
INFORMATICA, 1991, Vol.2, No.3, 414-433 

THREE-LEVEL STACKELBERG 

STRATEGIES IN LINEAR;'QUADRATIC 

SINGULAR SYSTEMS 

Xiaoping LIU and Siying ZHANG 

Department of Automatic Control 
Northeast University of Technology 
Shenyang, Liaoning, People's Republic of China 

Abstract. In this paper open-loop three-level Stackelberg 
strategies in deterministic, sequential decision-making problems for 
linear continuous-time singular systems and quadratic cost function 
are studied. Necessary conditions under which the existence of 
open-loop Stackelberg strategies are derived. The analytical solu
tion of three-level open-loop Stackelberg problem is given by means 
of the eigenvector method. An example is given to illustrate the 
proposed method. 
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1. Introduction. k great deal of attention has been 
paid to methods of design and analysis of Stackelberg strate
gies in multi-level sequential decision~making problems, e.g., 
Cruz (1978), Medanic and Radojevic (1978), Basar (1981), Ho 
et.al.(1982), Mahmoud and Tran (1984). During the last 20 
years, there is much interest in studying. the singular systems 
(Lunberger (1977), Cobb (1984), Bender and Laub (1987)). To 
the best knowledge of the authors, there are no published re
sults for multilevel sequential decision-making problems cha-
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racterized by singular systems. In section 2, multi-level se
quential decision-making problems characterized by quadratic 
cost functions and linear time-invariant continuous singular 
systems are considered, and necessary conditions for. the ex
istence 6f open-loop Stackelberg strategies are given. In sec
tion 3, by using the eigenvector method for solving the Ric
cati equation, the analytical solution of three-level open-loop 
Stackelberg problem is given. An example is given to illustrate 
the proposed method in section 4. 

2. Problem formulation and derivation of neces
sary conditions. Consider a three-level Stackelberg problem 
for a linear singular system 

Ex(t) = Ax(t) + B 1u 1(t) + B 2u2(t) + B3U3(t), 

Ex(O) = Exo (2.1) 

with associated cost functional for each decision maker Pi 

T 3 

Ji (U 1 ,U'2,u3 ) . 1/2 J [.1:(t)'Qi;r(t) + LuJ(t)'RijuJ(t)]dt 
o )=1 

+ 1/2x(T)' E'Qi(T)Ex(T), i = 1,2,3, (2.2) 

where E is a square matrix with rank(E) = l' ~ n, and 
det[sE - A] =1= 0, x(t) is the descriptor vector of dimension 
n, u j (t) is an r j -- vector function controlled by player Pj, 

the usual positive-(semi)definiteness conditions are imposed 
on Qi, Qi(T), Rij, i, j = 1,2,3, as in the associated optimal 
control problem. 

Because of the possibility of impulses in the descriptor 
vector trajectory x(t), the existence of the cost integral must 
be considered, moreover the type of integral considered also 
must be carefully defined. We do this in the following assump
tion. 
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ASSUMPTION 2.1. The integral (2.2) is assumed to be 
defined in the same way as in Bender and Laub (1987); that 
is, as a distributional integral This type of integral has the 
property that 

T T J II t5(t)v 112 dt < 00 but J II t5(t)v II~ dt = 00, 

o o 

where t5(t)v is the impulse function along v defined by 

< t5(t)v, J(t) >= J(O). 

Thus an impulse function is integrable but its square is not. 
Therefore, before the necessary conditions are derived, 

some conditions for the existence of (2.2) are stated. 

Lemma 2.1. Existence of the cost integral (Lemma 10 
of Bender and Laub (1987)) 

AssumeT < 00 in (2.2). Then if (2.1) is controllable at 
00 for any player, there exists an impulse-free control ui(t) for 
player Pi so that (2.2) exists and is finite. 

