
INFORMATICA, 2007, Vol. 18, No. 2, 289–304 289
© 2007 Institute of Mathematics and Informatics, Vilnius

Formal Verification for C Program ∗

Junyan QIAN1,2, Baowen XU1

1Department of Computer Science and Engineering, Southeast University
Nanjing 210096, China
2Department of Computer Science, Guilin University of Electronic Technology
Guilin 541004, China
e-mail: qjy2000@guet.edu.cn, bwxu@seu.edu.cn

Received: March 2006

Abstract. Iterative abstraction refinement has emerged in the last few years as the leading ap-
proach to software model checking. We present an approach for automatically verifying C programs
against safety specifications based on finite state machine. The approach eliminates unneeded vari-
ables using program slicing technique, and then automatically extracts an initial abstract model
from C source code using predicate abstraction and theorem proving. In order to reduce time com-
plexities, we partition the set of candidate predicates into subsets, and construct abstract model
independently. On the basis of a counterexample-guided abstraction refinement scheme, the ab-
straction refines incrementally until the specification is either satisfied or refuted. Our methods can
be extended to verifying concurrency C programs by parallel composition.

Key words: program verification, predicate abstraction, model checking.

1. Introduction

Currently code validation falls into two categories: testing and formal verification. Formal
verification mainly includes two methods: theorem proving and model checking. Theo-
rem Proving requires considerable expertise to guide and assist the verification process,
and can not generate counter-examples that are useful for debugging when the verifi-
cation fails. Model Checking (Clarke et al., 1999) is an automatic formal verification
technique for a finite state system, where all the states of the system are exhaustively
enumerated and the correctness condition checked at each state. Moreover, model check-
ing yields extremely useful counter examples if it fails. It has proven effective in detecting
errors in hardware designs. Software model checking could produce major enhancements
in software reliability and robustness. However, the state space of software programs is
typically so huge that they cannot be directly model checked with conventional model
checking methods. Fortunately, applying mathematically abstraction methods might ex-
tract a reduced model from a program which makes model checking feasible.

*This work is supported by National Outstanding Young Scientists Foundation of China under Grant
No. 60425206, Natural Science Foundation of China under Grant No. 60663005, No. 60633010, The High
Technology Research Project of Jiangsu Province of China under Grant No. BG2005032, Guangxi Natural
Science Foundation of China under Grant No. 0542036.



290 J.Y. Qian, B.W. Xu

Abstraction (Clarke et al., 1994) has been widely used to make model checking more
efficient for large systems. Our method is based on Predicate Abstraction presented firstly
by Graf and Saidi (Graf and Saidi, 1997), which is a special kind of Abstract Interpreta-
tion (Cousot and Cousot, 1977), where the abstract domain is constructed using a given
set of predicates, i.e., a potentially unbound data type is abstracted to a finite set of points.

Predicate abstraction has been popularly and widely applied to systematic abstraction
of programs in recent years. Each predicate is represented by a Boolean variable in the
abstract program, while the original data variables are eliminated. When model checking
of the abstract program fails it may produce a counterexample that does not correspond
to a concrete counterexample which is called a spurious counterexample. Consequently,
the set of predicates is refined heuristically, and a new abstraction is computed.

Iterative abstraction refinement has emerged in the last few years as the leading ap-
proach to software model checking. A framework for software model checking works as
follows (Corbett et al., 2000; Saidi, 2000; Ball and Rajamani, 2001).
Step 1 (Abstraction). Create an abstraction A of the program C such that C conforms to

A by construction.

Step 2 (Verification). The abstraction model A is checked automatically against the de-
sired property φ. If A |= φ, i.e., φ is satisfiable in A, then the verification is suc-
cessful; otherwise, an abstract counterexample is automatically produced, whose
spuriousness must be checked. If the counterexample is not spurious, a concrete
counterexample is reported and the verification process stop; otherwise go to the
next step.

Step 3 (Refinement). Because the chosen set of predicates is not enough to prove pro-
gram correctness, and results in the failure to concretize the abstract counterex-
ample, new predicates are discovered and added to refine abstract model using the
spurious counterexample. Go to Step 1.

Model checking program is the automatic process of deciding whether a program sat-
isfies a given specification or property, and should yield a “yes” or “no” answer. For the
sake of simplicity, we focus on the automatic abstraction method for verifying sequential
C programs. The method eliminates unneeded variables using program slicing technique,
and then automatically extracts an initial abstract model from C source code using predi-
cate abstraction and theorem proving. In order to reduce time complexities, we partition
the set of candidate predicates into subsets, and construct abstract model independently.
Moreover our method can be extended to verifying concurrency C programs.

