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Abstract. In this article we present the general architecture of a hybrid neuro-symbolic system for
the selection and stepwise elimination of predictor variables and non-relevant individuals for the
construction of a model. Our purpose is to design tools for extracting the relevant variables and the
relevant individuals for an automatic training from data. The objective is to reduce the complexity
of storage, therefore the complexity of calculation, and to gradually improve the performance of
ordering, that is to say to arrive at a good quality training.
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1. Introduction

Data mining (Lefebure and Venturi, 2001) is the core part of knowledge discovery in
database (KDD) (Fayyad et al., 1996). The KDD usually has to process a huge volume
of data in order to extract knowledge units (rules) that are non trivial, potentially use-
ful, significant, and reusable. The KDD is at the cross point of several areas: database
technology (Bentayeb and Darmont, 2002; Chaudhuri, 1998; Netz et al., 2000), artifi-
cial intelligence (Fujimoto and Nakabayashi, 2003; Liao et al., 1999; Montgomery et al.,
1997; Ramesh et al., 2004), machine learning (Freitag, 2000; Ishibuchi et al., 2001; Quin-
lan, 1993), statistic analysis (Hastie et al., 2001; Fukunaga, 1990; Montgomery et al.,
1997), fuzzy logic (Bingchiang et al., 1997; Olaru and Wehenkel, 2003), artificial neu-
ral networks (Craven and Shavlik, 1997; Fan and Li, 2002; Lisboa et al., 2002; Lu et
al., 1996) and induction decision tree (Breiman et al., 1984; Cantu-Paz and Kamath,
2003; Crémilleux, 2000; Herr et al., 1997; Kohavi and Quinlan, 2002). The KDD process
can be described as consisting of the following five steps (Kodratoff, 1997; Lee and Sian,
2001):

• understanding the domain;
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• preparing the data set;
• discovering patterns (data mining);
• presenting the discovered patterns;
• and putting the results into use.

Generally, the KDD process is iterative and interactive, and controlled by an expert
of the data domain, called the analyst, who is in charge of guiding the extraction process,
based upon his objectives and his domain knowledge. The analyst selects and interprets
a subset of the knowledge units for building models that will be further considered as
knowledge units with a certain plausibility. These units are in turn embedded within a
representation formalism to be used by a knowledge-based system. The KDD process is
performed within a KDD system that is composed of databases, symbolic and/or numeri-
cal data mining modules, and interfaces for interactions with the system. Closing the loop,
the knowledge units extracted by the KDD system must be represented in an adequate
formalism, so that they may be integrated within the ontology and reused for problem-
solving needs in application domains such as agronomy, biology, chemistry, medecine...

The extraction process is based on data mining methods for returning knowledge units
from the considered data. Data mining methods can be either symbolic or numerical:

• Symbolic methods include, among others (Zighed et al., 2002; Quinlan, 1986):
classification based on decision trees, lattice-based classification, association rule
extraction, classification based on rough sets, learning methods, e.g., induction,
instance-based learning, explanation-based learning, and database methods based
on information retrieval and query answering;

• Numerical methods include (Bologna and Pellegrini, 1996; D’Avila Garcez et al.,
2001; Kurfess, 2000), among others: statistics and data analysis, hidden markov
models, bayesian networks, neural networks, genetic algorithms;

Within the framework of a medical project, like (Duhamel et al., 2001; Lee et al.,
2002; Liao and Lee, 2002) and (Setiono, 1996), we have been submitted a problem con-
cerning diabetic patients, with the purpose of designing an automatic system for iden-
tification of the diabetes types. In order to propose a first automatic model of predic-
tion of the various diabetes types, we tried knowledge extraction using several methods
of data mining (Denis and Gilleron, 1999; Zighed and Rakotomalala, 2000). We have
experimented, using data mining platforms SIPINA-V2.5 (Zighed, 1996) and TANA-
GRA (Rakotomalala, 2005b), the regression model, discriminating analysis, a multi-layer
perceptron, three methods relying upon induction graphs (ID3, C4.5, SIPINA) and the
system CHARADE (Ganascia, 1988). Through a comparison of the results of the various
methods, it appears that induction graphs, and in particular the SIPINA method, show
better rates of classification with a low number of rules (Duhamel et al., 2001; Sebban et
al., 2002).

Classification, which involves finding rules that partition a given data set into disjoint
groups, is one class of data mining problems. Data items in databases, such as tuples
in relational database systems usually represent real world entities. The values of the
attributes of a tuple represent the properties of the entity. Classification is the process of
finding the common properies among differents entities and classifying them into classes.
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The results of the process are often expressed in the form of rules. In the following, we are
interested in symbolic and numerical KDD methods based on a classification approach,
more precisely on decision trees and neural netwoks.

Decision trees are a widely used technique and occupy a strategic place in the field of
machine learning (Hastie et al., 2001). Many empirical comparisons (Lim et al., 2000)
show that decision trees often reach performances that are comparable to other supervised
methods. Methods based on decision trees are nonparametric; they do not require any
assumption on the distribution of the data; they are resistant to input data; their model of
prediction is nonlinear and when the training base is large, they show similar properties
to closest neighbors algorithms. Finally the strong point which ensures the popularity
of decision trees is their ability to produce a simple, directly usable knowledge in the
form of rules (Rakotomalala, 2005a). On the other hand, neural netwoks give a lower
classification error rate than the decision trees but require longer learning time and the
knowledge generated by neural netwoks is not explicitly represented in the form of rules
suitable for verification or interpretation by humans (Setiono and Liu, 1995).

