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Abstract. This paper considers Lur’e type descriptor systems (LDS). The concept of strongly ab-
solute stability is defined for LDS and such a notion is a generalization of absolute stability for
Lur’e type standard state-space systems (LSS). A reduced-order LSS is obtained by a standard co-
ordinate transformation and it is shown that the strongly absolute stability of the LDS is equivalent
to the absolute stability of the reduced-order LSS. By a generalized Lyapunov function, we derive
an LMIs based strongly absolute stability criterion. Furthermore, we present the frequency-domain
interpretation of the criterion, which shows that the criterion is a generalization of the classical
circle criterion. Finally, numerical examples are given to illustrate the effectiveness of the obtained
results.
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inequality (LMI).

1. Introduction

In the last two decades, descriptor systems have been one of the major research fields
of control theory due to their comprehensive applications in the Leontief dynamic model
(Silva and De Lima, 2003), electrical and mechanical models (Campbell, 1980; Muller,
1997), etc. Depending on the applicable areas, these models are also called singular sys-
tems, semi-state systems, differential-algebraic systems, or generalized state-space sys-
tems. As to the stability of linear time-invariant descriptor systems, many sufficient and
necessary conditions have been reported (Lewis, 1986; Dai, 1989; Ishihara and Terra,
2002) and almost all of these results are expressed by matrix rank conditions and ma-
trix inequality which can be verified efficiently by the existing tools. However, stability
problem of nonlinear descriptor systems has not been thoroughly investigated though
there are some preliminary results. In (Vladimir, 1986; Vladimir, 1987) and (Vladimir
and Mirko, 1987), the researchers investigate the stability of nonlinear descriptor sys-
tems under the assumption that the set of consistent initial conditions is given. In (Wu
and Mizukami, 1995), the Lyapunov stability theory for standard state-space systems is
extended to nonlinear descriptor systems. In (Wu et al., 2002), the authors present a suf-
ficient condition for the system to be locally asymptotically stable. As stated in (Li and
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Liu, 1998), there are several difficulties in the study of stability problem for nonlinear
descriptor systems: (i) it is not easy to satisfy conditions of the existence and uniqueness
of solutions; (ii) there often exist impulses and jumps in the solutions; (iii) it is difficult
to calculate the derivatives of Lyapunov functions along the solutions.

In 1944, Lur’e and Postnikov introduced a novel method to deal with stability problem
of nonlinear systems, which is called “nonlinearities isolation method” later and has been
developed as the absolute stability theory. For many practical control systems, by using
this method, the nonlinear characteristic can be separated, which results in a feedback
system called Lur’e type system whose forward path is a linear time-invariant system
and the feedback path is a nonlinearity with sector constraints (Mohler, 1991). Lur’e type
standard state-space systems (LSS) have been widely investigated and the most cele-
brated ones are the Popov criterion(PC) and circle criterion(CC) (Haddad and Bernstein,
1993; Haddad and Bernstein, 1994). The PC is less conservative than CC because the
Lyapunov function used by PC is a Lur’e type Lyapunov function which explicitly de-
pends on the nonlinearity, while CC is related to a quadratic Lyapunov function. And the
CC can deal with more diverse nonlinearities including time-varying ones. However, in-
vestigation on Lur’e type descriptor systems(LDS) is very few. In (Lee and Chen, 2003),
an LMI based strictly positive real(SPR) lemma is given for discrete-time descriptor sys-
tems. Under the admissibility and SPR assumption of the involved linear time-invariant
descriptor systems, it shows that the globally asymptotic stability of the feedback con-
nection is guaranteed for the whole class of memoryless time-varying nonlinearities with
dynamics constrained in the first and third quadrants. But it does not consider the impul-
sive behavior of the overall system.

In this paper, we investigate the stability of LDS. First, the notion of index of non-
linear descriptor systems is recalled and discussed. For convenience and without any
confusion, an index one nonlinear descriptor system is called to be impulsive-free in this
paper. Subsequently, strongly absolute stability of LDS is defined to be globally asymp-
totically stable and impulsive-free. Such a concept is a generalization of the absolute
stability of LSS as well as the admissibility of linear time-invariant descriptor systems.
Then, it is shown that the admissibility of the linear part is a necessary condition for the
strongly absolute stability of the LDS. Consequently, under the assumption that the linear
part of the LDS is admissible, by the standard coordinate transformation, a reduced-order
LSS is obtained. Whereafter, an LMIs based stability criterion is derived by a general-
ized Lyaponov function and S-procedure. Furthermore, we present the frequency-domain
interpretation of the LMIs based stability criterion, which shows that the criterion is a
generalization of the well known circle criterion. Finally, two numerical examples illus-
trate the effectiveness of our results.