Relate work. Predicate abstraction was first introduced by Graf and Saidi in (Graf and
Saidi, 1997). During the last years, predicate abstraction (Clarke et al., 2003; Bensalem
et al., 1998; Das et al., 1999; Henzinger et al., 2002; Ball and Rajamani, 2001) is being
used in software model checking such as Bandera (Corbett et al., 2000), Java PathFinder
(Havelund and Pressburger, 2000), SLAM (Ball et al., 2001; Ball and Rajamani, 2001),
MAGIC (Chaki et al., 2003a; Chaki et al., 2004) and BLAST (Henzinger et al., 2002),
where the first two focus on Java while the last three all deal with C program. The systems
are increasingly able to handle industrial software. In SLAM project, an abstract Boolean
program is constructed based on the abstraction predicates, then the Boolean program is



Formal Verification for C Program 291

model checked to see if error states are ever reachable. In contrast to SLAM which uses
symbolic algorithms, BLAST is an on-the-fly reachability analysis tool, and MAGIC uses
LTS as specification formalism.

The abstraction refinement process has been automated by the Counterexample
Guided Abstraction Refinement paradigm (Clarke et al., 2000), or CEGAR for short.
The notion of CEGAR was originally described by Kurshan (Alur et al., 1995) for model
checking finite state models. Counterexample guided refinement has even been used with
predicate abstraction by Lakhnech et al. (Lakhnech et al., 2001). One starts with a coarse
abstraction, and if it is found that an error-trace reported by the model checker is not real-
istic, the error trace is used to refine automatically the abstract program, and the process
proceeds until no spurious error traces can be found.

The remainder of this paper is organized as follows. The next section introduces
briefly some preliminary notations, while Section 3 gives the pretreatment of C programs
before constructing abstract model. Section 4 constructs an initial abstract model from
C program. Section 5 gives a method for partitioning the set of candidate predicates into
subsets. Section 6 discusses refining abstract model by CEGAR. Finally, Section 7 pro-
vides our conclusions.

2. Preliminaries

2.1. Abstraction

Abstraction is a general proof technique where a system is first simplified, then the sim-
plified system is analyzed, and the results are transferred back to the original system.
Since a simplified system is analyzed, the proof is easier to do. Abstraction has been
widely applied in program analysis, compilation and verification. For model checking,
a general application of program abstractions is to reduce the complexity of a program
model in order to overcome the state-space explosion problem. Abstraction techniques
reduce program state space by mapping the set of states of the actual system to a set of
abstract states.

When model checking programs using abstraction, the main concern is that the ab-
stractions must be property-preserving. There are two forms of property preservation:
Weak Preservation and Strong Preservation. An abstraction is weak property preserv-
ing if a set of properties true in the abstract system has corresponding properties in the
concrete system that are also true, while an abstraction is strong preserving if a set of
properties with truth values either true or false in the abstract system has corresponding
properties in the concrete system with the same truth values.

It is usually difficult and expensive to compute a precise abstraction directly. In or-
der to reduce the complexity, approximation is often used. There are mainly two forms
of approximation abstraction: over-approximation and under-approximation. In over-
approximation, more behaviors are added in the abstract system than are present in the
concrete system. This approach provides a very popular class of weakly preserving ab-
stractions for universally quantified path properties. However, over-approximation of-
ten only works well for safety (or invariant) properties. In under-approximation, some



292 J.Y. Qian, B.W. Xu

behaviors are removed when going from the concrete to the abstract system. Under-
approximation is also often found in the construction of an environment for a system to
be checked. In this article, we focus on weak preservation, over-approximation method
of abstraction.

2.2. Notation

Let S1 and S2 be sets of states, and let f be a function mapping the powerset of S1

to the powerset of S2, i.e., f : 2S1 → 2S2 . The dual of the function f is defined to be

f̃(X) = f(X) , where the overbar indicates complementation in the appropriate set of
states.

DEFINITION 1. Let ρ be a relation over S1 × S2 defined in the usual way as a set of
pairs, the pre-image function pre[ρ]: 2S1 → 2S2 and the post-image function post[ρ]:
2S2 → 2S1 under the relation ρ are defined as follows:

pre[ρ](A) =
{
s1 ∈ S1 | s2 ∈ A, ρ(s1, s2)

}
,

post[ρ](B) =
{
s2 ∈ S2 | s1 ∈ B, ρ(s1, s2)

}
.

The dual function p̃re[ρ](A) is defined by p̃re[ρ](A) = S1\p̃re[ρ](S2\A).
To reason about a concrete state machine and an abstraction of that machine, we will

use the concept of a Galois connection to establish a relationship between the set of
concrete states S1 and the set of abstract states S2.

DEFINITION 2. Let IdS denote the identity function on the powerset of S. A Galois
connection from 2S1 to 2S2 is a pair of monotonic functions (α, γ), where α: 2S1 → 2S2

and γ: 2S2 → 2S1 , such that IdS1 ⊆ γ ◦ α and α ◦ γ ⊆ IdS2 .

For any Galois connection (α, γ) from 2S1 to 2S2 , we have,γ(Y ) =
⋃
{X ∈ 2S1 |

α(X) ⊆ Y }, α(X) =
⋂
{Y ∈ 2S2 | X ⊆ γ(Y )}. The functions α and γ are often

called respectively the abstraction function and the concretization function. The Galois
connection that we will be using in this paper is described in the following proposition.

Theorem 1 (Loiseaux et al., 1995). Given a relation ρ ⊆ S1 × S2, the pair
(post[ρ], p̃re[ρ]) is a Galois connection between 2S1 and 2S2 , and denoted by (αρ, γρ).