Nevertheless the main drawback that can be identified in induction by decision trees is
their inability, with the traditional algorithms (e.g., SIPINA, ID3, C4.5, CART, CHAID),
to detect the relevant predictor variables and examples. Another weakness is the need for
having a sample of training of large size. In addition, as shown by (Castellano and Fanelli,
2000) in the area of selection of variables and non-relevant individuals, the preliminary
reduction of the descriptors in strongly disturbed fields significantly improves the perfor-
mances of the decision trees. In such processes, data pre-processing (Erray, 2001; Jensen
et al., 2002; Lee et al., 2002; Zighed et al., 1998) is important and machine learning
techniques (Castellano et al., 2002; Duch et al., 1999; Ishibuchi et al., 2001; Nurnberger,
2003) can be used to achieve automated data set preparation: problem of selecting rele-
vant variable and examples.

Our contribution within the framework of this real application is to design a neural
network able to learn and prepare the data set (select the relevant variables and examples)
starting from pratical examples. After, data selection, data cleaning and data transforma-
tion, a multilayered neural network is used to select and stepwise eliminate the predictor
variables and the non-relevant individuals before launching the SIPINA method.

This paper is organized as follows. We start by reviewing in Section 2 the classifica-
tion approach commonly used in machine learning. Our Neuro-IG system is outlined in
Section 3. We describe in detail the neural network training and pruning. Finally, Sec-
tion 4 shows experimental results for checking the validity of the proposed system. Sec-
tion 5 summarizes the paper and suggest further perspectives of this work.

2. Chosen Approach for Data Mining

Classification is the most widely studied data mining task. The problem with classifi-
cation from examples is to let this process induce only correct classification procedures
from correctly classified data. For example, from a set of data about patients treated for di-
abetes, correctly stored by physicians, the machine should determine diagnosis rules that
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are applicable to new patients in order to determine if they are, or not, insulin dependent.
Once validated, these rules can be inserted into a running system. In the classification,
each data instance (or database record) belongs to a class, which is indicated by the value
of a goal attribute. This attribute can take a small number of discrete values, each of them
corresponding to a class. Each instance consists of two parts, namely a set of predictor
attribute values and a goal attribute value. The former are used to predict the value of the
later.

Note that the predictor attributes should be relevant for predicting the class (goal
attribute value) of a data instance. For example, if the goal attribute indicates whether or
not a patient has or will develop a certain disease, the predictor attributes should contain
medical information relevant for this prediction, and no irrelevant attributes such as the
name of the patient. In a context of diabetic patients monitoring (Duhamel et al., 2001;
Liao and Lee, 2002; Setiono, 1996), for example, setting up tools for accident detection is
not possible without also taking into account the necessary role of the physician. The aim
is to design a system for assisted monitoring and diagnosis that will provide specialists
with the necessary information for identifying the diabetes type of patients.

Since classification is studied in many different disciplines, there is a wide variety
of terminology in use to describe the basic elements of this task. For example, a data
instance can be called an example, an object, a case, a record, or a tuple. An attribute
can be called a variable or a feature. In this paper we will use mainly the terms tuple and
variable. The diabetic patient example will be used all along the paper.

Let Ω = {ω1, ω2, . . . , ωn} be the population of diabetic patients taken into account
for the classification. A variable is associated with this population, called goal variable or
class attribute, denoted C.

A class C(ω) can be associated with every individual ω. The goal variable C takes its
values in the set IC of class identifiers.

C: Ω → IC = {c1, c2, . . . , cm}, ωi �→ C(ωi) = cj .

In the example, the aim is diagnosing a possible insulin dependence. This will be
designated by a goal variable C: Ω → {1, 2}, where class 1 contains all insulin dependent
patients (diabetes of Type 1), and class 2 the non dependent patients (diabetes of Type 2).
The objective is to define a function ϕ for predicting the class C, thus the detection of
possible accidents. The determination of the prediction model ϕ, which is the goal of the
classification, is bound to the hypothesis that the values taken by the goal variable C are
not at random, but depend upon certain individual situations, called predictor variables
that are determined by the expert.

The predictor variables can be qualitative or quantitative. The values of the predictor
variables concerning an individual ω ∈ Ω constitute a tuple:

X(ω) =
(
X1(ω), X2(ω), . . . , Xp(ω)

)
.

So, the predictor variables is a function:

X: Ω → IM,
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where IM is the set of all possible tuples.
The value taken by Xj(ω) is called the modality or the value of the variable Xj for ω.

We denote by lj the number of different values taken by the variable Xj . In order to
illustrate this form of notations, let us consider the medical problem of the identification
of diabetes types. The patient is described, for example, by three predictor variables: Viral
Infection, which can take on the values Yes or No; Association with auto-immune illness,
which can take on the values Relation or no Relation; and Sex, which can take on the
values Feminine or Masculine.

The population Ω of diabetic patients taken account for the training consist of a pairs
composed of predictor variables and their corresponding goal values for the prediction
model ϕ of diabetes type.

• ((Y es, Relation, Feminine), T ype1or2)
• ((Y es, NoRelation, Masculine), T ype1or2)
• ((No, Relation, Masculine), T ype1or2)
• . . .

