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Abstract. The rapid development of network technologies has made the web a huge information
source with its own characteristics. In most cases, traditional database-based technologies are no
longer suitable for web information processing and management. For effectively processing and
managing web information, it is necessary to reveal intrinsic relationships/structures among con-
cerned web information objects such as web pages. In this work, a set of web pages that have their
intrinsic relationships is called a web page community. This paper proposes a matrix-based model
to describe relationships among concerned web pages. Based on this model, intrinsic relationships
among pages could be revealed, and in turn a web page community could be constructed. The issues
that are related to the application of the model are deeply investigated and studied. The concepts
of community and intrinsic relationships, as well as the proposed matrix-based model, are then
extended to other application areas such as biological data processing. Some application cases of
the model in a broad range of areas are presented, demonstrating the potentials of this matrix-based
model.
Key words: web page community, matrix model, hyperlink analysis, bioinformatics.

1. Introduction

With more and more information being put on the web, how to manage web data is
becoming more and more important and urgent. The data on the web, however, are nei-
ther raw nor very strictly typed as those in conventional database systems. This feature
makes it hard to directly apply conventional techniques to process and manage data on
the web. For web data processing and management, the main obstacle is the absence of a
well-defined underlying data model. One approach to overcome this obstacle is to reveal
intrinsic or semantic relationships/structures among concerned web data instead of defin-
ing a data model. In this work, we focus on the most commonly used data on the web –
web pages (HTML documents), and define a web page community as a set of concerned
web pages that have their own intrinsic relationships.

The key to constructing a web page community is the intrinsic relationships among
web pages. In other words, a simple gathering of web pages could not be considered as
a community if there are no intrinsic relationships among them. An intrinsic relationship
has different meanings for different situations. For example, web pages that are clustered
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into clusters form a web page community; web pages that are relevant to a given page also
form a web page community; Kleinberg (1999) considered two sets of hub pages and au-
thority pages as two communities respectively. In order to uncover intrinsic relationships
among web pages, it is necessary to firstly model web pages and their raw relationships.
The traditional approach is using a vector model, i.e., each page is modeled as a key-
word vector. The intrinsic relationships of pages such as page similarity are revealed by
performing operations on vectors. Document object model (DOM, 1998), for example,
is another model for web pages that are written using markup languages such as HTML
and XML. These models focus on modeling individual web page. Relationships among
pages are not directly modeled.

In this work, we propose a matrix-based model for web page community construc-
tion, and extend the concepts and the model that are for web page communities to other
areas such as biological data processing. Matrix models are widely used in many areas.
For example, El-Qawasmeh et al. (2004) proposed a matrix multiplication algorithm and
confirmed the feasibility of using clustered workstations to provide fast and low cost so-
lutions to many computationally intensive applications. However, when matrix models
are applied within a web environment, there are some special issues to be addressed and
resolved because of the characteristics of web data. With our proposed model, web pages,
as well as their relationships, are modeled within a matrix framework. Since each page
corresponds to a row/column of the matrix, traditional vector-based techniques could also
be used to reveal intrinsic relationships. In other words, the traditional vector model is a
special case of our model. Most importantly, intrinsic relationships among web pages
could be uncovered via mathematical operations on the matrix rather than on individual
vectors, which lays corresponding algorithms on a solid mathematical base. Actually, all
concerned pages could be considered as a whole within a matrix framework, and their
relationships, such as similarities, correlations and clusters, could be revealed by ma-
trix operations such as matrix decomposition, partitioning, eigenvalue and eigenvector
calculation etc. Therefore, this model could be used not only for web page community
construction, but also for various applications such as biological data processing.

This paper is organized as follows. In the next section, we propose a matrix-based
model for web pages and community construction. In Sections 3, 4, 5 and 6, we dis-
cuss the issues that are related to the application of this model, covering data space con-
struction, noise and malicious hyperlink issue, hyperlink transitivity and decline rate, and
matrix-based shortest hyperlink path algorithms. The discussion mainly focuses on hy-
perlink relationships among web pages and corresponding community construction. In
Section 7, we present a web application case study that is based on this model. In Section
8, we extend the concepts introduced for web page communities, as well as the proposed
model, to another application area – biological data processing. We also exam how the
proposed model could be used to produce meaningful results for biologists. Section 9
gives other application examples of the model. Finally, we conclude this work and indi-
cate some further research directions in Section 10.
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2. A Matrix-Based Model

A community is usually constructed from a set of concerned objects, such as web pages
and web access logs. For general purposes, we define a data space as a set of concerned
objects. Given a data space, how to model it depends on what information is used to
express relationships between objects within the space. For example, given a data space
that consists of a set of documents, the relationship between documents can be expressed
by keywords, i.e., if two documents contain more common keywords, the relevance or
similarity between these two documents is higher, and vice versa. In this case, documents
in this data space are modeled as keyword vectors. These vectors could form rows of
a matrix. In general, a matrix-based model is a framework with the following required
elements:

(1) A data space is identified. For example, in a conventional database system, the data
space might be the whole documents. But in the context of the web, the situation
will be complex. For different web applications and concerns, different data spaces
have to be constructed.

(2) Two sets of objects, denoted as E1 and E2, within the identified data space are
formed. One set should be a reference system to another. That means the relation-
ships between entities in E1 are determined by those in set E2, and vice versa. For
example, E1 could be a set of documents; E2 could be a set of keywords.
There are three types of relationship between E1 and E2:

(i) E1 = E2. Two sets are the same in terms of size and category.
(ii) E1 �= E2. Two sets are different in terms of size and category. For example,

E1 = {documents}, E2 = {keywords}.
(iii) E1 ∼ E2. Two sets are different in size but in the same category. For example,

E1 could be one set of web pages, and E2 could be another set of web pages.

(3) Original correlations between objects that belong to different sets E1 and E2 are
defined and modeled into a matrix. The correlations are defined as the following
expression

(E1 � �E2) ← CI,

where CI stands for correlation information which is the information used to de-
scribe the correlations between objects in E1 and E2. This expression means the
correlations between objects in E1 and E2 are expressed by the correlation infor-
mation CI .