Sometimes, we abbreviate (α, γ) when the relation ρ is clear from the context.

2.3. Weakest Preconditions

For a statement s and a predicate p, let WP(s, p) denote the weakest precondition (Ball
and Rajamani, 2001) of p with respect to a given statement s. WP(s, p) is defined as
the weakest predicate whose truth before s entails the truth of p afterwards. Consider an
assignment s of the form x = e, where x is a variable and e is an expression. Then the



Formal Verification for C Program 293

weakest precondition rule says that WP(x = e, p) is obtained from p by replacing all
occurrences of x in p with e, denoted p[e/x]. For example, WP(x = x + 1, x < 5) =
(x + 1) < 5 = x < 4. Therefore, (x < 4) is true before x = x + 1 executes if and only
if (x < 5) is true afterwards. WP for assignments is defined as follows:

WP(x = e, p) = p[e/x].

Give a statement s, a set of predicates P , and predicate p ∈ P , it may be the case that
WP(s, p) is not in P . For example, suppose P = (x < 5), (x = 2). We have seen that
WP(x = x + 1, x < 5) = x < 4, but the predicate (x < 4) is not in P . Therefore,
we need to use theorem prover to limit the weakest precondition to level of an expression
over the predicates in P . In the example, we can show that x = 2 ⇒ x < 4. Therefore if
(x = 2) is true before x = x + 1, then (x < 5) is true afterwards.

Consider the case of pointers, WP(x = e, p) is not necessarily p[e/x]. For example,
WP(x = 3, y > 5) is not (∗y > 5) because if x and ∗y are aliases, then (∗y > 5) cannot
be true after the assignment to x. A similar problem occurs when a pointer dereference is
on the left-hand side of the assignment. In order to handle the problems, we consider two
cases: either x and y are aliases, or they are not. If x and y are aliases, then we replace
every occurrence of y in p with e; otherwise, we will leave predicate p unchanged. In the
example above, we have WP(x = 3, ∗y > 5) = (&x = y ∧ 3 > 5)(&x 	= y ∧ ∗y > 5).

3. Pretreatment of C Programs

Before constructing an abstract model of program, we first eliminate unneeded variables
using program slicing technique, and then restrict C programs to a simple intermediate
form.

3.1. Program Slicing

Analogously to the method of (Holzmann, 2000), we remove irrelevant variable for
checking a given property using program slicing (Tip, 1995) which is used to reduce a
source program to a smaller fragment. Statements of interest, called the slicing criterion,
can be obtained by the set of variable names which occur in the temporal logic formula
being verified. Slicing algorithms are based on data and control dependency analysis of
the program text.

The intention of the program slicing is to identify those parts of the program that are
irrelevant with respect to the properties to be proven. While checking a specification φ

on a program C, we first use slicing to remove the statements of C that do not affect the
satisfaction of φ. We require that the specification φ hold for program C if and only if φ

hold for the slice of program C, i.e., the slice of program C is both sound and complete
with respect to φ.

We always apply the program slicing automatically before constructing abstract
model using predicate abstraction.



294 J.Y. Qian, B.W. Xu

3.2. Restrictions on C Programs

Before applying predicate abstraction, we assume that the C program has been translated
into a simple intermediate form in which: (1) all intraprocedural control-flow is accom-
plished with if-then-else statements and goto; (2) all expressions are free of side-effects
and short-circuit evaluation and do not contain multiple dereferences of a pointer; (3) a
function call only occurs at the top-most level of an expression (for example, z = x+f(y)
is replaced by t = f(y), z = x + t). We use the CIL compiler infrastructure (Necula et
al., 2002) as a front end to parse C programs.

Our method can analyze all C syntactic structure, including pointers, structures and
procedures. Without loss of generality, we can assume that there are only six kinds of
statements in C: assignments, if-then-else branches, goto, call, return and exit-procedure.

4. Constructing the Abstract Model

In this section we describe the process for creating an abstract framework that can be
applied in model checking given a C program and an initial set of predicates P .

4.1. Control Flow Graph

Given a sequential program C consisting of n statements and p procedures, we assign to
each statement a unique index from l0 to ln−1, and to each procedure a unique index from
ln to ln+p−1. For the sake of simplicity, we assume that both variable’s and label’s names
are globally unique in C. We also assume the existence of a procedure called main: it is
the first procedure to be executed. As a running example, we use the C program shown in
Fig. 1.

The control flow graph CFG is a finite directed graph describing the flow of control in
program. The nodes of the CFG are called control locations and correspond to the values
of the program counter. The edges denote transfer of control locations. Intuitively, the
control flow automaton CFA can be obtained by viewing the CFG of a program C as an
automaton where the states of a CFA correspond to control locations and the transitions
between states in the CFA correspond to the control flow between their associated control

Fig. 1. A simple C program.



Formal Verification for C Program 295

Fig. 2. The CFA of the program shown in Fig. 1. Each location is labelled by the corresponding statement label.
The location s are also labelled with inferred predicates when P = p1 where p1 = (x == 0).

locations in the program. The CFA can be seen as a conservative abstraction of C’s control
flow, i.e., it allows a superset of the possible traces of C. Formally, let Stmt be the set of
statements of C, a CFA of C is a 4-tuple (C, I, T, L), where C is a set of control locations,
I ∈ S is an initial location, T ⊆ S×S is a set of transitions, L: C → Stmt is a labelling
function. The transitions between control locations reflect the flow of control between
their labelling statements.