2. Preliminaries and Basic Results

The notations that are used here are standard in most respects. We use R to denote the
set of real numbers and C to denote the complex plane. Rn and Rn1×n2 are the obvi-
ous extensions to vectors and matrices of the specified dimensions. Let I or Ir denote
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the identity matrix with appropriate dimension. M is a matrix with proper dimension,
MT and MH stand for the transpose and complex conjugate transpose of M , respec-
tively. Re(·) and Im(·) denote the real part and the image part of a complex number,
respectively.

Consider a linear time-invariant descriptor system

Eẋ = Ax + Bω,

y = Cx + Dω, (1)

where x ∈ Rn is the state variable, ω is the input variable, the matrices A, E ∈
Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, rank(E) = r <= n.

First, we state here some basic definitions which will be used in the sequel and can be
founded in (Campbell, 1980; Dai, 1989). If det(sE − A) �= 0 for some complex number
s, then the pair (E, A) is said to be regular. A regular pair (E, A) is called impulsive-free
if degdet(sE − A) = rankE. Note that an impulsive-free pair (E, A) is implied to be
regular. If all roots of det(sE−A) = 0 lie in Re(s) < 0, (E, A) is called stable. And the
pair (E, A) is called admissible if it is impulsive-free and stable. It is proved in (Lewis,
1986) that (E, A) is regular if and only if there exist two nonsingular matrices M and N

such that (E, A) can be transformed to the Weierstrass canonical form

MEN =
[

Ir 0
0 J

]
, MAN =

[
A1 0
0 I

]
, (2)

where J ∈ R(n−r)×(n−r) is a nilpotent matrix, A1 ∈ Rr×r. And system (E, A) is
impulsive-free if and only if J = 0.

DEFINITION 1 (Sun et al., 1994; Zhang et al., 2002). Let G(s) = C(sE −A)−1B + D,
then

1) G(s) is said to be positive real (PR) if G(s) is analytic in Re(s) > 0 and satisfies
G(s) + G∗(s) >= 0 for Re(s) > 0.

2) G(s) is said to be strictly positive real (SPR) if G(s) is analytic in Re(s) >= 0
and satisfies G(jω) + G∗(jω) > 0 for ω ∈ [0, +∞).

3) G(s) is said to be extended strictly positive real (ESPR) if it is SPR and satisfies
G(j∞) + G∗(j∞) > 0.

Consider the following nonlinear descriptor system

Eẋ = F (x, t), (3)

where F : Rn × [t0, +∞) → Rn is smooth enough and F (0, t) ≡ 0,∀t >= t0.

DEFINITION 2 (Brenan et al., 1996). System (3) is said to be of index one if the constant
coefficient system

Eẇ − Fx(x̂, t̂)w = g(t) (4)
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is impulsive-free for all (x̂, t̂) in a neighborhood of the graph of the solution, where Fx is
the Jacobian matrix ∂F/∂x.

REMARK 1. The notion of index plays a key role in the classification and behavior of
nonlinear descriptor systems and can be thought of as the generalization of the nilpotent
index of a linear time-invariant descriptor system (Brenan et al., 1996). Furthermore, con-
sidering (2), the nilpotent index of system (1) is actually the nilpotent index of matrix J .
So, system (1) is impulsive-free if and only if it is of index one. Thus, for convenience, it
is reasonable to call system (3) to be impulsive-free if it is of index one. From the implicit
function, the solvability of a impulsive-free system (3) is easy to guarantee (Brenan et al.,
1996).

3. Strongly Absolute Stability

Consider the following Lur’e type descriptor system

Eẋ = Ax + Bω,

σ = Cx + Dω,

ω = −φ(σ), (5)

where φ(σ) is assumed to be a time-invariant smooth enough nonlinear function.
We call φ(·) ∈ F [0, K] if φ(0) = 0 and satisfy the following sector constraint

φT φ <= φT Kσ, (6)

where K is a symmetric positive definite matrix.
In the sequel, we suppose the following.
Assumption 1. LDS (5) is well-posed, that is, identity

ω = −φ(Cx + Dω)

has a unique solution for every x in the domain of interest.
Assumption 2. (E, A) is admissible.