When we construct a matrix-based model from the above correlation expression, each
object of E1 is modeled as a row (column) of a matrix, and each object of E2 is modeled
as a column (row) of the matrix. The values of matrix entries (intersections of rows and
columns) are original correlation degrees between objects that belong to E1 and E2 sep-
arately. These original correlations degrees are determined by CI . For example, suppose
E1 = {documents}, E2 = {keywords}, we can define CI = {keywords}. Each docu-
ment in E1 could be represented as a row of a matrix, and each keyword in E2 could be
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represented as a column of the matrix. If one document contains a keyword, the corre-
sponding matrix entry value is 1, otherwise is 0. If we define CI = {weighted keywords},
however, the corresponding matrix entry value would be the weight of the keyword rather
than 1. It is clear that definition of CI determines what information is used to express cor-
relations between objects in two object sets, and how the original correlation degrees are
determined as well.

The above required elements define a matrix-based model for various applications
such as community construction and data processing. This model paves the way of re-
vealing intrinsic relationships among information entities through matrix and/or other
related mathematic operations. However, when this model is applied to practical situa-
tions, especially the web, there are some issues to be examined. For web page commu-
nity construction, our discussion is based on web pages and their hyperlinks, i.e., E1 and
E2 are two sets of web pages and CI = {hyperlinks} in the above matrix-based model.
The ideas and methods, however, could also be extended and applied to other kinds of
correlation expressions in other applications such as biological data processing. In the
following sections, we first address those issues that are related to the application of the
model in web page community construction. The corresponding approaches and algo-
rithms are also proposed. The extension of these results to biological data processing and
other applications will be presented later.

3. Data Space Construction

Data space construction or identification is the first required element of the matrix-based
model. For traditional database, this is not a problem because the concerned data are fixed.
In the context of the web, however, the situation is quite different because the web size is
very huge and it is impossible to model all pages on the web within a matrix. Therefore,
data space construction is critical to the success of the model application. It depends on
what the web application requirements are or what kind of web page community to be
constructed.

For discussion convenience, we adapt the following concepts: if there is a hyperlink
from page P to page Q, P is called a parent of Q and Q is called a child of P ; if two
pages have at least one common parent page, these two pages are called siblings. As
indicated in (Mukherjea and Hara, 1997), in terms of hyperlink, the semantic information
of a web page u is most likely given by its in-view and out-view. The in-view is a set of
parent pages of u, and out-view is a set of child pages of u. In other words, parent and
child pages of a web page usually share some common semantic features with this page.
Therefore, the data space construction in terms of hyperlink should focus on concerned
pages and their parent/child pages.

There are some methods for constructing hyperlink-based data spaces, such as our
work in (Hou and Zhang, 2003a; Hou and Zhang, 2002) and Kleinberg’s work (1999).
In general, a hyperlink-based data space can be constructed by using one of the follow-
ing two methods or the combination of these two methods. The first one is selecting
parent/child pages; the second one is selecting parent-child and child-parent pages.
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Parent/Child Page Selection

This data space construction method is composed of two steps. The first step is to choose
concerned pages to form a root of the data space. Secondly, the parent/child pages of
each root page are selected, together with the root pages, to form the data space. This
data space also includes hyperlinks between any two pages in the data space, and is con-
sidered to be a specific directed graph whose nodes are pages and edges are hyperlinks.
Fig. 1 shows the data space structure constructed from this method. The root of the data
space is located in the middle of the figure. The solid line arrows represent the hyperlinks
that are used to select parent/child pages of the root pages. The dashed line arrows indi-
cate other hyperlinks that exist between pages in the data space. In practical situations,
the root usually contains many concerned pages, and each root page might have many
parent/child pages. It is therefore necessary to restrict the number of parent/child pages
for each root page, such that the size of the data space is reasonable (Kleinberg, 1999;
Hou and Zhang, 2002). This kind of data space is usually used for those situations where
the intrinsic relationships among the concerned pages, even among all pages in the data
space, are to be uncovered such as hub/authority page finding (Kleinberg, 1999) and web
page clustering (Hou and Zhang, 2003b).

Parent-Child and Child-Parent Page Selection

This method consists of three steps. Firstly, the concerned pages are selected to form a
root of the data space. Secondly, parent and child pages of each root page are selected. Fi-
nally, for each selected parent/child page, its child/parent pages are selected. All selected
pages from these three steps, together with their corresponding hyperlinks, form the data
space. Fig. 2 shows the data space structure constructed from this method. For clearance,
this figure only shows one root page. In practical situations, similar to the first method,
it is also necessary to restrict the number of each page’s parent/child pages in the data
space. This data space is usually used for the situations where the intrinsic relationships
among sibling pages and parent pages are to be uncovered such as page relevance deter-
mination. Depending on application requirements, sometimes a data space is constructed
by only using parent-child or child-parent page selection instead of both at the same time.

Fig. 1. Data space construction from parent/child page selection.
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Fig. 2. Data space construction from parent-child and child-parent page selection.

4. Noise and Malicious Hyperlink Issue

When constructing a data space for web page community construction, it is very likely
that some pages that are hyperlinked have no semantic relationships. For example, the
hyperlinks within the banner or index areas of a web page, as well as those pages that
are pointed to by these hyperlinks, usually refer to some general information about a web
site or advertisements, which are not related to the page in a semantic sense. This kind
of hyperlinks/pages is called noise hyperlinks/pages. They should not be included in the
data space or their influence on web page community construction should be reduced,
otherwise they will distort the nature of communities.