For describing conveniently, each statement of a procedure call will be splitted into
two sub-statements labelled lc and lr, where lc denotes pre-procedure call and lr denotes
after-procedure return. Each procedure has an exit procedure location labelled the exit-
<procedure-name>. The CFA of the program in Fig. 1 is shown in Fig. 2. Each location
is labelled by the corresponding statement label. Therefore the control locations of the
CFA are l0, ..., l12 with l0 being the initial location, l11 and l12 being the exit procedure
location.

4.2. Predicate Abstraction

The basic idea of predicate abstraction is to represent a concrete variable using a Boolean
variable whose value depends on an expression over the concrete variable itself. In pred-
icate abstraction, the main challenge is to identify the predicates that are necessary for
proving the given property. A set P = {p1, ..., pk} of the pure Boolean C expressions
called predicates, includes those in the property to be verified, are identified from the
concrete program. They also serve as the atomic propositions that label the states in
the concrete and abstract transition systems. That is, the set of atomic propositions is
AP = {p1, ..., pk}. A state in the concrete system will be labelled with all the predicates
it satisfies. Each predicate pi is associated with a Boolean variable bi that represents its



296 J.Y. Qian, B.W. Xu

truth value. So each abstract state is a valuation of these k Boolean variables. An abstract
state will be labelled with predicate pi if the corresponding bit bi is 1 in that state.

The predicates are also used to define a total function ρ between the concrete and
abstract state spaces. A concrete state s will be related to an abstract state sA through ρ

if and only if the truth value of each predicate on s equals the value of the corresponding
Boolean variable in the abstract state sA. Formally,

ρ(s, sA) =
∧

i∈[1,k]

pi(s) ⇔ bi(sA).

Let ρ be an abstraction function. Based on Section 2.2, the pair of functions post[ρ]
and p̃re[ρ] generated from relation ρ forms a Galois connection. We will denote this
Galois connection by (α, γ).

DEFINITION 3. Assume the set of concrete states SC and the set of abstract states SA,
s ∈ SC , sA ∈ SA, The abstraction and concretization functions, α: SC → SA and γ:
SA → SC are defined as, α(s)(bi(sA)) = pi(s), γ(sA)(s) =

∧
i∈[1,k] pi(s) ⇔ bi(sA).

Using this ρ, we can build an abstract model which simulates the concrete model.
A valuation of P is a vector �v = v1...vk of Boolean values, such that vi expresses the
Boolean value of pi. V denotes the set of all valuations, i.e., the set of abstract memory
states. Intuitively, a valuation typically models many concrete memory states. Given a
valuation �v = v1...vk, the concretization γ(�v)(s) is defined as

∧
i∈[1,k] pi(s) ≡ vi, where

pi(s) ≡ vi is equal to pi if vi is true, and equal to ¬pi if vi is false. For example, P
contains a single predicate (x == 0) and there has two valuations 0 and 1, so γ(0) =¬

(x == 0) and γ(1) = (x == 0). That is, Boolean valuation 0 models all concrete states
where the variable x is not equal to 0 while Boolean valuation 1 models all concrete states
where the variable x is equal to 0.

For the construction of abstract model A, we combine the control flow graph and the
predicate abstraction to obtain the state space C × V . A state of A is a pair 〈c, �v〉, where
c ∈ C and �v ∈ V . By computing the weakest precondition WP of a predicate p relative
to a given statement s, we construct the Pc associated with each control location c of the
CFA a finite subset of P .

For describing predicate abstraction of procedure call, we define Globals(C) as the
set of global variables of C. Let PG denote the global predicates of P . For a procedure
R, Let PR denote the subset predicates in P that are local to R; FR is the set of formal
parameters of the procedure R; LR is the set of local variables and formal parameters of
the procedure R, while sLR is the set of strictly local variables (i.e., without the formal
parameters) of the procedure R. Finally, FirstR is the index of the first statement of
procedure R, and Proc(li) is the procedure belonging to the statement L(li).

Firstly, we determine the signature of each procedure. Let vars(e) be the set of
variables referenced in expression, and drfs(e) be the set of variables dereferenced in
expression e. The signature of procedure R is a four-tuple 〈FR, rR,PR

f ,PR
r 〉, where



Formal Verification for C Program 297

Fig. 3. The algorithm of predicate inference.

FR is the set of formal parameters of the procedure R; rR ∈ LR is the return vari-
able of the procedure R; PR

f is the set of formal parameter predicates, defined as
{e ∈ PR | vars(e) ∩ sLR = ∅}; and PR

r is the set of return predicates, defined as
{e ∈ PR | (rR ∈ vars(e) ∧ (vars(e)\rR ∩ sLR = ∅)) ∨ (e ∈ PR

f ∧ (vars(e) ∩
Globals(C) 	= ∅ ∨ drfs(e) ∩ FR 	= ∅))}.