Now let us assume that the decision-making sequence is 
{PI, P2 , P3 }, that is, decision maker P3 is the leader and se
lects his strategy first; P2 is the first follower and selects his 
strategy secondly; and PI is the second follower and selects 
his strategy last. Consequently, in making his decision, PI 
knows the controls u2 and u3 of the other decision makers; P2 

knows U3, and he knows that PI reacts according to declared 
functions u2 and u3; P3 knows that P2 reacts according to his 
declared control u 3 , and he must take into account the reaction 
of PI to declared controls u2 and u3 • The simplest problem 
is solved by PI (an optimal control problem); a more complex 
problem is solved by P2 (a two-level Stackelberg problem); 
and the most complex problem is solved by P3 (a three-level 
Stackelberg problem). The complete solution of the problem 
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is obtained by the solution of the leader's control problem, 
since the leader must solve problems faced by both PI and 
P2 to determine their reactions to a given u3 , in order to se
lect that control which is best with respect to J3 , taking these 
reactions of the followers into account. 

Therefore, in order to $olve three-level Stackelberg prob
lem, we must first determine the rational reaction of the first 
follower PI to controls u2 and u3 which are declared by P2 and 
P3 , respectively. Since the underlying information pattern is 
open-loop, the optimization problem faced by PI is reduced 
to an optimal control problem defined by (2.1) and (2.2), for 
i = 1, given u 2 and u 3 • By using the results of Bender and 
Laub (1987), the necessary conditions, under which u l consti
tutes the rational reaction to given u2 and u3 , take the form 

Ex(t) = Ax(t) + BIul(t) + B 2u2(t) + B3U3(t) 
Ex(O) = Exo (2.3a) 

E'ii(t) = -Q1x(t) - A'pI(t) 
E'pl(T) = E'QI(T)Ex(T) (2.3b) 

0= RllUI(t) + BI'pl(t) (2.3c) 

Now, let us consider the problem faced by P2 • In deciding the 
rational reaction of the second follower P2 to u 3 , the rational 
reaction of PI to u2 and u3 must be taken into account. Thus 
what P2 must do is to minimize the cost function (2.2) for 
i = 2 subject to (2.3). By using the standard variational 
techniques, the necessary conditions that characterize u 2 being 
the r~tional reaction of P2 to u3 take the form 

Ex(t) = Ax(t)+ BIul(t) + B 2u2(t) + B3 u3(t) 

Ex(O) = Exo (2.4a) 
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E'pl(t) = -Ql;r(t) - A'pl(t) 

E'pl(T) = E'Ql(T)E;r(T) (2.4b) 

0= RIll/l(t) + BI'pl(t) (2.4c) 

E'ii(t) = -Q2;r(t) - A'p2(t) + Q1n1(t) 

E'p2(T) = E'Q2(T)E:c(T) - E'QI(T)En1(T) (2.4d) 

E111(t) = Anl(t) - Blml(t), Enl(O) = 0 (2.4e) 

0= R2I u1 (t) + BI'p2(t) + Rllm1 (t) (2.4f) 

0= R 22 u2(t) + B2'p2(t) (2.4g) 

Finally, consider the problem solved by P.J' P3 minimizes his 
o.vn function (2.2) for i = 3, at the same time he must take 
into account (2.4) which characterizes the rational reactions of 
PI and P2 tou3 . The necessary conditions for the control u3 

to constitute the open-loop Stackelberg solution of the leader 
P3 take the form 

E.d 0) = E;ro 

E'pl(f) = -QI;r(t) - A'pl(t) 

E'pl(T) = E'Ql(T)E:c(T) 

0= RllUI(t) + BI'pl(t) 

E'p2(t) = -Q2J.~(t) - A'J}(t) + Q1n1 (t) 

E'p2(T) = E'Q2(T)E;r(T) - E'QI(T)Enl(T) 

E1'11 (t) = An1 (t) - Blrn1 (t), Enl(O) = 0 

0= R21u1 (t) + BI'p2(t) + Rllm1 (t) 

(2.50) 

(2.5b) 

(2.5c) 

(2.5d) 

(2.5e) 

(2.5f) 
?? 'J ?' 2 0= R--u-(t) + B- p (t) (2.5g) 

E'i(t) = -Q3;r(t) - A'p3(t) + Q1 n2(t) + Q2n. 3 (t) 

E'p3(T) -: E'Q3(T)EJ.~(T) - E'Ql(T)En2(T) 

- E'Q2(T)En 3 (T) (2.5h) 
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Ei"/,2(t) = A.71.2(t) - B 1m2(t), En2(O) = 0 