There are two ways for eliminating or reducing the influence of noise hyper-
links/pages in a data space. The first one is to filter noise hyperlinks/pages when con-
structing a data space. To this end, the hyperlinks within a page are assigned semantics
by the keywords around hyperlinks (i.e., anchor text) and page structure information.
Then the hyperlink’s semantics are compared with the page semantics. If they are related
(i.e., the similarity is above a certain threshold), then the hyperlink and related page are
included in the data space, otherwise they are filtered. More details of this method can be
found in (Chakrabarti et al., 1998). The second way is to eliminate or reduce the noise
hyperlink/page influence in the process of revealing intrinsic relationships. This method
is usually implemented by developing various algorithms. We proposed an algorithm that
is based on matrix singular value decomposition (SVD) for this purpose (Hou and Zhang,
2002) and the evaluation demonstrated the effectiveness of the algorithm. There are also
other algorithms of this kind such as co-citation algorithms (Garfield, 1972) in Dean and
Henzinger’s work (1999), as well as our work (Hou and Zhang, 2003a). Since hyperlinks
are dynamic and there are no standards of what are noise hyperlinks/pages, it can be fore-
seen that various algorithms will be put forward and research on this issue will still be a
challenge.

Malicious hyperlinks are another kind of hyperlinks that need to be addressed when
constructing a data space. Malicious hyperlinks are those that are deliberately added into
web pages to increase the importance rate of some web pages on the Web, even if these
added hyperlinks have no semantic relationships with the emphasized pages. This trick
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would cheat web search engines and unreasonably increase the importance of some pages
in the data space.

Before discussing the approaches of reducing influence of malicious hyperlinks, we
firstly introduce the following concepts.

DEFINITION 1. Two pages p1 and p2 are back co-cited if they have at least one common
parent page. The number of their common parents is their back co-citation degree. Two
pages p1 and p2 are forward co-cited if they have at least one common child page. The
number of their common children is their forward co-citation degree.

DEFINITION 2. Two or more pages are intrinsic pages if they have same page domain
name. Here the domain name is the first level of the URL string associated with a web
page.

DEFINITION 3 (Dean and Henzinger, 1999). Two pages are near-duplicate pages if (a)
they each have more than 10 links and (b) they have at least 95% of their links in common.

As stated in the above section, a data space construction usually begins with selecting
a root for the data space, then growing this root to form the data space by adding par-
ent/child pages of each root page. The malicious hyperlinks, therefore, are most likely to
be brought into the data space by these parent/child pages. How to deal with malicious
hyperlinks is now turned into how to deal with these parent/child pages. The following is
an approach of dealing with malicious hyperlinks by merging intrinsic and near-duplicate
parent/child pages.

Suppose we choose a page u in the root of the data space, for pages in a web site
(or server) that are hyperlinked deliberately, if some of them are imported into the data
space as the parent pages of u, their children (the siblings of u) most likely come from
the same site (or server), and the back co-citation degrees of these children with u would
be unreasonably increased. With the merger of intrinsic parent pages, the influence of
the pages from the same site (or server) is reduced to a reasonable level (i.e., the back
co-citation degree of each child page with u is only 1) and the malicious hyperlinks are
shielded off. For example, in Fig. 3, suppose the parent pages P1, P2, P3 and their chil-
dren S1,1, . . . , S3,2 be intrinsic pages. For the situation (a), the back co-citation degree of
page S2,2 with u is unreasonably increased to 3, which is the ideal situation the malicious

Fig. 3. An example of intrinsic parent page merging.



224 J. Hou

hyperlink creators would like. The case is the same for the pages S1,2 and S3,1. With
intrinsic parent page merging, the situation (a) is turned into the situation (b) where P

is a logic page representing the union of parent pages P1, P2, P3, and the contribution of
each child to the back co-citation degree with u is only 1, no matter how tightly these
intrinsic pages are linked together. The same idea could also be applied to dealing with
those parent pages that come from mirrored sites.

For those sibling pages that are really relevant to the root page u and located in the
same domain name as u, the intrinsic parent page merging would probably reduce their
relevance to the page u. However, for data space construction, pages do not just come
from a specific web site or server. Therefore the intrinsic page merging is reasonable in
practical applications since one page’s importance in terms of hyperlink is determined by
pages in many web sites rather than a specific one. If the data space is only constructed
from a specific web site or domain name, it would be unnecessary to merge intrinsic
pages. From the above discussion, it is clear that there exists a trade-off between avoid-
ing malicious hyperlinks and keeping as much semantic information as possible. This
approach could also be applied to merging intrinsic child pages, as well as near-duplicate
parent/child pages.

5. Hyperlink Transitivity and Decline Rate

With the matrix-based model, when mapping the original correlation expression (E1 �

�E2) ← CI into a matrix where E1 and E2 are two sets of web pages and CI =
{hyperlinks}, each page in E1 is mapped as a row (column) of the matrix, and each page
in E2 is mapped as a column (row) of the matrix. Traditionally, the matrix entry values
are determined as follow: if there is a hyperlink from a page in E1 to another page in E2,
then the corresponding matrix entry value is set to 1, otherwise 0. This kind of correlation
matrix is usually called adjacent matrix (Kleinberg, 1999). However, the adjacent matrix
only considers direct hyperlinks between any two pages in the data space. In many cases,
some pages have no direct hyperlinks between them, but there is still correlation between
them through other pages and hyperlinks. This hyperlink transitivity is one of the obvious
features of web data, and should be mapped into the matrix-based model as well.

When considering hyperlink transitivity, it is worth notice that the role each page plays
in the data space S is different. For instance, two kinds of pages need to be noticed. A
page of the first kind is the one whose out-link contribution to S (i.e., the number of pages
in S that are pointed to by this page) is greater than the average out-link contribution of
all the pages in S. A page of the second kind is the one whose in-link contribution to S

(i.e., the number of pages in S that point to this page) is greater than the average in-link
contribution of all the pages in S. The pages of the first kind are called index pages in
(Botafogo and Shneiderman, 1991) or hub pages in (Kleinberg, 1999), and those of the
second kind are called reference pages in (Botafogo and Shneiderman, 1991) or authority
pages in (Kleinberg, 1999). These pages are most likely to reflect certain topics within
the data space S. If two pages are linked by or linking to some pages of these kinds, these
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two pages are more likely to be located in the same topic group and semantically related.
In other words, the roles that index and reference pages play are different from those of
other pages.