The process of constructing Pc is known as predicate inference and the algorithm is
described in Fig. 3.

The effectiveness of predicate abstraction relies critically on the set of predicates,
so we select atomic proposition from given property φ as an initial candidate set of
predicates. Assume that verify C |= AF(x == 1) for C program in Fig. 1, and then
P = {(x == 1)}. Fig. 2 show the CFA with each location c labeled by Pc. Then the
algorithm of predicate inference begin with Pl6 = {(x == 1)}. Form this it obtains
Plc2

= {(x == 1)}, and Plc9
= {(x == 1)}, and lead to Pl1 = Pl8 = Pl7 = {(x ==

1)},Pl0 = {(10 == 0)} = ∅, other equal to ∅. So far we have described a method for
computing the CFA and a set of predicates associated with each state of the CFA.

4.3. Construction Initial Abstract Automaton

We have described a method for computing the CFA of program and a set of predicates
associated with each location of the CFA. The states of the abstract model A correspond
to the various possible valuation of the predicate in each location. However, the gen-
eration of the abstract transition is done by calling a theorem prover for each potential



298 J.Y. Qian, B.W. Xu

assignment to the current and next state predicates. In order to obtain the most precise
transition relation, this requires an exponential number of calls to the theorem prover.

DEFINITION 4. The abstract model A of concrete program C is a 3-tuple (SA, IA, TA)
where:

• SA = C × V is the set of states,
• IA = INIT is the initial state,
• TA ⊆ SA × SA is the transition relation.

It is obvious that each location c of the CFA gives rise to a set of states of A, {c} ∈ Vc,
where Vc is the set of all predicate valuations of Pc. In the worst case, the size of A is
exponential in the size of P . In addition, A has a unique initial state INIT.

To compute the abstract transition relation it will often be necessary to determine
whether two C expression e and e′ are mutually exclusive using theorem prover. If we
cannot prove that there is no transition between their corresponding concrete states, then
a transition between two abstract states must be added. Therefore over-approximation
occurs when not enough information is available for the theorem prover to calculate a
deterministic next state. We can reduce to the problem of deciding whether ¬(e ∧ e′) is
valid. The theorem prover return true on ¬(e ∧ e′), then e and e’ are provable mutually
exclusive, denoted Mutu-Excl(e, e′). Otherwise the theorem prover return false or be-
yond the capabilities of the theorem prover, then the theorem prover could not prove that
e and e′ are mutually exclusive, denoted Mutu-Excl(e, e′).

The remaining part of this section describes a procedure to compute the abstract tran-
sition relation. We can add (〈c, �vc〉, 〈c′, �vc′〉) to TA if and only if (c, c ) T and one of the
following conditions hold:

• L(c) is the assignment statement and ¬Mutu-Excl(γ(�vc),WP(L(c), γ(�vc′))). In
other words, γ(�v′c′) and WP(L(c), γ(�v′c′)) can be not proved that they are mutually
exclusive;

• L(c) is the condition statement, L(c′) is its then successor, ¬Mutu-Excl(γ(�vc),
γ(�v′c′)) and ¬Mutu-Excl(γ(�vc), L(c));

• L(c) is the condition statement, L(c′) is its else successor, ¬Mutu-Excl(γ(�vc),
γ(�v′c′)) and ¬Mutu-Excl(γ(�vc),¬ L(c));

• L(c) is the goto statement or the after-procedure return statement, �v′c′ = �vc;
• L(c) is the pre-procedure call statement, c′ = FirstProc(L(c)) and ¬Mutu

-Excl(γ(�vc), γ(�v′c′));
• L(c) is the return statement. Let c’ be the unique successor location of c. Note that

L(c′) must be the exit procedure statement, then we include (〈c, �vc〉, 〈c′, �vc′〉) in
TA;

• L(c) is the exit procedure statement. There are no outgoing transitions form c if the
procedure is main function. Otherwise ¬Mutu-Excl(γ(�vc), γ(�v′c′)).

Consider the program described in Fig. 1. The abstract model for the program is
shown in Fig. 4.



Formal Verification for C Program 299

Fig. 4. The abstract model A of the program shown in Fig. 1.

4.4. Parallel Composition

When dealing with complex programs obtained by the parallel composition of simpler
programs, the application of this method requires the computation of the corresponding
global transition relation from which an abstraction can be computed. The question then
arises whether it is possible to compute abstractions of complex programs as the parallel
composition of abstractions of their components in order to avoid building the transition
relation associated with the complex program. This is guaranteed if the compositionality
property,

(C1 ≺ A1) and (C2 ≺ A2)
(C1 ‖ C2) ≺ (A1 ‖ A2)

holds, where ‖ is a parallel composition operator.

DEFINITION 5 (parallel composition). The parallel composition of transition systems
Ai = (Si

A, Ii
A, T i

A), i = 1, 2, denoted A1 ‖ A2, is the transition system (S‖
A, I

‖
A, T

‖
A),

where:

• S
‖
A = S1

A ‖ S2
A is the set of states. s = 〈c1, c2, �v1

c , �v2
c 〉 ∈ S

‖
A iff s1 = 〈c1, �v1

c 〉 ∈
S1
A, s2 = 〈c2, �v2

c 〉 ∈ S2
A;

• I
‖
A = 〈INIT 1, INIT 2〉 is the initial state;

• T
‖
A = T 1

A ‖ T 2
A is the transition relation, (s, s′) ∈ T

‖
A iff (s, s′) ∈ T i

A, for i = 1or2.