REMARK 2. Assumption 1 is a routine for the discussion of robust stability prob-
lem (Khalil, 1996). And Assumption 2 is a necessary condition for strongly absolute
stability of LDS (5), which will be shown later.

If E = I , LDS (5) reduces to a LSS that has been widely studied. Next, the absolute
stability of LSS is extended to LDS.

DEFINITION 3. LDS (5) is said to be strongly absolutely stable with respect to F [0, K],
if for ∀φ ∈ F [0, K], LDS (5) is globally asymptotically stable and impulsive-free.
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REMARK 3. It is easy to see that Definition 3 is a generalization of absolute stability of
LSS as well as admissibility of linear time-invariant descriptor systems. So it is different
from the notion of absolute stability given in (Lee and Chen, 2003) which only considers
the global stability of descriptor systems.

If we set φ(σ) = KΔσ, where KΔ is arbitrary symmetric matrix with 0 <= KΔ <=
K, LDS (5) reduces to a linear time-invariant descriptor system

Eẋ =
(
A − B(I + DKΔ)−1KΔC

)
x (7)

which is called the linearized system of LDS (5). Note that (I + DKΔ)−1 does exist
since LDS (5) is well-posed.

From Definition 3 and Remark 3, the following result is obvious.

Theorem 1. LDS (5) is strongly absolutely stable with respect to F [0, K] only if the
linearized system (7) is admissible for arbitrary symmetric matrix KΔ with 0 <=
KΔ <= K.

REMARK 4. By Theorem 1, the admissibility of (E, A) is a necessary condition for LDS
(5) to be strongly absolutely stable with respect to F [0, K], so we can safely assume that
(E, A) is admissible.

Since (E, A) is admissible, there exist two nonsingular matrices M, N ∈ Rn×n, such
that

MEN =
[

Ir 0
0 0

]
, MAN =

[
A1 0
0 I

]
, (8)

where A1 ∈ Rr×r. Compatible with (8), partition MB and CN as follows

MB =
[

B1

B2

]
, CN =

[
C1 C2

]
. (9)

And let

N−1x =
[

x1

x2

]
.

Thus LDS (5) is transformed to

ẋ1 = A1x1 + B1ω,

x2 = −B2u,

σ = C1x1 + (D − C2B2)ω,

ω = −φ(σ). (10)
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It is easy to see that the strongly absolutely stability of LDS (5) is equivalent to that of
system (10).

Consider the LSS

ẋ1 = A1x1 + B1ω,

σ = C1x1 + (D − C2B2)ω,

ω = −φ(σ), (11)

which is obtained from (10) by removing the second equation. We shall discuss the rela-
tionship between (10) and (11), by which we investigate the strongly absolute stability of
LDS (5). To do this, the following lemma is useful.

Lemma 1 (Liao, 1993). The identity

det(I + GH) = det(I + HG)

holds for arbitrary matrices H and G as long as GH and HG exist. The idenity matrices
on both sides can be different of order.

Theorem 2. LDS (5) is strongly absolutely stable if and only if system (11) is absolutely
stable.

Proof. Necessity is obvious. We only prove the sufficiency.
Assume that system (11) is absolutely stable.
Set φ(σ) = KΔσ, where KΔ is an arbitrary diagonal matrix with 0 <= KΔ <= K,

system (11) reduces to

ẋ1 = A1x1 − B1KΔσ,

σ = C1x1 − (D − C2B2)KΔσ, (12)

which is asymptotically stable. Thus, it is necessary that I + (D − C2B2)KΔ is nonsin-
gular, that is

det
(
I + (D − C2B2)KΔ

)
�= 0. (13)

If it is not the case, system (12) is degenerate and represents an unstable system
(Vidyasagar, 1978).