It is also worth notice that index pages in common sense, such as personal bookmark
pages and index pages on some special-purpose web sites, might not be the index pages
in the data space S if their out-link contribution to S is below the average out-link con-
tribution in S. For the same reason, some pages with high in-degrees on the web, such
as home pages of commonly used search engines, might not be the reference pages in
S. Usually we filter the home pages of commonly used search engines (e.g., Yahoo!,
AltaVista, Google and Excite) from S, since these pages are not related to any specific
topics. To label the importance of each page within the data space, we define a weight for
each page.

For a page Pi in the data space S, we denote its weight as wi(0 < wi � 1). Given
a weight for each page in S, we are able to define a weight for each hyperlink between
any two pages in S. This hyperlink weight is the function of page weights that are linked
by this hyperlink. In other words, suppose there are two hyperlinked pages Pi and Pj in
the data space S and their page weights are wi and wj respectively, then their hyperlink
weight is defined as wi,j = f(wi, wj), where f is a function and 0 < wi,j � 1. Since
we only concentrate on hyperlink transitivity here, how to define a weight for a web page
and define the function f for hyperlink weights is beyond our scope. Interested readers
can read our work in (Hou and Zhang, 2003b) where we proposed weight definitions for
web pages and hyperlinks.

With page and hyperlink weights, we could map transitivity correlations between
pages into a matrix. Before proposing the mapping method, we firstly give the follow-
ing definitions.

DEFINITION 4. If page A has a direct link to page B, then the length of path from page
A to page B is 1, denoted as l(A, B) = 1. If page A has a link to page B via n other
pages, then l(A, B) = n + 1. The distance from page A to page B, denoted as sl(A, B),
is the shortest path length from A to B, i.e., sl(A, B) = min(l(A, B)). The length of path
from a page to itself is zero, i.e., l(A, A) = 0. If there are no links (direct or indirect)
from page A to page B, then l(A, B) = ∞.

It is inferred from this definition that l(A, B) = ∞ does not imply l(B, A) = ∞,
because there might still exist links from page B to page A.

DEFINITION 5. Decline rate, denoted as F (0 < F � 1), is a variable that measures the
correlation decline rate between two page with direct link, i.e., if page A has a direct link
to page B with hyperlink weight wA,B , then the correlation degree from page A to page
B is wA,BF .

How to determine the value of decline rate F to more precisely reflect the correlation
relationship between pages is beyond the scope of this work. Further research could be
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done in this area. Since we mainly concentrate on hyperlink transitivity mapping here,
for simplicity, we suppose the value of F is a constant (e.g., 1

2 in Weiss et al., 1996).
With above definitions, a correlation degree between any two pages can be defined.

This correlation degree depends on the value of decline rate F , the distance between the
two pages (the farther the distance, the less the correlation degree), and weights of in-
volved hyperlinks along the shortest path. The following definition gives this dependency
function.

DEFINITION 6. The correlation degree from page i to page j, denoted as cij , is defined
as

cij = wi,k1wk1,k2 . . . wkn,jF
sl(i,j),

where F is the decline rate, sl(i, j) is the distance from page i to page j, and
wi,k1, wk1,k2, . . . , wkn,j are hyperlink weights respectively between the adjacent pages
i, k1, k2, . . . , kn, j that form the distance sl(i, j), i.e., i → k1 → k2 → . . . → kn → j.
If i = j, then cij is defined as 1.

For two web page sets E1 and E2 in a data space S, we suppose the size of E1 (i.e.,
the number of pages in E1) is m, the size of E2 is n and denote E = E1 ∪ E2. Then
hyperlink-based transitive correlation degrees of all the pages in E can be mapped into
a (m + n) × (m + n) matrix C = (cij)(m+n)×(m+n), called correlation matrix. This
mapping incorporates hyperlink transitivity, decline rate and page importance.

The key to computing correlation degree cij in Definition 6 is the distance sl(i, j)
between any two pages i and j in E. An algorithm for computing distance sl(i, j) within
a matrix framework is proposed in the following section.

6. Shortest Path Finding Algorithm

The shortest path (distance) in Definition 6 can be found and calculated via some opera-
tions on the elements of a special matrix called primary correlation matrix. The primary
correlation matrix A = (aij)(m+n)×(m+n) is constructed as follow

aij =

⎧⎨
⎩

D, if there is a direct link from i to j, i �= j,

1, if i = j,

0, otherwise,

where D ∈ (0, 1) is a constant.
Based on this primary correlation matrix, the algorithm of finding and calculating

distance sl(i, j) between any two pages i and j in E is described as follows:
Step 1. For each page i ∈ E, choose factor = D and go to Step 2.
Step 2. For each element aij , if aij = factor, then set k = 1 and go to Step 3. If there

is no element aij (j = 1, . . . , m + n) such that aij = factor, then go back to Step 1;
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Fig. 4. An example of shortest path computing algorithm.

Step 3. If ajk �= 0 and ajk �= 1, calculate factor ∗ ajk.
Step 4. If factor ∗ ajk > aik, then replace aik with factor ∗ ajk, change k = k + 1

and go back to Step 3. Otherwise, change k = k + 1 and go back to Step 3.
Step 5. Change factor = factor ∗ D and go to Step 2 until there are no changes to

all element values aij .
Step 6. Go back to Step 1 until all the pages in E have been considered.
Step 7. After element values of matrix A are updated by the above steps, the distance

from page i to page j is sl(i, j) = [log aij/ log D].
Fig. 4 gives an intuitive demonstration of the above algorithm execution. In this ex-

ample, five pages (numbered 1 to 5) and their linkages are firstly mapped into a primary
correlation matrix A. The dashed arrows in matrix A show the first level operation se-
quence (factor = D) of the above algorithm for page 1. The procedure of other level
operations for other pages is similar except for changing the values of variable factor
according to the above algorithm. The final updated primary correlation matrix and the
corresponding distance matrix Dis are presented in the figure as well. It is clear that al-
though there are several paths from page 1 to page 4, the distance from page 1 to page
4 is 2, which is consistent with our observation. The situation is the same for page 3
and page 5 in this example. This algorithm could be incorporated into correlation degree
computing in Definition 6.