300 J.Y. Qian, B.W. Xu

5. Partitioning the Candidate Predicates

Since the construction of A from C involves predicate abstraction parameterized by a
set of predicates P , we write A(P) to denote the abstract model obtained via predicate
abstraction from C using the set of predicates P . For the sake of simplicity, we indicate
this explicitly by referring to Ai as A(Pi).

DEFINITION 6 (synchronous composition). The synchronous composition of transition
systems Ai = (Si

A, Ii
A, T i

A), i = 1, 2, denoted A1 ⊗ A2, is the transition system
(S⊗

A , I⊗A , T⊗
A ), where:

• S⊗
A = S1

A ⊗ S2
A ⊆ C × V1 × V2 is the set of states. s = 〈c, �v1

c , �v2
c 〉 ∈ S⊗

A iff s1

= 〈c1, �v1
c 〉 ∈ S1

A, s2 = 〈c2, �v2
c 〉 ∈ S2

A and c1 = c2 = c, i.e., the states that have the
same control location can be composed;

• I⊗A = INIT 1 × INIT 2 is the initial state;
• T⊗

A = T 1
A ⊗ T 2

A ⊆ S⊗
A ⊗ S⊗

A , (s, s′) ∈ T⊗
A iff (s|Si

A
, s′|Si

A
) ∈ T i

A, for i = 1, 2,

where s|Si
A

denotes the restriction of the state s to Si
A.

Theorem 2. Assume that two transition systems A = (SA, IA, TA) and Ã =
(S̃A, ĨA, T̃A) satisfy SA ⊆ S̃A and TA ⊆ T̃A, then Ã simulates A, i.e., A � Ã.

Proof. According to the definition of simulation relation, the proposition can be proofed
easily.

It is usually computationally expensive to compute predicate abstraction directly with
respect to P . In the worst case, the size of the state space in abstract model A is ex-
ponential in the size of P . Computing the transitions TA between the states requires a
theorem prover. Therefore, the worst time complexities for checking validities are expo-
nential as well. Instead of building A directly, Approximation is often used to reduce the
complexity. If a transition systems Ã = (SA, IA, T̃A) satisfies TA ⊆ T̃A, then we say
that Ã approximates A, denoted A � Ã. Intuitively, if Ã approximates A, then Ã is
more abstract than A, i.e., has more behaviours than A.

In order to make our method effective, the set of candidate predicates P can be parti-
tioned into a number of subsets P1, ...,Pn, abstracted independently. Therefore, we only
need to consider the effect of the abstraction of concrete program C on each subset Pi

separately, instead of the full abstract model on the set of predicates P . If we have n can-
didate predicates and partition them into two sets of n1 and n2 elements,respectively, we
only have to check for 2n1 + 2n2 validities instead of 2n validities.

We say that two predicates interfere with each other if there exists a variable appearing
in both of them. Let ≡ be the equivalence relation over P which is the reflexive, transitive
closure of the interference relation. The equivalence class of a predicate p ∈ P is denoted
by [p]. If two predicate p1 and p2 have non-disjoint set of variables, then [p1] = [p2].
That is, a variable cannot occur in the different equivalence class of predicates. By the
equivalence relation ≡, the set of predicates can be partitioned into some subsets.



Formal Verification for C Program 301

Assume each T i
A defines the transition relation for a predicate subset Pi. Then, we

apply abstraction to each separately, i.e., T̃A = T 1
A ⊗ ... ⊗ Tn

A. Finally, Ã is given by⊗
i∈[1,n] Ai. In general the abstract system computed using a partitioning has more tran-

sitions than the system A computed without using the partitioning. However, assume that
the set P of candidate predicates can be partitioned into sets P1, ...,Pn such that TA can
be written in the form T 1

A ⊗ ... ⊗ Tn
A, then, A = Ã =

⊗
i∈[1,n] Ai holds.

Theorem 3. Assume that A = (SA, IA, TA) denotes the abstract model obtained via
predicate abstraction from C using the set of predicates P , and Ai = (Si

A, Ii
A, T i

A)
denotes the abstract model obtained using the set of predicates Pi, such that the set of
predicates Pi is a partition of P (satisfying the cover property P =

∨
i∈[i,n] Pi and the

disjoint property ∀1 � i, j � n, i 	= j ⇒ Pi ∩ Pi = ∅), let Ã =
⊗

i∈[1,n] Ai, then

A = Ã.