In our case the predictor variables are summarized in Table 1.
In the classification task the set of individuals Ω being mined is randomly divided

into two mutually exclusive and exhaustive subsets Ωa and Ωt, called the training set and
the test set. The training set Ωa is made entirely available to the data mining algorithm,
so that the algorithm has access to the values of both predictor variables and the goal
variable for each individual in Ωa. The aim of the data mining algorithm is to discover a
relationship ϕ between the predictor variables and the goal variable using Ωa.

The discovered relationship ϕ is then used to predict the class (goal-variable value) of
all the individuals in the test set Ωt. Note that, from the viewpoint of the algorithm, the
test set contains unknown-class individuals. Only after a prediction is made the algorithm
can have access to the actual class of the just-classified individual. If the class predicted

Table 1

Predictor variables, semantics and values

Predictor Var Semantics Values

X1 Seniority > 35; � 15 and < 30; unspecified

X2 How revealed Spontaneous; Infectious;

Glycemy unbalance; Recent

X3 Weight Normal; Skinny; Obese; Overweight

X4 Viral Infection Yes; No

X5 State Weight loss; No Weight loss

X6 Association Relation with auto-immune illness; No relation

X7 Circumstance of discovery Diabetic feet; Fortuitous; Infection; Retinopathy; Comas;

Inaugural; Cetosic coma

X8 Asthenia Yes; No

X9 Antecedent Family; Personal; No Antecedent

X10 Sex Feminine, Masculine
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by the algorithm is the same as the actual class of the tuple, this is considered as a correct
prediction. If the class predicted by the algorithm is different from the actual class of
the tuple, this is a wrong prediction. We denote by Ωe the set of individuals in Ωt not
correctly classified during the test of the prediction function ϕ. One of the aims of the
data mining algorithm is to maximize the classification accuracy rate in the test set, which
is simply the number of correct predictions divided by the total number (correct+wrong)
of predictions.

Following (Kodratoff, 1997; Zighed and Rakotomalala, 2000), the discovered rela-
tionship ϕ produced by the machine, also called output of the classification, is not neces-
sarily of a logical nature (Duch et al., 1999), it can take various forms: neural networks,
algebraic models, geometric models, decision trees, etc.

The general learning process that our hybrid system applies once to a data set is orga-
nized in five stages:

• acquisition and transformation of data;
• data pre-processing using a neural networks (selection of relevant predictor vari-

ables and individuals);
• symbolic classification for producing a prediction model;
• validation of the extracted knowledge;
• design of an operational hybrid system for data pre-processing and prediction.

All along this paper, we take as an example the aid to medical diagnosis (Atmani and
Beldjilali, 2003).

We define:
ΩNN

a – learning sample for training the neural network;
ΩNN

e – individuals in ΩNN
t not correctly classified during the test of the numeric

training by neural network;
ΩSS

a – learning sample for symbolic training by induction graph;
ΩSS

e – individuals in ΩSS
t not correctly classified during the test of the symbolic

training by induction graph.
Initially: ΩNN

a = Ωa, ΩNN
t = Ωt and ΩNN

e = {}.

3. Neuro-IG: Neuro-Induction Graph System

After acquisition and transformation of data, Neuro-IG consists of the following steps:

• numeric training by a neural network and minimization of connections;
• symbolic training by an induction graph and generation of rules;
• validation and generalization.

Fig. 1 summarizes the general diagram of our hybrid system, where as stands for
satisfactory training, and ss stands for satisfactory threshold.

First stage:
While (as > β1) train by the neural network with ΩNN

a

if (as � β1) then launch the validation phase of the neural network with ΩNN
t and

generate ΩNN
e .
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Fig. 1. General diagram of Neuro-IG.

Second stage:
if (ss > β2) then repeat the first stage while using ΩNN

a ← ΩNN
a + ΩNN

e ,
if (ss � β2) then transmit parameters to the symbolic system, while proposing the elim-
ination of the non relevant predictor variable(s) Xj and non relevant individual(s) (tu-
ple(s)) ΩNN

e : ΩSS ← Ω − ΩNN
e without the non relevant pretictor variable(s) Xj .

We define:
Ωe – individuals in Ωt (patients) not correctly classified during the test of the predic-

tion function ϕ; initially, Ωe = {}.
ΩNN

a – learning sample for training the neural network; initially, ΩNN
a = Ωa = 70%

of Ω.
ΩNN

e – individuals in ΩNN
t not correctly classified during the test of the numeric

training by neural network; initially, ΩNN
t = Ωt = 30% of Ω and ΩNN

e = {}.
ΩSS

a – learning sample for symbolic training by induction graph; initially, ΩSS
a =

70% of ΩSS , where ΩSS = Ω − ΩNN
e without the non relevant predictor variables Xj .

ΩSS
e – individuals in ΩSS

t not correctly classified during the test of the symbolic
training by induction graph; initially, ΩSS

t = 30% of ΩSS and ΩSS
e = {}.
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3.1. Numeric Training by Neural Network and Minimization of Connections

The neural network that we use for our experiments is the standard three layer feedfor-
ward network. Assume that input tuples in an q-dimensional space are to be classified
into two disjoint classes diabetes of Type 1 and diabetes of Type 2. The number of nodes
in the input layer correspond to the dimensionality of the input tuples. One output unit
with binary encoding is used. The network is trained with value equal to 0 for all tuples
in class diabetes of Type 1 and to 1 for all tuples in class diabetes of Type 2.