7. A Case Study

In this section, we present an application case study of the matrix-based model. The
case is about web page clustering from hyperlink analysis. The study focuses on how to
meet the model requirements and how this model is applied to web page clustering. All
hyperlink analyses and web page clustering are conducted within a matrix framework.

For a set of web pages that are to be clustered using their hyperlink information, the
data space S is constructed using the parent/child page selection method in Section 3.
For the convenience of discussion, we express the data space S = R ∪ V where R is
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the root set that is formed by the pages to be clustered, and V is the set of parents and
children of the root pages. In this case, the second required element of the matrix-based
model in Section 2 is satisfied by setting E1 = E2 = S. The correlation information is
the correlation degree between pages that is defined in Definition 6, which incorporates
hyperlink transitivity and decline rate. Therefore, the pages in the data space S is modeled
into a correlation matrix with the correlation expression (S � �S) ← CI , where CI =
{correlation degrees}.

Suppose the number of pages in R is m, and the number of pages in V is n, the
correlation matrix C then is an (m + n) × (m + n) matrix. For simplicity, C is divided
into four blocks (sub-matrices) as follow:

C = (cij)(m+n)×(m+n) =
R

V

R V⎛
⎜⎝ ©1 ... ©2.... . . . . . . . .

©3 ... ©4

⎞
⎟⎠

(m+n)×(m+n)

In the correlation matrix C, the row vector that corresponds to each page i in R is in
the form of

rowi = (ci,1, ci,2, ..., ci,m+n), i = 1, 2, ..., m.

From the construction of matrix C, it is known that rowi represents out-link relationship
of page i in R with all the pages in S, and element values in this row vector indicate the
correlation degrees of this page to the linked pages. Similarly, the column vector is in the
form of

coli = (c1,i, c2,i, ..., cm+n,i), i = 1, 2, ..., m,

which represents in-link relationship of page i in R with all the pages in S, and its element
values indicate the correlation degrees from the pages in S to page i.

Each page i in R, therefore, is represented as two correlation vectors: rowi and coli.
For any two pages i and j in R, their out-link similarity is defined as

simout
i,j =

(rowi, rowj)
||rowi|| · ||rowj ||

,

where

(rowi, rowj) =
m+n∑
k=1

ci,kcj,k, ||rowi|| = (
m+n∑
k=1

c2
i,k)1/2.

Similarly, their in-link similarity is defined as

simin
i,j =

(coli, colj)
||coli|| · ||colj ||

.
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Fig. 5. Matrix-based hierarchical clustering diagram.

Then the similarity between any two pages i and j in R is defined as

sim(i, j) = αij · simout
i,j + βij · simin

i.j , (1)

where αij and βij are the weights for out-link and in-link similarities respectively. They
are determined dynamically as:

αij =
||rowi|| + ||rowj ||

MODij
, βij =

||coli|| + ||colj ||
MODij

,

where MODij = ||rowi|| + ||rowj || + ||coli|| + ||colj ||.
With the page similarity (1), another m × m symmetric matrix SM, called similarity

matrix for R, can be constructed as SM = (smi,j)m×m for all the pages in the root set
R, where

smi,j =
{

sim(i, j), if i �= j,

1, if i = j.

The matrix-based web page clustering is then implemented by partitioning the page
similarity matrix SM. With the iterative partition of the similarity matrix, hierarchical
web page clusters are produced. Fig. 5 intuitively describes this clustering procedure. For
more details of this algorithm and evaluation results, please refer to our work in (Hou and
Zhang, 2003b).

8. Model Extension to Biological Data Processing

Recent development in large-scale genomic technologies, such as DNA microarray and
mass spectroscope, makes it possible to obtain a lot of biological data from a single
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experiment. For example, a DNA microarray chip can be used to simultaneously mea-
sure expression levels of thousands of genes in a single experiment. The advent of high-
throughput data, however, also brings to researchers the challenges of how to process a
large amount of biological data and reveal inherent relationships among biological ob-
jects such as genes, proteins and cells.

To cope with these challenges, the community concept proposed for web pages can
be extended in terms of bioinformatics as a set of concerned biological objects that have
their intrinsic relationships. For instance, genes that are clustered into clusters form a
community; genes that have mutual regulatory relationships form a community, and pro-
teins that are involved in an interaction network also form a protein community. There-
fore the matrix-based model proposed in Section 2 for revealing intrinsic relationships
of communities can also be directly applied to biological communities to reveal intrinsic
relationships among biological objects. Accordingly, the concepts of hyperlink transitiv-
ity and decline rate, as well as related definitions, in Section 5 can be extended in the
context of biological data processing, where the hyperlink transitivity is considered as
the regulatory or interaction transitivity among biological objects such as genes and pro-
teins. The related short path finding algorithm in Section 6 therefore can also be applied
to biological data processing.

With the matrix-based model, it would be easy to model concerned biological data
within a uniform framework and capture global data, as well as biological object, re-
lationships when data processing is conducted. For example, a k-means method (e.g.,
Sultan et al., 2002; Tseng and Kao, 2005) in gene clustering only takes into account local
similarities between genes. The clustering results, therefore, are local optimal and sen-
sitive to the number of genes to be clustered, as well as the choice of parameter k. In
contrast, with a matrix model, it is possible to achieve global optimal clustering results
through operations on the whole matrix, such as decomposition, partitioning, eigenvalue
and eigenvector calculation.

To demonstrate the potentials of the matrix-based model in biological data processing,
we will present some study cases. Prior to case study, we firstly introduce the singular
value decomposition (SVD) of a matrix, which can be used in biological data processing.