Proof. Let Ã =
⊗

i∈[1,n] Ai = (S⊗
A , I⊗A , T⊗

A ), where S⊗
A =

⊗
i∈[1,n] S

i
A, I⊗A =

INIT1 × ... × INITn, and T⊗
A =

⊗
i∈[1,n] T

i
A. A = Ã if and only if the following

conditions holds:

• According to the definition of S⊗
A , s = 〈c, �v1

c , ..., �vn
c 〉 ∈ S⊗

A ⇔ s = 〈c, �vc〉 ∈ SA
such that �vc = 〈�v1

c , ..., �vn
c 〉, so SA = S⊗

A .
• I⊗A = INIT 1 × ... × INITn = INIT = IA is the initial state.

• Let s = 〈c, �v1
c , ..., �vn

c 〉 and s′ = 〈c′, �v′
1

c , ..., �v′
n

c 〉, for all 1 � i � n, (〈c,�vi
c〉,

〈c′, �v′
i

c〉) ∈ T i
A, i.e., (s|Si

A
, s′|Si

A
) ∈ T i

A, then (s, s′) ∈ T⊗
A ⇔ (s, s′) ∈ TA, so

TA = T⊗
A .

6. Refinement

The abstraction model A is checked automatically for the desired property φ. If A |= φ,
then the verification is successful; otherwise, an abstract counterexample is automatically
produced, and checked to see whether the counterexample is spurious. In this section we
present our approach to checking the validity of an abstract counterexample, and refining
our abstraction on the basis of the spurious counterexample.

6.1. Counterexample Validation

A trace τ of A is a finite sequence τ = 〈(c1, �v1), ..., (cn, �vn)〉 such that (i) for 1 � i �
n, (ci, �vi) ∈ SA, (ii) (c1, �v1) ∈ IA, and (iii) for 1 � i � n, ((ci, �vi), (ci+1, �vi+1)) ∈
TA. Each such trace τ gives rise to a corresponding concrete execution path γ(τ) =
〈L(c1), ..., L(cn)〉 in the actual C program. Given τ one can efficiently construct γ(τ)
and then check its validity, i.e., whether γ(τ) is actually possible in any execution of the
C program.

Given a abstract counterexample τ , there are two approaches to checking whether
γ(τ) is a valid trace of C- the backward traversal using weakest preconditions (Chaki,



302 J.Y. Qian, B.W. Xu

2003a) and the forward traversal based on strongest postconditions (Ball, 2002). We use
the backward traversal approach. Let γ(τ) = 〈L(c1), ..., L(cn)〉. We compute a set of
expressions ei for 1 � i � n, and start with en+1 = true and let ei be the weakest
precondition of ei+1 with respect to L(ci). Then γ(τ) is valid iff e1 is true.

If the abstract counterexample τ is not spurious, report the concretion counterexample
and stop; otherwise discover and add predicates to refine abstract model by the spurious
counterexample τ .

6.2. Refining Abstract Model

The effectiveness of predicate abstraction relies critically on the set of predicates, so we
try to discover suitable sets of predicates that is enough to prove or disprove a safety
property φ. The process of extracting a finite model from a C program using predicate
abstraction can be exponential in the number of predicates used. In order to make model
construction effective, one must eliminate redundant predicates and keep the set of pred-
icates as small as possible (Clarke et al., 2003).

If the abstract counterexample τ is spurious, by combining the forward and backward
approaches we can compute a minimal spurious sub-path 〈L(ci), ..., L(cj)〉 of γ(τ) sim-
ilar to (Das and Dill, 2002). In particular, there might be several spurious counterexample
paths, and each spurious path could yield several predicates. However some paths might
share common spurious sub-paths. In the case we can use the minimal spurious sub-paths
to avoid significant redundant computation.

Given a set of spurious counterexamples (τ1, ..., τk), let Pi be the set of ei discovered
while checking for the validity of γ(τi). We know that the set P =

⋃k
i=1 Pi will definitely

eliminate each τi. Note that a minimal predication has been discussed in (Chaki et al.,
2003b).

Finally, we address the termination properties of the refinement process. The process
will terminate if one of the two following conditions is met:

• model checking the abstract model shows that A |= φ;
• a real counterexample path that is feasible in C is found.

7. Conclusion and Future Work

Our intention is to check whether a sequential program C satisfies a temporal logic prop-
erty φ. The problem of verifying that a concrete program satisfies a temporal formula φ

is reduced to the problem of verifying an abstract model derived from the program. If a
property holds on the abstract structure, it also holds on the concrete program.

Our method can be extended to verifying concurrency C programs by abstract model
parallel composition. There are many interesting research directions for further work:
(1) handle concurrency; (2) extend to OO languages like Java and C++.



Formal Verification for C Program 303

References

Alur, R., A. Itai, R.P. Kurshan and M. Yannakakis (1995). Timing verification by successive approximation.
Information and Computation, 118(1), 142–157.

Ball, T., R. Majumdar, T.D. Millstein and S.K. Rajamani (2001). Automatic predicate abstraction of C programs.
In SIGPLAN Conference on Programming Language Design and Implementation. pp. 203–213.

Ball, T., and S.K. Rajamani (2001). Automatically validating temporal safety properties of interfaces. In SPIN
Workshop, LNCS, vol. 2057. pp. 103–122.

Ball, T., and S.K. Rajamani (2002). Generating abstract explanations of spurious counterexamples in C pro-
grams. Technical Report MSR-TR-2002-09, Microsoft Research, Redmond.