There is still no clear cut rule to determine the number of hidden nodes to be included
in the network. Two different approaches have been proposed to overcome the problem of
determining the optimal number of hidden nodes required by a neural network to solve a
given problem. The first approach begins with a minimal network and adds more hidden
nodes only when they are needed to improve the learning capability of the network (Se-
tiono and Liu, 1995). The second approach begins with an oversized network and then
prunes redundant hidden nodes and connections between the layers of the network (Reed,
1993). In this paper, we adopt the second approach since we are interested in finding a
network with a small number of hidden nodes as well as the least number of input nodes.

Let wh
l be the weights for the connections from input node l to hidden node h. Given

an input tuple ti, i ∈ {1, 2, . . . , a}, where a is the number of tuples in the data set ΩNN
a ,

the activation value of the h-th hidden node is

δh = g
( q∑

l=1

(tilw
h
l ) − Θh

)
,

where g(.) is an activation function and where Θh is the threshold of hidden node h. In
our study, we use the hyperbolic tangent function

g(x) =
ex − e−x

ex + e−x
,

as the activation function for the hidden nodes. Once the activation values of all the hidden
nodes haves been computed, the output yi of the network for input tuple ti is computed
as

yi = σ
( H∑

h=1

(δhvh)
)
,

where vh is the weight of the connection between hidden node h and the output node,
and H is the number of hidden nodes in the network. The activation function used here
is the normal sigmoid function,

σ(x) =
1

1 + e−x
,

which yields activation values of the output nodes in the range [0, 1].
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A tuple will be correctly classified if |yi − yi
d| � β1, where yi

d is the desired outcome
(target) and β1 is a small positive number. The ultimate objective of the training phase
is to obtain a set of weights that make the network classify the input tuples correctly.
To measure the classification error, an error function, Eapp(w, v), is needed so that the
training process becomes a process to adjust the weights (w, v) to minimize this func-
tion. Furthermore, to facilitate the pruning phase, it is desired to have many with very
small values so that they can be set to zero. This is achieved by adding a penalty term
Emin(w, v) to the error function.

Generaly, the training phase starts with an initial set of weights (w, v) and iteratively
updates the weights to minimize Eapp(w, v) + Emin(w, v). The gradient descent method
can be used for this purpose. The network training is terminated when the gradient of the
function is sufficiently small.

For our experiments we follow principles analogous to those of (D’Avila Garcez et
al., 2001; Kurfess, 2000; Bologna and Pellegrini, 1996; Setiono and Liu, 1995; Setiono
and Leow, 2000) and (Lu et al., 1996) that propose to generate rules from a multilayered
network in several stages:

1. A first training permits to determine connections weights of a network possessing
only one hidden layer with an arbitrary number of units.

2. By a method of minimization, the resulting network is simplified by eliminating
connections with smallest weights, while maintaining the accuracy of the network.

3. A new training is done for the remaining useful connections.
4. The process of optimization stops according to a satisfaction criteria, determined

in general with respect to a threshold.
5. Validation of the pruned network which contains only connections that are esti-

mated as relevant.

3.1.1. The Neural Network Training Algorithm
One of the most widely used training algorithms is the backpropagation algorithm (Abdi,
1994). Learning in neural network involves modifying the weights of the network in order
to minimize a cost function Eapp(w, v)+Emin(w, v). An appropriate cost function for the
classification problems is the cross-entropy function Eapp(w, v) =

∑a
i=1(y

i
d − yi)2 (Lu

et al., 1995; Setiono and Leow, 2000) augmented with a penalty term Emin(w, v) (Reed,
1993; Setiono and Leow, 2000). The training phase is terminated when the norm as of
the gradient of the error function Eapp(w, v) falls bellow a prespecified value β1 (see
Fig. 1). The penalty term Emin(w, v) when minimized pushes the weights values toward
the origin of the weight space, and in pratice results in many final weights taking val-
ues near or at zero. Network connections with such weights may be removed from the
network without sacrificing the network accuracy (Setiono and Leow, 2000). We use a
training sample denoted ΩNN

a where all individuals are described by the modalities of
their predictor variables, and the value of the goal variable are known.

Initialy ΩNN
a = Ωa and ΩNN

e = {}.

1. The sample ΩNN
a is presented to the multilayered neural network.
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2. From a completely connected neural network, the function is learned using the
back-propagation method (Abdi, 1994), with a specific error function Eapp(w, v)
for creating solution sets.

3. When the convergence to a solution set has been reached, we add a second error
term Emin(w, v) for decreasing connections toward zero.

4. Input neurons that have a majority of connections at zero are estimated useless and
are proposed for elimination.

5. If (as > β1) then to go to 1 (see Fig. 1).
6. Launch the validation phase of the neural network with ΩNN

t , for the detection
of non relevant individuals (later estimated useless and proposed for elimination):
verification, on a test sample ΩNN

t , of whether the prediction model denoted ϕNN

produced by the previous stages is satisfatory. That is to say, whether the quotient
ss = |ΩNN

e |/|ΩNN
t | is lower than a previously chosen threshold β2, where ΩNN

e

is the set of individuals proposed as non applicable at this stage.
7. If (ss > β2) then ΩNN

a ← ΩNN
a + ΩNN

e and to go to 1.
8. Send the parameters to the symbolic system with the set of variables and individu-

als proposed for elimination.

3.1.2. Error Functions used by the Neural Network
The general idea is to relax the requirements for a first error function Eapp in order to
facilitate the training, and then to use a second error function Emin allowing the elimina-
tion of connections. The back-propagation is supposed to minimize a quadratic error. The
elementary error function is given by: E = (yd − y)2, where yd and y are respectively
the desired outcome (target) and the outcome provided by the network in presence of a
given input. One has then two error functions E0 = (y)2 and E1 = (y − 1)2, according
to whether the target is 0 or 1.