8.1. Singular Value Decomposition

The singular value decomposition (SVD) of a matrix is defined as follow: let A =
[aij ]m×n be a real m × n matrix. Without loss of generality, we suppose m � n and
the rank of A is rank(A) = r. Then there exist orthogonal matrices Um×m and Vn×n

such that

A = U

(
Σ1

0

)
V T = UΣV T , (2)

where UT U = Im, V T V = In, Σ1 = diag(σ1, ..., σn), σi � σi+1 > 0 for 1 � i �
r − 1, σj = 0 for j � r + 1, Σ is a m × n matrix, Σ1 is a n × n diagonal matrix,
UT and V T are the transpositions of matrices U and V respectively, Im and In represent
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m × m and n × n identity matrices separately. The rank of A indicates the maximal
number of independent rows or columns of A. Equation (2) is called the singular value
decomposition of matrix A. The singular values of A are diagonal elements of Σ (i.e.,
σ1, σ2, ..., σn). The columns of U are called left singular vectors and those of V are
called right singular vectors (Datta, 1995; Golub and Van Loan, 1993).

The SVD can be used effectively to extract certain important properties relevant to the
structure of a matrix, such as the number of independent columns or rows, eigenvalues,
approximation matrix and so on (Datta, 1995; Golub and Van Loan, 1993). Since the
singular values of the matrix A are in an non-increasing order, it is possible to choose
a proper parameter k such that the last r − k singular values are much smaller than the
first k singular values, and these k singular values dominate the decomposition. The next
theorem reveals this fact.

Theorem [Eckart and Young]. Let the SVD of A be given by (2) and U = [u1, u2, . . . ,

um], V = [v1, v2, . . . , vn] with 0 < r = rank(A) � min(m, n), where ui, 1 � i � m

is an m-vector, vj , 1 � j � n is an n-vector and

σ1 � σ2 � ... � σr > σr+1 = ... = σn = 0.

Let k � r and define

Ak =
k∑

i=1

ui · σi · vT
i . (3)

Then

1.rank(Ak) = k.
2. min

rank(B)=k
||A − B||2F = ||A − Ak||2F = σ2

k+1 + ... + σ2
r .

3. min
rank(B)=k

||A − B||2 = ||A − Ak||2 = σk+1.

where ||A||2F =
∑n

j=1

∑m
i=1 |aij |2 and ||A||22 = max(eigenvalues of AT A) are mea-

surements of matrix A.

The proof of the above theorem can be found in (Datta, 1995). This theorem indi-
cates that matrix Ak, which is constructed from partial singular values and vectors, is the
best approximation matrix to A (i.e., Conclusions 2 and 3 of the Theorem) with rank k

(Conclusion 1 of the Theorem). In other words, Ak captures the main information of A

and trivial information in A is filtered. This important property has potentials in many
application areas, such as filtering noise data from a data set and, in turn, reducing data
set size in data processing.

It is recognized by many researchers that biological experiments (e.g., microarray ex-
periments) usually produce a lot of noise data, and in most cases the amount of biological
data is huge (Yang et al., 2006). With the above property, SVD could deal with these
noise data related problems provided the original correlations among the concerned ob-
jects (such as genes and conditions) could be modeled into a matrix. On the other hand,
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since k � r and matrix Ak only contains partial matrix elements of the original matrix
A, the computation cost of an algorithm that is based on Ak could be reduced.

8.2. Case 1: Eliminating Noise Information in Microarray Data Processing

In a microarray experiment, some genes are expected to be differentially modulated in
tissues under different conditions, with their expression levels increased or decreased to
signify the experimental conditions (Yang et al., 2006). These discriminatory genes are
very useful in clinical applications and should be selected and classified from the data set.
On the other hand, however, a number of genes in a microarray experiment are house-
keeping genes and are unrelated to the classification task (Xiong et al., 2001). Further
more, microarray experiments might produce a lot of noise data due to various factors
beyond control. These noise data and unrelated genes could distort those related genes in
data analysis and cause the analysis results meaningless. Eliminating noise information
is therefore necessary in biological data processing.

With the proposed matrix-based model, noise genes could be eliminated by making
use of the merit of SVD of a matrix. Actually, in the matrix-based model, we define two
sets of information entities E1 and E2 as:

E1 = {genes}, E2 = {experiment conditions}.

Accordingly, we define the correlation information for E1 and E2 as CI = {expression
level values}. We assume the sizes of E1 and E2 are m and n respectively. Therefore the
correlation relationship (E1 ��E2) ← CI is mapped into a matrix A = (aij)m×n, where
each row represents a gene, each column represents a condition, and aij is the expression
level value of gene i under the condition j. Since A is a real matrix, there is a SVD of A

such that

Am×n = Um×mΣm×nV T
n×n.

Suppose the rank of matrix A is rank(A) = r, the singular values in the matrix Σm×n

are as follows:

σ1 � σ2 � ... � σr.

For a given threshold δ(0 < δ � 1), we choose a parameter k such that

(σk − σk+1)/σk � δ,

and denote

Uk = [u1, u2, ..., uk]m×k, Vk = [v1, v2, ..., vk]n×k, Σk = diag(σ1, σ2, ..., σk),

where ui = (u1i, u2i, . . . , umi)T , vi = (v1i, v2i, . . . , vmi)T .
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Let

Ak = UkΣkV T
k .

As indicated in the above theorem, Ak is the best approximation matrix to A with rank k.
Therefore we use the matrix Ak to take the place of A for further data processing. From
the properties of SVD, it can be seen that replacing A with Ak filters noise information in
the original microarray data, and the matrix Ak more reasonably reflects real situations
in gene expressions.

Based on the matrix Ak, a number of algorithms could be proposed to further process
microarray data. For example, the work of gene selection in (Yang et al., 2006) could
be improved by proposing a new algorithm on the matrix Ak instead of the original
correlation matrix A. Here, however, we propose another approach for eliminating those
genes that are affected by noise data.