Ei13 (t) = A71.3(t) - B 2m3(t) - B1w(t), 
E n3(O) = 0 

E'jJ4(t) = _Q171.3(t) - A'p4(t), 

E'p4(T) = E'QI(T)E71.3(T) 

0= R31 ul(t) + Bl'p3(t) + Rllm2(t) + R2I w(t) 

0= R32 u2(t) + B2'p3(t) + R 22 m3(t) 

0= Bl'p4(t) + Rllw(t) 

0= R33 11 3(t) + B3'p3(t) 

419 

(2.5i) 

(2.5j) 

(2.5k) 

(2.51) 

(2.5m) 

(2.511.) 

(2.5p) 

3. Characterization of optimal solution. For any 
n X 11. matrix E with rank(E) = r < 71., there exist n x n 
nonsingular matrices U and V and r X l' unit matrix I such 
that (e.g., Liu and Zhang (1989)) 

UEV = (~ ~) (3.1a) 

Therefore, for convenience in the later derivation and without 
loss of the generality, let us assume that E has the form (3.1a), 
and A, Bj and Qj have the corresponding form 

{AIBjIQj} = 

_ (Au A12) I (B1.) I (Q~f Q~2) {
I j I j j} 

- A21 A22 I B~ I (Qi2)' Q~2 
(3.1b) 

For ease in notation, we define the following matrices 

BY = (_4t ~!: ~i) 
Bi' 0 Rll 

Q~2 = (~Q~2 ~), f3i = o 0 R21 

(3.2a) 
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(
0 0 0) ~ 3 3 Q22 = 0 Q22 0 
o 0 R31 

Bl = (0 0 00 0 0 0 0 0 0 0 A12 Bi Bi Bl) 

B2 = (0 0 0 0 0 0 0 0 A12 Bi 0 0 0 0 0) 

B3 = (0 A12 Bi 0 0 0 0 0 0 0 0 0 0 0 0) 
-. 1 2 
B4 = (0 0 0 0 A12 B1 B1 0 0 0 0 0 0 0 0) 

51 == (A~2 Qi2 0 0 Qi20 0 0 0 0 0 Q~2 0 0 Or 

52 = (0 0 0 A~1 Qi2 0 0 0 0 0 0 0 0 0 0) 

53 = (0 0 0 0 0 0 0 0 0 0 A~l Qi2 0 0 0) 

54 = (0 0 0 0 0 0 0 A~l Qb 0 0 Qi2 0 0 0) 

u(t)' =(p~(t)', -n~(t)', m 2(t)', -pi(t)' , -n~(t)', 

w(t)', m 3 (t)', 11 2 (t)', u3 (t)') 

u2(t)' = (p~(t)', -n~(t)', m 1(t)',u 1(t)', u2(t)') 

u1(t)' = (p~(t)', ;r2(t)', u1(t)'). 

(3.2b) 

(3.2c) 

(3.2d) 

(3.2e) 

(3.2f) 
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Using these new notation, the necessary conditions (2.5) 
can be rewritten as follows: 

:CI(t) = An;f,l(t) + Blu(t), :rl (0) = :1:10 (3.3a) 
. I I - --nl(t) = -Annl(t) + B2u(t), 

1 • . 
n 1(0)=0 (3.3b) 

-1i~(t) = -All n~( t) + B3U( t), ni(O) = 0 (3.3c) 
. 3 3 - --nl(t) = -Annl(t) + B4U(t), ni(O) = 0 (3.3d) 

p~(t) = - Q~I;rl(t) - A~IPi(t) - S3'U.(t) 

phT) = Qil (T);Tl (T) (3.3e) 

pi(t) = - Qil Xl(t) + Qilni(t) - A~lPi(t) - S4 U(t) 

pi(T) = Qil (T)Xl (T) - Qil (T)ni (T) (3.31) 

p~(t) = - Q~IXl(t) + Qil ni(t) + Qiln~(t) 
, 3 - -

- AllPl (t) - SI u(t) 

pr(T) = Qrl (T)Xl (T) - Qil (T)ni(T) 

- Q~l (T)n~(T) 