Neural networks techniques have recently been applied to many medical diagnostic
(classification) problems (Setiono, 1996). Using the training data set, a network with H

hidden units is trained, so as to minimize the cross entropy function (Lu et al., 1995; Reed,
1993; Setiono, 1996):

E(w, v) = −
a∑

i=1

(
yi

d log yi + (1 − yi
d) log(1 − yi)

)
.

In the case of binary desired outcomes (yes or no), one can facilitate the training:
if the target is 0 and using E0(w, v) = −

∑a
i=1 log(1 − yi), we can consider that the

obtained value is acceptable inside the interval
[
0, 1

2

]
and, if the target is 1 and using

E1(w, v) = −
∑a

i=1 log(yi), in the interval
]
1
2 , 1

]
. This considerably increases the odds

to find a solution with zero error (see Fig. 2).
Similarly to these remarks, (Poulard et al., 1991) proposes an error function that is

zero on a segment. Fig. 3 represents the general shape of error functions that one can
chose.

Among the mathematical constraints imposed by (Poulard et al., 1991) and ex-
perimented by (Atmani and Beldjilali, 2003) one can say that the error function, be
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Fig. 2. The general shape of E(w, v), E0(w, v) and E1(w, v).

Fig. 3. Zero error function on a segment.

monotonous and increasing for the target 0, be monotonous and decreasing for the tar-
get 1, and symmetrical with respect to the x = 1

2 axis. Following these remarks we
propose a simpler function Eapp that is zero on a segment. In the case where the target
is 0, the error function Eapp(w, v) is the quadratic function defined as follows:

yi ∈
[
0,

1
2

]
⇒ Eapp(w, v) = 0,

yi∈
[1
2

+ε, 1
]
⇒Eapp(w, v) =

a∑
i=1

(( 1
1
2 − ε

)2

(yi − ε)2
)

, where ε �= 0 and ε≪ 1
2
.

In the case where the target is 1 one takes the symmetrical function with respet to 1
2 .
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It is rather easy to be convinced that Eapp(w, v), although much simpler, is an accept-
able approximation of E(w, v). Consider for example the case of target 0. The behaviores
of Eapp(w, v) and E0(w, v) are close enough so that, with an appropriate choise of β1,
using Eapp(w, v) instead of E0(w, v) will produce the same solution sets. This can be
visualized in Fig. 4.

A symmetric picture would be drawn for target 1, and the same argument holds.
The first stage of the process consists, while minimizing the error function Eapp, in

bringing the network toward an optimal solution. The second stage is the use of this solu-
tion set to reduce the number of connections while using Emin. The principle is simple:
after having converged to a solution set, one looks for the point in the set for which a
maximum of connections are at zero.

The error function Emin is a second term which depends only on the values of weights
whiches added to the error function Eapp. Its role is to lower weights toward zero. One
can take the error function Emin proposed by (Poulard et al., 1991; Setiono, 1996; Reed,
1993) and tested by (Atmani and Beldjilali, 2003):

Emin(w, v) = k ×
(
f(w) + f(v)

)
with f(w) =

(ηw)2

1 + (ηw)2
for all w ∈ W,

where W is the weights matrix for the connections from input nodes to hidden nodes,

f(v) = (ηv)2

1+(ηv)2 , for all v ∈ V where V is the weights matrix of the connection between
hidden nodes and the output node and k a constant.

For k = 1, η = 0, 2 and −0.9 < w < +0.9 the function f(w) chosen for our model
is represented in Fig. 5.

For this function to achieve the objective, f must satisfy the following mathematical
constraints:

Fig. 4. Comparaison of Eapp(w, v) and E0(w, v).
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Fig. 5. The function f used to bring weights toward zero.

Fig. 6. The role of the constant k in the function Emin(w, v).

• bounded and f(−∞) = f(+∞) = 1,
• positive, even and f(0) = 0.

This method is implemented so that the error function Emin(w, v) is no longer taken
into account when the network goes out of the solution set. This is achieved by testing the
value of the function Eapp(w, v) at every iteration. It will then be possible to set the con-
stant k for disconnecting the second function and wait until the network comes back into
the solution set. The constant k is equal to |Eapp|

|W | . In this case, the function f must satisfy
the first constraint and, according to its definition, f will be bounded by |Eapp|. The role
of the constant k in the function Emin(w, v) is represented in Fig. 6. The chosen func-
tion f has a good finite development at zero and a good infinite behavior. This explains
the requirements of the gradient method, which is optimal with parabolic functions.
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3.2. Symbolic Training by Induction Graph and Rule Generation

With the help of the sample ΩNN
e produced by the previous phase and by eliminating the

predictor variables proposed by the neural network, we start the symbolic treatment for
the construction of the graph (SIPINA method) (Zighed, 1996; Zighed and Rakotomalala,
2000):

1. Set the measure of uncertainty.
2. Set parameters: λ, μ and the initial partition S0.
3. Apply the SIPINA algorithm for going from partition Si to Si+1 and generate in-

duction graph.
4. Generate prediction rules (Rabaseda and Zighed, 1996; Rakotomalala et al., 1999).

The parameters λ, μ, the partitions and all other notions used in this process are intro-
duced by mean of examples and defined in the following paragraphs.