In terms of similarity, each gene could be mapped from the matrix Ak into a k-
dimensional vector in another space, i.e., gene i(gi) is the row i of the matrix UkΣk

gi = (ui1σ1, ui2σ2, ..., uikσk), i = 1, 2, . . . , m.

We define the centroid of all genes as a k-dimensional vector c = (c1, c2, . . . , ck) where

ci =
m∑

j=1

ujiσi/m, i = 1, 2, . . . , k.

The similarity between a gene gi and the centroid is defined as

si =
|(gi, c)|

||gi||2 · ||c||2
, i = 1, 2, . . . , m,

where

(gi, c) =
k∑

j=1

uijσjcj , ||gi||2 =
√

(gi, gi), ||c||2 =
√

(c, c).

Let ε =
∑m

i=1 si/m, a gene i that satisfies the condition si < ε is considered as a noise
affected gene and is eliminated from the gene data set.

This SVD-based data processing makes it possible to eliminate noise information in
the original data set (via replacing A with Ak), and eliminate those noise-affected genes
(via mapping genes into another k-dimensional sub-space). This algorithm is also a case
of reducing data set size by SVD-based operations.

8.3. Case 2: Reconstructing Protein-Protein Interaction Networks

Schwikowski et al. (2000) used published protein interaction data of the yeast Saccha-
romyces cerevisiae from public databases (Costanzo et al., 2000; Mewes et al., 2000)
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to generate a yeast protein-protein interaction network. With this network, some func-
tions of uncharacterized proteins could be predicted from the functions of characterized
interaction partner proteins.

For the reliability evaluation of the generated network in predicting protein functions,
it was reported that for 1,393 characterized proteins, whose functions are known from the
database, only 72% of them were correctly predicted in terms of the correctness defined
in (Schwikowski et al., 2000). There are more than one-quarter of characterized proteins
could not be correctly predicted. One reason behind it is that there are unknown biological
connections that could not be revealed from this directly generated interaction network
(Schwikowski et al., 2000).

Actually, the work in (Schwikowski et al., 2000) just used the direct interaction data
between proteins to construct the network and predict functions for uncharacterized pro-
teins. The interaction transitivity was not taken into account, which might cause predic-
tion incorrect for some characterized proteins. With the matrix-based model and accom-
panying algorithms in the above sections, the reconstruction of protein-protein interaction
network could be improved as follows.

The functions of a protein are predicted in this way (Schwikowski et al., 2000): if the
protein has at least one characterized interaction partner, the functions of the partner(s)
are sorted by frequency. The most frequent functions (e.g., at most three) of the partners
are selected as indicators of functions of the protein. In other words, the partners predict
the functions of the protein.

With the matrix-based model, we define the entity sets E1 and E2 as E1 = E2 =
{proteins}, while the correlation information CI = {prediction}. Suppose the size of
E1 and E2 is m, the proteins involved in network construction are modeled into a ma-
trix A = (aij)m×m, where aij is the prediction (correlation) degree of protein i for
protein j. Its value is determined by the contribution percentage of protein i in the pre-
diction of functions of protein j. In terms of the regulation weight, which is equivalent
to the page weight defined in Section 5, aij is also the prediction (regulation) weight of
protein i for protein j. For a protein k that is directly predicted by protein j with the
prediction degree ajk, the indirect prediction from protein i to protein k is then defined
as f(aij , ajk) = aij × ajk. In this way, if an uncharacterized protein has characterized
interaction partners, its functions could be predicted and this protein becomes a char-
acterized one. This prediction transitivity is implemented via the function f . After all
transitive predictions are determined by the shortest transitive path finding algorithm in
Section 6, we can go further to perform matrix based operations to find out those proteins
(predictors) that most likely predict other proteins, and those proteins that are most likely
predicted by the predictors. This algorithm actually consists of the following three steps,
two of which have been described above:

Step 1. Map the original direct interaction and prediction information into a matrix
A = (aij)m×m.

Step 2. Apply the transitive path finding algorithm in Section 6 to improve the predic-
tion between proteins. For simplicity, we still denote the improved matrix which contains
the transitive predictions as A = (aij)m×m. This improved matrix is also an improved
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protein-protein interaction network. In addition to improving the results in (Schwikowski
et al., 2000) at this step, we can go further in the following Step 3 to find more from this
improved network.

Step 3. Find out predictors and most likely predicted proteins. We define an m-
dimensional vector x = (x1, x2, . . . , xm)T , where xi represents the weight of protein
i being a predicted protein, and another m-dimensional vector y = (y1, y2, . . . , ym)T ,
where yi represents the weight of protein i being a predictor. Let z be an initial vector
(1, 1, 1, . . . , 1)T ∈ Rm. We conduct the following iterations for two vectors x and y:

x(k) = (AT A)k−1AT z, y(k) = (AAT )kz, k = 1, 2, 3, . . . ,

where x(k) and y(k) are the kth iteration vectors of x and y respectively, AT is
the transposition of matrix A. Kleinberg (1999) proved that the vector sequence
{x(1), x(2), x(3), . . .} converges to the principal eigenvector of AT A, and the vector se-
quence {y(1), y(2), y(3), . . .} converges to the principal eigenvector of AAT . Thus the
termination of the iteration is guaranteed.

After the above iteration reaches a steady point (i.e., values of vectors x(k) and y(k)

will not change any more), we choose those proteins with the highest values in vector
y as predictors, while those proteins with the highest values in vector x as the most
likely predicted proteins. These two kinds of proteins would play more important roles in
biological experiment design and observation.

The above algorithm takes into account the transitive interaction between proteins, as
well as mutual regulation relationships among concerned proteins. A similar algorithm
in (Kleinberg, 1999) was successfully applied to finding authority and hub web pages in
the context of hyperlinks.

9. Other Applications

In this section, we present some other applications of the proposed matrix-based model,
which demonstrate the potentials of the model in various areas.