Let F (σ) = σ+(D−C2B2)φ(σ), it is obvious that F (σ) is continuous and F (0) = 0.
Assume there exists σ0 �= 0 satisfying F (σ0) = 0, then σ0 = −(D−C2B2)φ(σ0). Since
φ ∈ F [0, K], there exists KΔ0 with 0 <= KΔ0 <= K such that φ(σ0) = KΔ0σ0.
Then σ0 = −(D − C2B2)KΔ0σ0 which indicates I + (D − C2B2)KΔ0 is singular, as
contradicts with (13). Thus we can claim that F (σ) = 0 has unique solution σ = 0.
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By (11), F (σ) = C1x1, then the absolute stability of (11) implies that

lim
t→+∞

F (σ) = 0, (14)

thus

lim
t→+∞

σ = 0, (15)

which yields

lim
t→+∞

φ(σ) = 0. (16)

Then, considering system (10)

lim
t→+∞

x2(t) = lim
t→+∞

B2φ(t) = 0,

that is, system (10) is globally asymptotically stable.
Thus x1 = 0 implies x2 = 0 and σ = 0.
Now we will prove system (10) is impulsive-free for all φ ∈ F [0, K].
Rewrite system (10) in the following form

[
Ir 0
0 0

] [
ẋ1

ẋ2

]
=

[
F1(x1, x2)
F2(x1, x2)

]
,

where F1(x1, x2) = A1x1 − B1φ(σ), F2(x1, x2) = x2 − B2φ(σ).
Then,

∂F2/∂x2|x1=0,x2=0 = I − B2∂φ/∂x2|x1=0,x2=0

= I − B2(∂φ/∂σ)(∂σ/∂x2)|x1=0,x2=0. (17)

By the third equation of (10),

∂σ/∂x2|x1=0,x2=0 = (I + ∂φ/∂σ|x1=0,x2=0D)−1∂φ/∂σ|x1=0,x2=0C2,

which together with (17) gives

∂F2/∂x2|x1=0,x2=0 = I − B2(I + ∂φ/∂σ|x1=0,x2=0D)−1∂φ/∂σ|x1=0,x2=0C2

= I − B2(I + ∂φ/∂σ|σ=0D)−1∂φ/∂σ|σ=0C2. (18)

Since φ ∈ F [0, K], there exists KΔ with 0 <= KΔ <= K such that ∂φ/∂σ|σ=0 = KΔ,
the well-poseness of (5) indicates that the inverse (I +KΔD)−1 does exist and Lemma 1
together with (13) show that ∂F2/∂x2|x1=0,x2=0 is nonsingular, so is ∂F2/∂x2 around
the point x1 = 0, x2 = 0 by the continuity of ∂φ/∂σ. Consequently, system (10) is
impulsive-free. Hence, system (10) is strongly absolutely stable with respect to F [0, K].
So is LDS (5).
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Consider the generalized Lyapunov function (Ishihara and Terra, 2002)

V (x) = xT ET Px, (19)

where P ∈ Rn×n satisfies ET P = PT E >= 0 with rank(ET P ) = r.
The following lemma will be used in the sequel.

Lemma 2 (Boyd and Ghaoui, 1994). (S-procedure)
Let T0, T1, · · · , Tp ∈ Rn×n be symmetric matrices. The following condition on

T0, T1, · · · , Tp:

ζT T0ζ > 0, ∀ζ �= 0, ζT Tiζ >= 0, i = 1, · · · , p

holds if and only if there exist τi >= 0 such that

T0 −
p∑

i=1

Ti > 0.

It is a nontrival fact that for p = 1, the converse holds if there is some ζ0 such that
ζT
0 T1ζ0 > 0.

Theorem 3. The following statements are equivalent and guarantee the strongly abso-
lute stability of LDS (5)

i) For ∀x �= 0 satisfying constraint (6)

V̇ (x)|(5) < 0; (20)

ii) there exists matrix P and scalar τ > 0 such that

[
AT P + PT A τCT K − PT B

τKC − BT P −τ(2I + KD + DT K)

]
< 0, (21)

ET P = PT E >= 0. (22)

Proof. We first prove the equivalency between i) and ii).
LMI (21) indicates that P is nonsingular, consequently, rank(ET P )=rank(E)=r.
Calculating the derivative of V (x) along the solution of LDS (5) gives

V̇ (x)|(5) = ẋT ET Px + xT ET Pẋ

= xT (AT P + PT A)x − 2xT PT Bφ.

Thus, by Lemma 2, i) holds if and only if there exists τ >= 0 such that (21) holds. And
τ = 0 is impossible by (21).

Next, we prove ii) implies that LDS (5) is strongly absolutely stable.
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Assume that ii) holds. It is easy to show that (E, A) is admissible. Without loss of
generality, we assume that LDS (5) is in the form of (10). Then, by Theorem 2, we can
consider LSS (11) to investigate the strongly absolute stability of LDS (5).