3.2.1. Definition of a Partition through an Example
The SIPINA method is a heuristic for the construction of a non arborescent induction
graph (Zighed and Rakotomalala, 2000). Its principle consists in performing a succession
of stages of fusion and/or splitting of nodes in the graph. Let us suppose that our training
sample be composed of 15 diabetic patients belonging to two classes 1 and 2 (Table 2).

The initial partition S0 includes only one element denoted s0 that contains the sample,
with 10 individuals belonging to class 1 and 5 belonging to class 2. The next partition
S1 = (s1, s2, s3) is generated by the variable X1. The individuals in node si are defined
as follows:

s1 =
{
ω∈Ωa|X1(ω) =0

}
, s2 =

{
ω∈Ωa|X1(ω) =1

}
and s3 =

{
ω∈Ωa|X1(ω) =2

}
.

Table 2

Example of training sample

Ωa CLASS X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

ω1 1 0 2 2 0 0 0 1 0 2 1

ω2 1 2 2 0 1 0 0 1 0 2 0
ω3 1 2 2 0 0 1 0 1 0 2 0

ω4 1 0 2 0 0 1 0 1 0 2 0
ω5 1 0 0 2 0 0 0 1 0 2 0

ω6 1 0 2 0 0 0 0 1 0 2 0
ω7 1 0 2 0 0 0 0 1 0 2 0

ω8 1 0 2 0 0 0 0 1 0 2 1
ω9 1 0 1 0 0 0 0 1 0 2 0

ω10 1 0 1 0 0 0 0 1 0 2 0
ω11 2 1 0 1 1 0 1 6 1 2 0

ω12 2 1 3 1 1 0 1 6 1 2 0
ω13 2 1 0 1 1 1 1 6 1 2 0

ω14 2 1 2 0 0 1 0 6 0 2 0
ω15 2 1 0 1 0 1 1 6 1 2 0
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Fig. 7. The construction stages of s0, s1, s2 and s3.

As in s0, one distinguishes in s1, s2 and s3 individuals of classes 1 and 2 respectively.
Fig. 7 summarizes the construction stages of s0, s1, s2 and s3.

From partition S1, the process is iterated looking for a partition S2 that would be
better according to some criteria.

3.2.2. Measure of Quality of a Partition
The objective of the SIPINA method is to optimize a criteria τλ, called variation of un-
certainty, during the transition from Si to Si+1, defined by Δτ

(i+1)
λ = τ

(Si)
λ − τ

(Si+1)
λ .

Let λ be a positive and non zero parameter. For the calculation of τ
(Si)
λ , one can use

several functions constructed from uncertainty measures, like:
the Shannon entropy

τ
(Si)
λ =

K∑
j=1

n.j

n

(
−

m∑
i=1

nij + λ

n.j + mλ
log2

nij + λ

n.j + mλ

)

or the Quadratic entropy

τ
(Si)
λ =

K∑
j=1

n.j

n

(
−

m∑
i=1

nij + λ

n.j + mλ

(
1 − nij + λ

n.j + mλ

))
,
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where:
nij – size of the population coming from class ci, which is at node sj ;
ni. – total size of the class ci;
n.j – total size of node sj ;
n – total size of Ωa;
m – number of classes;
K – number of nodes sj .
In our example, the distribution T1 of individuals for K = 3 and m = 2 in partition

S1 (Table 2) is represented in Table 3. We can deduce, for n11 = 8 and n21 = 0, that the
majority class of the node s1 is c1.

Setting the parameter λ. The parameter λ of the uncertainty measure controls the con-
struction of the graph by penalizing partitions having many nodes with low population,
thus favoring the fusion of such nodes.

The value of λ can be set arbitrarily to 1 or 2, but it can also be determined in an
optimal way. The solution proposed by Zighed (Zighed et al., 1998) is to define a node of
low size. The value of λ is such that among all possible distributions Tk of μ individuals
on m classes we have:

λ = max
(
λ(m − 1)

2μ2 + 2μ + mλ + 2μmλ

(μ + mλ)2(μ + 1 + mλ2)

)
.

For a simple example m = 2 and μ = 2, the optimal value will be λ = 0.61098.

Setting the value of μ. There exist two strategies to determine the minimal size μ of a
node. The first one consists in asking the user to give the minimum number of individuals
that every node should include. The second one consists in calculating this number while
adopting a statistical view point.

The size of the training sample is n = ne+nc where ne is the number of individuals in
the class of examples, and nc the number of individuals in the class of counter examples.
Let s be a terminal node of the induction graph whose total size is ns = nse + nsc. The
value of μ for a critical threshold α0 = 0.05 is then

μ = ns = − log(α0) ×
( n

nc

)
.

Table 3

The distribution T1

T1 s1 s2 s3 Total

c1 n11 = 8 n12 = 0 n13 = 2 n1. = 10

c2 n21 = 0 n22 = 5 n23 = 0 n2. = 5

Total n.1 = 8 n.2 = 5 n.3 = 2 n = 15
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3.2.3. How to Go from Partition Si to Si+1

Let us consider the example of Fig. 7. Partition S1 possesses three elements s1, s2 and s3.
Going from partition S1 to partition S2 is done in three phases:

1. Fusion. One can note that from S1 we can generate only one partition by fusion.
This phase consists in gathering the nodes belonging to S1 for generating only one
node in S2 while optimizing the criteria τ

(S2)
λ .