Bensalem, S., Y. Lakhnech and S. Owre (1998). Computing abstractions of infinite state systems composition-
ally and automatically. In Proceedings of Computer Aided Verification, LNCS, vol. 1427. pp. 19–331.

Chaki, S., E.M. Clarke, A. Groce, S. Jha and H. Veith (2003a). Modular verification of software components in
C. In Proceedings of ICSE. pp. 385–395.

Chaki, S., E.M. Clarke, A. Groce and O. Strichman (2003b). Predicate abstraction with minimum predicates.
In Proceedings of CHARME. pp. 19–34.

Chaki, S., E.M. Clarke, A. Groce, J. Ouaknine, O. Strichman and K. Yorav (2004). Efficient verification of
sequential and concurrent C programs. Formal Methods in System Design, 25(2–3), 129–166.

Clarke, E.M., O. Grumberg and D.E. Long (1994). Model checking and abstraction. In Proceedings of TOPLAS.
pp. 1512–1542.

Clarke, E.M., O. Grumberg and D.A. Peled (1999). Model Checking. MIT Press.
Clarke, E.M., O. Grumberg, S. Jha, Y. Lu and H. Veith (2000). Counterexample-guided abstraction refinement.

In Proceedings of Computer Aided Verification. pp. 154–169.
Clarke, E.M., O. Grumberg, M. Talupur and D. Wang (2003.). Making predicate abstraction efficient: how to

eliminating redundant predicates. In Proceedings of Computer Aided Verification, LNCS, vol. 2725. pp. 126–
140.

Corbett, J.C., M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby and H. Zheng (2000). Bandera:
extracting finite-state models from Java source code. In Proceedings of ICSE. pp. 439–448.

Cousot, P., and R. Cousot (1977). Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proceedings of POPL. pp. 238–252.

Das, S., D.L. Dill and S. Park (1999). Experience with predicate abstraction. In Proceedings of Computer Aided
Verification, LNCS, vol. 1633. pp. 160–171.

Das, S., and D.L. Dill (2002). Counter-example based predicate discovery in predicate abstraction. In Proceed-
ings of Formal Methods in Computer-Aided Design. pp. 19–32.

Graf, S., and H. Saidi (1997). Construction of abstract state graphs with PVS. In Proceedings of Computer
Aided Verification, LNCS, vol. 1254. pp. 72–83.

Havelund, K., and T. Pressburger (2000). Model checking JAVA programs using JAVA PathFinder. International
Journal on Software Tools for Technology Transfer, 2(4), 366–381.

Henzinger, T.A., R. Jhala, R. Majumdar and G. Sutre (2002). Lazy abstraction. In Proceedings of POPL. pp. 58–
70.

Holzmann, G.J. (2000). Software model checking. In NATO Summer School, Marktoberdorf, Germany,
vol. 180. pp. 309–355.

Lakhnech, Y., S. Bensalem, S. Berezin and S. Owre (2001). Incremental verification by abstraction. In Proceed-
ings of TACAS 2001, LNCS, vol. 2031. pp. 98–112.

Loiseaux, C., S. Graf, J. Sifakis, A. Bouajjani and S. Bensalem (1995). Property preserving abstractions for the
verification of concurrent systems. Formal Methods in System Design, 6(1), 11–44.

Necula, G.C., S. McPeak, S.P. Rahul and W. Weimer (2002). CIL: Intermediate language and tools for analysis
and transformation of C programs. In Proceedings of Compiler Construction, LNCS, vol. 2304. pp. 213–228.

Saidi, H. (2000). Model checking guided abstraction and analysis. In Proceedings of SAS 2000, LNCS,
vol. 1824. pp. 377–396.

Tip, F. (1995). A survey of program slicing techniques. Journal of Programming Languages, 3(3), 121–189.



304 J.Y. Qian, B.W. Xu

J. Qian received the MS degrees in computer science and engineering from Guilin Uni-
versity of Electronic Technology, Guilin, China. Now he is a doctor candidate at South-
east University, Nanjing, China. His research area includes software verification and
model checking etc.

B. Xu received the PhD degrees in computer science and engineering from Beihang Uni-
versity, Beijing, China, in 2002. He is currently a professor in Department of Computer
and Engineering at Southeast University, Nanjing, China. His research area includes pro-
gram analysis, program design, and software engineering etc. Up to now (1996–2006),
more than 50 high quality papers on software engineering have been published in jour-
nals.

C program ↪u formalus verifikavimas

Junyan QIAN, Baowen XU

Darbe pateiktas program ↪u C kalboje formalus verifikavimo metodas. Norint nustatyti, ar pro-
grama tenkina duot ↪a specifikacij ↪a, pirmiausia iš šios programos yra konstruojamas abstraktus
programos modelis. Perėjim ↪u abstrakčiame modelyje konstravime naudojamas teorem ↪u ↪irodymo
metodas. Naudojant modelio tikrinimo algoritm ↪a, nustatoma, ar abstraktus modelis tenkina speci-
fikacij ↪a. Jei gaunamas kontrapavyzdys, tai jis naudojamas abstraktaus modelio tobulinimui.