'4( ) Ql 3() A' 4(' S- -' PIt =- llnlt ~ llPlt)+ 2u(t) 

pi(T) = Qil nr(T) 
-, -, 1 --, 2' --, 3 o =SI;Tl(t) - S2nl(t) - S3nl(t) - S4nl(t) 

+ B~pi(t) + B~pi(t) + B~pr(t) 
- B;pi(t) + fl33 U(t)_ 

( 3.3g) 

(3.3h) 

(3.3i) 

The system (3.3) is a singular system in its own right. 
Morever, the matrix ofthis system already has the form (3.1a). 
In order to solve the two point boundary value problem (3.3), 
it is necessary for R33 to be invertible. Towards this end, we 
shall state some sufficient conditions for the invertibility of 
fl( = fl33) as follows: 
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ASSUMPTION '3.1. 
(1) (A.22 B~) ha.s full row ra.nk; 
(2) Q~2 > 0, Rii > 0, j = 1,2,3. 

REMARKS 3.l. 
(1) From Lemma 12 of Bender and Laub (1987), we can 

obtain that assumptions (1), Q~2 > 0 and RIl > 0 are one 
possible set of sufficient conditions for RIl to be nonsingular. 

(2) If A is nonsingular, then the following relations is 
true. 

z = (_~' 
C' 

o 
I 

C'(A.,)-l 

o 0) 
I 0 
o I 

X (10, ~ ~ ) 
o D + G'(A,)-l BA-1G 

(3.4)' 

Thus, we can get that Z is nonsingular if A, is invert able, B ~ 0 
and D > o. According to the usual positive-(semi}definiteness 
conditions which are imposed on Qi, Rij, i,j, = 1,2,3 and 

.' -2 -3 -3 assumptlOns (2), we have Q22 ~ 0, Q22 ~ 0 and Q22 ~ o. 
So from invertibility of RIl, R22 > 0 and R33 > 0, \ve can 
conclude that fl22 and fl33 are nonsingular. 

'When introducing the linear transfonnations 

i Ni -n1 = lXI, 

Pi - pir 1 - I' '1, 

P4 _ p4'l' - 1 - 1,1 

i = 1,2,3 

j = 1,2,3 

(3.5a) 

(3.5b) 

(3.5c) 
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Therefore ii ( t) can be determined by 

ii(t) = _R-l]{ Z(t, to);rl0 

with]( being given by 

}". 5-' 5-' N l 5-' N 2 5-' 1\r3 B-' pI \. = 1 + 2 1 + 3 1 + 4hl + 3 1 

+ 13' p2 + 13' p3 + 13' p4 4 1 1 1 2 1 

423 

(3.6a) 

(3.6b) 

morever, the open-loop Stackelberg controls ttl, 1/2 and u 3 are 
the 13th, 14th and 15th subvector of ii(t), respectively, where 
Z(t, to) satisfies 

Z(t, t) = I (3.6c) 

and the Ni and pI matrices are obtained from 

1V; = AllN; - N;All + (Bi+1 - N;BJ)R- l Jo: 

N{(O) =0, i=1,2,3 (3.7a) 

·2 2 1 i , 2? - 2 - - -1 ,-
PI = -Q11 - Q11Nl - A11 PI - Pi All - (54 + PI BI)R J\ 

Pf(T) = Qil(T) + Q~1(T)Nf(T) (3.7c) 

P; = -Qf1 - Q~1Nl- Qi1 Nf - A~IP;- P; All 
.- 3 - - -1 • 

- (51 + PI BJ)R A 

P;(T) = Qfl (T) + Q~1 (T)Nf(T) + Qil (T)lVI(T) (3.7d) 
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Equations (3.7a-e) represent the Riccati equations to be solved 
in order to obtain the open-loop Stackelberg strategy. This is 
not an easy task; however, under SOUle mild conditions de
scribed in the following derivation, by using the well-known 
eigenvector method for solving the Riccati equation, e.g., 
Abou-Kandi and Bertrand (1985), Vanghan (1969), analytical 
expressions for the Nt and pI matrices may be found. 