If the gain on the uncertainty τ
(S2)
λ − τ

(S1)
λ is positive, then S2 is generated. Oth-

erwise, go to phase 2. Note that the fusion is always done between two nodes: if
there were three nodes s1, s2 and s3, three partitions could be generated by fusion
(two by two) and we would choose the one that maximizes τλ.

2. Fusion-splitting. As in phase 1, fusions are done between all pairs of nodes. On
every node produced by a fusion we search for the best admissible partition by
splitting all variable Xj .
For example, with three nodes in S1 and three variables, we generate three different
partitions for each of the three nodes coming from the fusion in S2, which gives
nine possible partitions. Among all admissible partitions, we then keep those that
lead to the best gain on the uncertainty.

3. Splitting. On every s ∈ Si, we look for the best admissible partition by splitting
all predictor variables, and we keep the one that optimizes τλ.

Fig. 8 summarizes the different phases.

3.2.4. Generation of Rules

At the end of the symbolic treatment, we can generate the rules coming from the induction
graph. Let us consider the graph of Fig. 8 as if it was a final induction graph, without wor-
rying about checking the details of all calculations that lead to this graph. At that point,
we can deduce three prediction rules R1, R2 and R3 that have the form if condition then

conclusion, as where condition is a logical expression in disjunctive-conjunctive form
and conclusion is the majority class in the node reached by the condition. For example,
in Fig. 7, the majority class of s1 is 8 (class 1), but the majority class of s2 is 5 (class 2).
R1:
if ((X1 = 1) or (X1 = 2)) and (X5 = 1) then majority class of s9.
R2:
if (((X1 = 1) or (X1 = 2)) and (X5 = 0) and (X10 = 0))
or ((X1 = 0) and ((X4 = 0) or (X4 = 1)) and (X10 = 0))
then majority class of s11.
R3:
if (((X1 = 1) or (X1 = 2)) and (X5 = 0) and (X10 = 1))
or ((X1 = 0) and ((X4 = 0) or (X4 = 1)) and (X10 = 1))
then majority class of s12.
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Fig. 8. Going from partition Si to Si+1.

4. Experimental Results

From an experimental point of view a straightforward manner to evaluate the quality of
the training is to match the prediction of the model with the actual values on a sample
of the population. This confrontation is summarized in a table called confusion matrix
(see Table 4). It is possible to synthesize indicators from this table, like the error rate
or rate of wrong classification. It is possible to interpret this rate as an average cost of
wrong classification when the cost matrix of wrong assignment is the unit matrix; it is
also possible to interpret it like an estimator of the probability of carrying out a wrong
prediction.

The main interest of the error rate is that it is objective; it is generally used to compare
the methods of training on a given problem. To obtain an unbiaised indicator, it is essential
not to measure it on the sample which was used to work the model out. To this end, experts
often put a sample aside, known as test sample, which is used to evaluate and compare
the models.
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Table 4

Confusion matrix obtained using the SIPINA method

error rate = 0.0821 ofType2 ofType1 Sum

ofType2 835 39 874

ofType1 91 496 587

Sum 926 535 1461

Table 5

Generalization

SIPINA Neuro-IG

No. Var ΩSS ξ ΩNN
e No. Var ΩSS ξ

Diabetes 10 1461 0.0889 122 9 1339 0.0082

Breast 9 699 0.0257 11 9 688 0.0100

Titanic 3 2201 0.2167 96 3 2105 0.1814

We have constructed our medical experimentation basis on 1461 cases drawn from
actual medical clinic archives.

Initialization: |Ωa| = 968 and |Ωt| = 493
The confusion matrix obtained using the SIPINA method and without neural network

data preprocessing is represented in Table 5.
The error rate in our test is ξ = |39+91

1461 | = 0.0889. We can thus say that by classifying
a randomly taken individual in the population, we have 8.89 chances out of 100 to carry
out a wrong assignment.

In our Neuro-IG system, a neural network with q input nodes, one hidden layer and
one output node were considered. A backpropagation training algorithm was used, start-
ing from initial weights uniformly distributed in [−1.0, 1.0]. In all the trials the training
was stopped when all the training individuals were learnt, that is when, for each training
individual ωi ∈ ΩNN

a , the following condition was met: |yi − yi
d| � β1. where yi rep-

resents the output of the neural network and yi
d is the desired output. In our experiments

we chose β1 = 0.01 and β2 = 0.25.
After several iterations of learning phase and minimization of connections, the neural

network arrives at the solution set with a threshold ss = |Ω
NN
e

ΩNN
t

| = 0.25. In short, for

ΩNN
a = 3751, ΩNN

t = 493 and ΩNN
e = 122, we propose to the symbolic system

an optimal data base for training and 122 non classified individuals are proposed for
elimination. The neuron that has the maximum of connections at zero is also proposed
for elimination. In our case, it is the X10 neuron (sex).

Validation is the phase that consists in testing, on sample Ωt, the rules of prediction
generated by our symbolic system. Generalization is the last phase that consists in extend-
ing the application of the model to all individuals of the population (ΩSS = ΩSS

a +ΩSS
t ).

To test our system, the generalization has been tested on several data base of larger sizes:
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one with 699 individuals containing only continuous variables (breast) and a second one
of 2201 individuals containing only discrete variables (titanic). We obtained the results
presented in Table 5.