Noise Page Elimination

This problem arises from a web application that intends to find hub and authority pages
from a data space (Kleinberg, 1999). As indicated in many works (Chakrabarti et al.,
1998; Bharat and Henzinger, 1998; Dean and Henzinger, 1999), the data space of this
application usually contains pages/hyperlinks that are not related to the concerned topics.
These pages are called noise pages. If these pages are in high linkage density, they will
dominate the hub/authority page finding algorithm and the hub/authority found by the
algorithm might be irrelevant to the concerned topics. This phenomenon is called topic
drift.

To eliminate noise pages from the data space, we (Hou and Zhang, 2002) proposed
a noise page elimination algorithm (NPEA) that is based on this matrix-based model.
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The data space is the same as that of (Kleinberg, 1999) which is constructed using the
parent/child page selection method. Actually, the data space construction begins with a
selection of root page set R, R is then grown by adding parent/child pages of R to form
the final data space B. For eliminating noise pages, two matrices are built to model two
correlation expressions: one for (R��R) ← CI , another one for ((B−R)��R) ← CI ,
where CI = {hyperlinks}. Based on these matrices, NPEA algorithm uses singular value
decomposition (SVD) of matrix to eliminate noise factors in R and B − R, and use this
purified R as a reference system to eliminate noise pages from B −R. The experimental
evaluation of this algorithm shows the effectiveness of this algorithm.

Relevant Page Finding

This application problem is described as follow (Hou and Zhang, 2003a; Dean and Hen-
zinger, 1999): given a web page u, find a set of pages that are semantically related to it.
The key issue of this application is how to construct a data space for this given page such
that the data space is rich in semantic related pages and is of reasonable size. In the work
of Hou and Zhang (2003a), the data space is constructed from a special root set which
only contains this given page u. Then the parent/child and child/parent page selection
method is used to construct the required data space. This construction also incorporates
techniques of dealing with malicious hyperlinks. Within this data space, C ={child pages
of u}, P = {parent pages of u}, FS ={parent pages of C} and B = {child pages of P}.
The extended co-citation algorithm of Hou and Zhang (2003a) finds relevant pages di-
rectly from FS and BS. Another algorithm, latent linkage information (LLI) algorithm,
of Hou and Zhang (2003a) is based on matrix models. Two matrices are built to model
two correlation expressions: one for (FS � �C) ← CI , another is for (BS � �P ) ← CI ,
where CI = {hyperlinks}. Relevant pages are found by LLI algorithm which takes ad-
vantage of SVD of these two matrices. It was found in the experiments that extended
co-citation algorithm and LLI algorithm are able to find more semantic web pages.

Non-Web Applications

One of the representatives of this kind of applications is matrix based textual informa-
tion retrieval (Berry et al., 1995; Deerwester et al., 1990), which intends to find semantic
related documents from their keywords even if these documents do not share the same
keywords. The corresponding method is called Latent Semantic Indexing (LSI). In LSI,
E1 = {documents}, E2 = {keywords} and CI = {weighted keywords}. A matrix is
constructed to model this correlation expression (E1 � �E2) ← CI . SVD is then ap-
plied to this matrix to reveal important associative relationships between keywords and
documents that are not evident in individual documents. As a consequence, an intelligent
indexing for textual information is implemented. Papadimitriou et al. (1997) studied the
LSI method using probabilistic approaches and indicated that LSI in certain settings is
able to uncover semantically “meaningful” associations among documents that are with
similar patterns of keyword usage, even when they do not actually use the same keywords.
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10. Conclusions

The matrix-based model proposed in this work could be widely used in various applica-
tion areas, such as web page community construction and biological data processing. To
guarantee the effectiveness and success of the model, a data space should be carefully
constructed, and the correlation information for representing the relationship between
data objects in the data space must be identified. In the context of web page hyperlink
analysis, data space construction depends on web application requirements, and corre-
lation information should consider hyperlink transitivity and transitivity decline rate in
some cases. For biological data processing, regulatory or interaction transitivity between
biological objects such as genes and proteins should be addressed as well. Many success-
ful applications demonstrate the effectiveness and potentials of this matrix-based model
in different areas. The related aspects of this model are also challenge research areas
within which many problems need to be solved in the future. Further evaluations of those
proposed algorithms in biological data processing need to be conducted in the near fu-
ture, although some similar algorithms have already been successfully applied to other
practical situations.
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Matricinis žiniatinklio puslapi ↪u bendruomenės sudarymo modelis ir
daugiau

Jingyu HOU

Greitas tinklo technologij ↪u vystymas padarė žiniatinkl↪i milžinišku informacijos šaltiniu su
savom charakteristikom. Daugumoje atveju duomen ↪u bazi ↪u technologijos jau yra netinkamos ži-
niatinklio informacijos apdorojimui ir valdymui. Efektyviam žiniatinklio informacijos apdorojimui
ir valdymui reikia atskleisti būdingus žiniatinklio informacijos objekt ↪u, toki ↪u kaip žiniatinklio pus-
lapiai, ryšius/struktūras. Šiame darbe žiniatinklio puslapi ↪u, turinči ↪u būdingus ryšius, aibė vadinama
žiniatinklio puslapi ↪u bendruomene. Šis straipsnis siūlo matricin↪i model↪i ryši ↪u tarp dominanči ↪u ži-
niatinklio puslapi ↪u aprašymui. Remiantis šiuo modeliu būdingi puslapi ↪u ryšiai gali būti atskleisti,
ir žiniatinklio puslapi ↪u bendruomenė gali būti sudaryta. Su modelio taikymu susij ↪e klausimai yra
giliai ištirti. Bendruomenės ir būding ↪u ryši ↪u s ↪avokos bei pasiūlytas matricinis modelis yra vėliau
išplėsti ↪i kitas taikym ↪u sritis, tokias kaip biologini ↪u duomen ↪u apdorojimas. Keli modelio taikymo
atvejai plačiame sriči ↪u diapazone yra pristatyti, demonstruojant šio matricinio modelio potencial ↪a.