If the following matrices are defined 

A = diag(All , All ,Al1 , All)' 

B-' (B-' B-' B- 'B-') = l' 2, 3, 4 

S' = (S~, S~, S~, S~) 

(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

then the system (3.3) can be written in the compact form 

;7;(t) = Ltr(t) + 13u(t) ;r(0)' = (x~o, 0, 0, 0) (3.9a) 

pet) = -Q(t);r(t) - A'fi(t) - Sft(t) 

fi(T) = Q(T);f,(T) (3:9b) 

0= S'x(t) + 13'fi(t) + Ru(t) 

where x(t) and pet) are defined by 

x(t)' = (:rl(t)', -n~(t)', -ni(t)', -nf(t)'). 

p(t)' = (p~(t)', -pi(t)', p~(t)', pi(ty). 

(3.9c) 

(3.9d) 

(3.ge) 
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Solving 1l( t) from (3.9c) and substituting it into (3.9a
b ),\ve can get 

(;~:j) = . 

( A-BR-IS' -BR-lB') (:'f(t)) 
- . -( Q - SR- l 5') -(A - BR- l 5')' ij(t) 

(3.10) 

Let ( be the remaining time before T, i.e. (= T - i, 
and let i:( () and p( () be the new variables expressed in terms . . 

of (. Then using (3.10) one obtains the backward canonical 
equation 

(1~~j) =lH(;i~j) 
wi th J'vI being given by 

.. _ (-(.4 -Btl-IS' BR-lB' ) 
1\1 -. (Q _ sfl-1 5') (.4. - BR-1 5')' 

while the boundary conditions become 

ii~(T) == 0 

]3(0) ~ Q(T).~(O) 

\vith Q( T) being 

(3.lla) 

(3.llb) 

(3.11c) 

(3.11d) 

(3.11e) 

It is clear that 1\1 E R8rx 8r is a Hamilton matrix, and 
hence its eigenvalues must be symmetric with respect to the 
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imaginary axis of the complex plane. It 'will be further as
sumed tliat the eigenvalues of .Af are distinct; this a~sumption 
is make for the sake of c.larity in t.he present.ation and is by no 
lueans necessary. 

Let D be an 81' X 81' diagonal matrix having the same 
eigenvalues as JI and arranged in such a way that 

D _ (A 0) 
- 0 -A (3.12a) 

\vith A being a 41' X 41' diagonal matrix with positiv~ eigenva
lues. Hence, there exists a nonsingular eigenvector matrix lV, 
so that 

(3.12b) 

Define a new vector of variables by the transfomlation 
ltv: 

(3.13a) 

with 

(3.13b) 

(3.13c) 

\ve have 

(3.14) 
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Using the boundary condition (3.11cl) for p{(j = 1, 2, 3, 4) 
and the coordinate trailsformatiOll (3 .13a ), we have 

Thus, under the assmnpt.ion (Q(T)T1T 12 - lVn) is nonsin
gular, i12 ( 0) may be expressed in t.erms of ij 1 ( 0 ). 

(3.15b) . 

with 

- (3.15c) 

Therefore, from (3.14) for any W~l1: 

(3.160) 

with 

H(() = [H1 ((), H 2 (()] = exp( -A()F exp( -AO (3.16b) 

Now using (3.13) and (3.16) with t.he boundary condi
tions n~ (T) = O-(i = 1,2,3), 

or . 

ij(T) =G(T)ql (T) . -[lV22 + lV23 H 2 (T).]-1 

X [IV2I + lV23 HI (T)lqI (T) 

assuming that. t.he above inverse exists. 

(3.17b) 
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From (3.14), the follmving relations can be gotten 

ql(T) =exp(AIT)qdO) 

q(O) = exp( -}l.lT)q(T) 

(3.18a) 

(3.18b) 

thus, (3.17b) leads to 

where Al = diag (Az, A3 , A4) with A = diag (AI, 1\2, A3 , A4)' 
Using t.he relation between ql (0) and ql ((), one. finally 

obtains 

The vector q2( () can be expressed in terms of qd () only, 
so that' 

with 

Xl (() = lvll (()qd () 

N(O = AI2(()ql(() 

PCO = AI3 (()ql(() 

A1i(C) = It\lil + HTi2L(C) + VV13 [H1 (C) 

(-3.210) 

(3.21b) 

( 3.21c) 

+ H2(()L(()], i =.1,2,3 (3.21d) 

N(()' = [Nt((Y, Nf(()', N{(O'] (3.21e) 

P(C)' = [P{(()', pi(O', pI(O', pi(()']· (3.21.f) 
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. Finally, \\-ith the help of the above relations, analytical 
expressions of UIe matrices in (3.7) can be deduced . 