A number of different methods have been proposed to approach the optimal solution
to variable selection (Jain and Zongker, 1997). Significant contributions have come from
statisticians in the field of pattern recognition, ranging from techniques that find the op-
timal variable set (Narendra and Fukunaga, 1997) and those that result in a sub-optimal
variable set that is near to the optimal solution (Pudil et al., 1994). More recently, some
variable selection methods for artificial neural networks have been developed (Mao and
Jain, 1995). However, no optimal and generally applicable solution to the variable selec-
tion problem exists (Castellano and Fanelli, 2000): some methods are more suitable under
certain conditions and some under others, depending on the degree of knowledge about
the problem at hand. In a context of diabetic patients monitoring, for example, setting up
tools for variable selection is not possible without also taking into account the necessary
role of the physician.

Our Neuro-IG system is concerned with the problem of variable and non relevant ex-
amples selection using neural networks. In this context, variable selection can be seen
as a special case of network pruning, and examples selection as a special case of testing
phase of the neural network. The pruning of input nodes is equivalent to removing the
corresponding variable from the original predictor variables set. Several pruning proce-
dures for neural networks have been proposed (Reed, 1993), but most of them focus on
removing hidden nodes or connections, and they are not directly applicable to prune ir-
relevant input nodes. Pruning procedures extended to the removal of input nodes were
proposed in (Battiti, 1994; Stepps and Bauer, 1996; Setiono, 1996) and (Setiono and
Leow, 2000). In the following, to position our Neuro-IG system, we are interested in
variable selection using artificial neural networks methods, more precisely in the MIFS
filtering method (Battiti, 1994). To compare Neuro-IG and the MIFS method, we have
used the system (Rakotomalala, 2005b), in particular four algorithms (ID3, C4.5, CART
and Naive Bayes). We obtained the following comparisons results (Table 6).

These experimentations have shown that the new Neuro-IG data preprocessing leave
unchanged the classification success, with a success rate of approximately 93%, whereas
this reduces the training data base by more than 07% and the graph size by more
than 15%, as well as the validation time and the number of descriptive variables. In most
of the cases Neuro-IG produces fewer rules with better accuracy. These results show not

Table 6

Comparisons results

Neuro-IG Tanagra using the MIFS method

ξ ξ (ID3) ξ (C4.5) ξ (CART) ξ (Naive Bayes)

Diabetes 0.0082 � 99% 0.0130 0.0034 0.0034 0.0185

Breast 0.0100 � 99% 0.0758 0.0358 0.0572 0.0272

Titanic 0.1814 � 82% 0.2240 0.2240 0.2240 0.2240
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only that one can generate in an optimal way the rules starting from an induction graph,
but also encourage the exploitation of this new technique to optimize the data set size and
time. This neural network is now integrated with the SIPINA method in order to have a
complete autonomous device for data selection.

5. Conclusion

In this work we have presented the general architecture of our hybrid neuro-symbolic
system: neural network and induction graph.

The neural network considers the diagnosis as a classification problem where it is
necessary to determine the class where a patient belongs: diabetes type 1 or type 2 in our
example. The symbolic step applies size reductions proposed by the neural network to
construct the optimal induction graph and to generate rules that achieve the prediction
function of the symbolic system.

All along this experimentation (diabetic patients), the same test sample used by the
neural network to detect and eliminate the predictor variables and the non relevant indi-
viduals, is also used for the validation of the symbolic system. We noted a rate of equal
satisfactory answers of 88%. We nevertheless wish to point out that the specific frame-
work of this experiment does not allow full generalization of the prediction function. On
the other hand, one can say that it is most representative of the initial population used for
the training.

Our contribution to hybrid neuro-symbolic systems belongs to a family of methods
that are extensively exploited in the domain of data mining. It provides an experimen-
tal setting that permits to optimize the construction of induction graphs and it brings
some rigorous answers to the questions of minimality of population sizes and consis-
tency of prediction rules. In addition, to better exploit the data, our system does a pre-
processing before starting the development of the prediction model. One can say that we
have reached our objective of reduction of complexity of storage, therefore the complex-
ity of calculation.

Finally, it is not yet possible to really talk about generalization of the function elabo-
rated by our experimental system, where the human operator is still in charge of decision
making. It is however foreseeable to design a complete cooperation between the neural
network and the symbolic system for producing a general prediction function. Instead
of choosing as satisfaction criteria a threshold depending on ΩNN

e and ΩNN
t , we could

generalize this criteria and have it depend on ΩNN
e and ΩSS

e .
A more balanced cooperation between the neural network and the symbolic process

deserves also to be explored. Once the validation is over, it would then be necessary
to proceed to the test for comparing and verifing whether the symbolic system reacts
correctly to some perturbations.
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Neuro–IG: hibridinė sistema nereikšming ↪u kintam ↪uj ↪u ir objekt ↪u
atrinkimui ir eliminavimui

Baghdad ATMANI, Bouziane BELDJILALI

Šiame straipsnyje yra pateikiama hibridinės neuro-simbolinės sistemos (neuronini ↪u tinkl ↪u ir in-
dukcijos graf ↪u) bendra architektūra. Ši sistema skirta nereikšming ↪u kintam ↪uj ↪u ir objekt ↪u atrinkimo
ir eliminavimo modelio kūrimui. Pagrindinis tikslas yra sukurti ↪irankius, išrenkančius reikšmingus
kintamuosius ir objektus, o tuo pačiu sukurti automatinio mokymosi sistem ↪a. Siekiama sumažinti
atminties naudojim ↪a, skaičiavim ↪u sudėtingum ↪a ir palaipsniui gerinti sistemos mokymosi kokyb ↪e.


