...) = 3.43%). The first time all three conditions were met was at
l19 = 8000 (shaded area of the Table 1). At this point, the error rate e19 was 15.29%; at the
two previous points, the error rates were e17 = 15.96% and e18 = 15.34%, respectively.
At this point, the calculated parameters for the full learning curve were a = 14.1066,
b = 110.7611 and c = −0.5000. The model of the full learning curve built at l19 = 8000
was thus:

e = 14.1066 + 110.7611 · l−0.5 ± 1.464. (41)

In general, the process would stop at l19 = 8000. Of course, this way we would not
know how good our model is, how well it describes the behavior of the model if built by
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Table 1

Measurements and estimations of error rate

Step (i) Data
size (li)

Error rate (ei)
Next error

rate (enext)
Final error

rate (elarge)
Conf. interval ±rσ

1 80 26.6400 25.9408 17.6602 (NA,NA) NA

2 90 26.8500 26.0597 19.8996 (NA,NA) NA

3 100 27.6000 25.4492 22.5316 (NA,NA) NA

4 200 24.0000 23.6058 18.8386 (9.50,41.40) 24.579

5 300 17.4000 19.3185 11.4405 (-0.97,48.19) 44.540

6 400 20.4800 19.4606 13.0881 (-25.2,63.86) 22.651

7 500 19.3400 18.9213 12.9560 (-3.19,42.11) 9.279

8 600 17.5300 18.0219 12.0255 (9.64,28.20) 8.041

9 700 16.7800 17.3713 11.4906 (9.98,26.06) 6.634

10 800 15.6600 16.7229 10.9075 (10.74,24.01) 4.499

11 900 17.5700 16.7923 11.4885 (12.22,21.22) 4.402

12 1000 18.0500 15.4604 11.5095 (12.39,21.19) 5.610

13 2000 17.2500 15.1318 11.9376 (9.85,21.07) 1.739

14 3000 17.0300 15.4753 13.6003 (13.39,16.87) 2.266

15 4000 17.0300 15.6261 14.2090 (13.21,17.74) 0.526

16 5000 15.7300 15.4869 14.2053 (15.10,16.15) 3.057

17 6000 15.9600 15.4482 14.2832 (12.43,18.54) 2.785

18 7000 15.3400 15.3412 14.2580 (12.66,18.23) 1.243

19 8000 15.2900 15.2741 14.2633 (14.10,16.58) 1.464

20 9000 15.4300 15.2267 14.2768 (13.81,16.74) 0.275

21 10000 15.0400 14.8859 14.2589 (14.95,15.50) 0.761

22 20000 14.5000 14.7130 14.2285 (14.13,15.65) 1.784

23 30000 13.9000 14.5471 14.1390 (12.93,16.50) 2.162

24 40000 13.8500 14.3771 13.9926 (12.38,16.71) 1.363

25 48842 13.8700 13.9310 13.8935 (13.01,15.74) 0.094

using all the data available. For this reason we continued with the process. The results are
shown in Table 1.

The full learning curve that was measured and modeled (at l19 = 8000) is depicted in
Fig. 2.

It is interesting to notice that at l6 = 400 the estimated final error rate of 13.0881%
was already within 1% of the true final error rate of 13.87% and also within 1% with the
final estimate of 13.931 (±rσ = 0.064824) at l25 = 48842. The estimation at l6 = 400
was calculated with 0.81% of the total amount of the available data. At l19 = 8000, or
16.4% of the total amount of available data, we were able to build a model that estimated
the final error that differed for 0.3933% from the actual final error rate at l25 = 48842,
and the difference to the final estimate of 13.931 was 0.3323%.

Throughout the building of the model, we were calculating the estimated error rate
for the next step. For example, the error rate at l15 = 4000 was 17.03%. The next sample
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Fig. 2. Full learning curve for adult dataset (measured and estimated).

size in the schedule was l16 = 5000. At l15 = 4000 the estimated error rate for the next
step was 15.6261% (±0.526) and the actual error rate was 15.73%.

In fact, the average difference between the estimations for error rate at the next step
and the later measured actual error rate is 1.1067%, with standard deviation of 1.2436%.
The maximum difference was 6.2% at l14 = 3000, the second largest difference was
1.8982% at l13 = 2000, and the minimum was 0.0512% at l18 = 7000. At all points
except one (at l21 = 10000), the estimations were accepted as significant because the
values were within the rσ interval.

6. Conclusion

The problem we have solved in the paper was to assess and estimate the future behavior
(i.e., performance in terms of error rate) of a learning algorithm based on observation
of its performance on smaller sample sizes. The solution of the problem was formally
developed; we presented the design (method) of the solution. The developed adaptive
incremental cross-validation is an improved version of a standard incremental cross vali-
dation because we do not need to know in advance the exact number of items in a sample.
Additionally, we can observe the cumulative effect of training on-line, instead of at the
end of the whole incremental cross-validation procedure. Our approach increases the test
(and training) sample size in every step, while the original one keeps the test size constant,
and only increases the training sample size.

The contribution of the paper is a new understanding of learning in small l regime and
a new method for assessment of classification algorithms already in the early stages of the
learning. In Section 5, we reported the results on one of the publicly available data sets
and the results confirm the validity of the approach. Namely, the model of a full learning
curve was built on smaller sample size and used to estimate the performance on a larger
sample size. When the actual (larger) sample size was used, we compared the measured
and the calculated (estimated) results. The differences are statistically insignificant. Thus,
the model and the approach are valid and correct.
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The method is general and useful in sense that it can be applied to any classification
project. A typical scenario, where the results of the paper can be used, is a data mining
problem, where the task is to build a model based on data. The data miner can use our
approach to assess the performance of the algorithm used to build the model, both in the
early stage when the data are scarce (and the future performance is sought), and at the
end, when no more data are available, and the question is, whether the performance could
improve any further. Thus, by using the developed method, the results in any stage of data
mining can be extended so the insight into algorithm’s future performance is gained.
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Klasifikavimo modeli ↪u ↪ivertinimas naudojant maž ↪a duomen ↪u kiek ↪i

Boštjan BRUMEN, Matjaž B. JURIČ, Tatjana WELZER, Ivan ROZMAN,
Hannu JAAKKOLA, Apostolos PAPADOPOULOS

Vienas iš duomen ↪u gavybos uždavini ↪u yra klasifikavimas, atliekantis požymi ↪u (stebėjim ↪u) at-
vaizdavim ↪a ↪i iš anksto apibrėžtas klases. Klasifikavimo modeliai konstruojami naudojant esamus
duomenis. Iš principo modeliai, sukonstruoti naudojant daugiau duomen ↪u, duos geresnius rezulta-
tus. Tačiau ryšys tarp duomen ↪u ir modelio veikimo dar nėra gerai suprastas, išskyrus tai, kad klasi-
fikavimo metod ↪u tikslumas mažėja mažėjant duomen ↪u kiekiui. Straipsnyje pateikiama ankstyvojo
gaut ↪u žini ↪u ↪ivertinimo metodika. Ši metodika remiasi informacija apie metod ↪u veikim ↪a esant mažai
duomen ↪u apimčiai. Metodas formaliai apibrėžtas, eksperimentai parodė jo naudingum ↪a.