N(O =.M2(O·MdO-1 

p'(() = lYh(()lH1(O-1. 

4. Illustrative example. Let the system and the· cost 
functions for a three-level Stackelberg problem be 

\ 

(1 ·0) (;r1(t)) (0 1) (Xl(t)) 
o OX2(t) = 1 O. ;T2{t)· 

+ C) u' (/) + C) .'(/)+ (i) ,,3(t), . X1(O) - X'0 

T 

J j = J {1/2.r(t)' x(t) +~/2[ttj(t)F }dt+ 1/2[xd2)F 
o . 

j = 1,2,3, 

wherex(t), = [Xl(t) .r2(t)). 
Optimality conditions lead to the matrix 

1 0 0 0 0 0 1 0 
0 1 0 0 0 -1 -1 1 
0 0 1 0 1 -1 0 0 

Al = 
0 0 0 1 0 1 0 0 
1 0 2 1 -1 0 0 0 
0 0 ~1 2 0 ~1 0 0 

·2 -1 -1 0 0 0 -1 0 
1 2 0 0 ,0 0 0 -1 

whose eigenvalues are±2.528; ±L959; ±1.595; ±1.493; 
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Andthe matrix'lV is given by 

1 1 . 1 1 
-1.295 -2.193 1.i94" .2950 
~2.095 1.355 - .. 7383 .4772 

vv= 0.6180 -1.618 -1.618 .6178 
-.7292 .7072 -.8072 1.032 
0.9442 -1.552 -.9630 .3043 
1.528 .9591 .5951 . .492() 

-.4508 -1.144 1.306 .6378 

1 1 1 1 
-'-1.295 -2.193 1.194 .2950 
-2.095 1.355 -.7383 .4772 . 
.6180 -1.618 -1.618 .6178 
1.684 -2.182 3.52'0 -5.222 

-2.180 4.788 4.200 . -1.540 . 
-3.528 -2.959 -2.595- -2.493 
1.041 3.531 -5.694 -3.228 

. 
Proceeding as explained above, we can get 

u l (() =e(O-I[-4.390 ~ 4.174exp(-.56887() 

- 4.704exp( -.93280..,.. 7.930exp( -L493() 

- .0475 exp( -5.056() - 3.871 exp( .,-4.487() 

, - .1310 exp( -4.123() + .4158 exp( -4.020~)] 

u2 ( 0 =e( 0-1 [1.295 + 4.98'0 exp( -.56880 . 

- 10.32exp(-.9328() -.10.27 exp(-i.493() 

+ .0140 eip( -5.056() + 4.619 exp( "-4.487() 

- .2875exp( -4.123() + .5385 exp( -4.0200] 

u 3 ( () =e(O-1 [2.095 -3.078 exp( -.5688() 

+ 6.381 exp( -.9328() - 16.61 exp(-1.493() 

- .0227exp(-5.056() - 2.854exp( -4.487() 

+ .1777 exp( -4.123() + .8712exp(-4.020()] 
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where e( () is given by 

e(O = 1 + 2.271 exp( -.56880 + 8.643exp( -.9328() 

+ 34.81 exp(-1.493() + .0108 exp( -5.056() 

+ 2.106exp( -4.487() + .2407 exp( -4.1230. 

- 1.826 exp( -4.0200. 

5. COllclusioll.' This paper develops explicit expressions 
for three-level open-loop Stackelberg strategies for sequential 
decision making problems characterized . by linear con tinuous
time singular system and-quadratic cost function. By using. 
the eigenvector method, the Riccati equations which come 
from the nece~sary conditions of the existence of three-level 
open-loop Stackelberg strategies are s~lved. The main ad-
vantage of the proposed method is to replace a. very difficult 
numerical integration problein which results from solving the 
Riccati eql,lations. The results of t'h~ note can be straightfor
ward extended to multilevel Stackelbei:g problems. But the 
burden of computing multil<:wel open-loop Stackelberg strate
gies will be heavy increased, so is the time of comptttation. 
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