Partition

P =
[

P11 P12

P21 P22

]

conformably to (10), then we have P11 = PT
11 >= 0, P12 = 0 in view of ET P =

PT E >= 0.
Then LMI (21) can be written as

⎡
⎣ AT

1 P11 + P11A1 PT
21 (1, 3)

P21 P22 + PT
22 τCT

2 K − PT
22B2

(1, 3)T τKC2 − BT
2 P22 −τ(2I + KD + DT K)

⎤
⎦ < 0, (23)

where (1, 3) = τCT
1 K − P11B1 − PT

21B2.
Pre-multiplying and post-multiplying (23) by

⎡
⎣ I 0 0

0 BT
2 I

0 I 0

⎤
⎦

and it’s transposition respectively gives

⎡
⎣ AT

1 P11 + P11A1 τCT
1 K − P11B1 PT

21

τKC1 − BT
1 P11 (2, 2) BT

2 PT
22 + τKC2

P21 P22B2 + τCT
2 K P22 + PT

22

⎤
⎦ < 0, (24)

which implies

[
AT

1 P11 + P11A1 τCT
1 K − P11B1

τKC1 − BT
1 P11 (2, 2)

]
:= S < 0, (25)

where (2, 2) = −τ(2I + KD + DT K − KC2B2 − BT
2 CT

2 K).
Let V (x1) = xT

1 P11x1, and calculate the derivative of V (x1) along the trajectory of
system (11), we have

V̇ (x1)|(11) = ẋT
1 P11x1 + xT

1 P11ẋ1

= (A1x1 + B1ω)T P11x1 + xT
1 P11(A1x1 + B1ω)

= xT
1 (AT

1 P11+P11A1)x1+2xT
1 P11B1ω−2τφT (φ − Kσ)+2τφT (φ−Kσ)

= xT
1 (AT

1 P11 + P11A1)x1 − 2xT
1 P11B1φ

−τφT (2I+KD+DT K)φ+2τφT (KC1x1+KC2B2φ) +2τφT (φ−Kσ)
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= xT
1 (AT

1 P11 + P11A1)x1 + 2xT
1 (CT

1 − P11B1)φ

− τφT (2I + KD + DT K − KC2B2 − BT
2 CT

2 K)φ + 2τφT (φ − Kσ)

=
[
xT

1 φT
]
S

[
x1

φ

]
+ 2τφT (φ − Kσ). (26)

In view of (25) and (6), (26) implies

V̇ (x1)|(11) < 0

for any x1 �= 0 satisfying constraint (6), then limt→+∞ x1(t) = 0, which yields that
LSS(11) is absolutely stable. Then, by Theorem 2, LDS (5) is strongly absolutely stable.

REMARK 5. Note that we restrict the nonlinearities φ to be time-invariant in the above
definitions and results. If φ is time-varying, the notion of strongly absolute stability of
LDS (5) can be defined analogously to Definition 3, however, Theorem 2 may not hold
any more. But condition ii) of Theorem 3 guarantees LDS (5) is strongly absolutely sta-
ble even though φ is time-varying. To show this, assume that condition ii) of Theorem 3
holds. Then, by the proof of Theorem 3, we can conclude that LSS (11) is strongly abso-
lutely stable and

2I + KD + DT K − KC2B2 − BT
2 CT

2 K > 0.

Following the proof of Theorem 2, let

F = σ + (D − C2B2)φ(σ, t),

then (14) holds. Furthermore, in view of (6), there exists α > 0, such that

2φT KF = 2φT Kσ + 2φT K(D − C2B2)φ

>= 2φT φ + 2φT K(D − C2B2)φ

>= αφT φ. (27)

On the other hand, for any γ > 0,

2φT KF <= γFT KKF + γ−1φT φ,

then we can choose some γ > 0 such that α − γ−1 > 0 satisfying

γFT KKF >= (α − γ−1)φT φ,

then (14) implies that (15). Continuing to use the proof for Theorem 2, it is easy to
validate that condition ii) of Theorem 3 guarantees strongly absolute stability of LDS (5)
even if φ is time-varying.
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Now, we will present frequency-domain interpretation for the above LMIs based cri-
terion. To achieve this, the following lemma is required.

Lemma 3 (Zhang et al., 2002). The following statements are equivalent.
1) (E, A) is admissible, D + DT > 0 and G(s) is ESPR.
2) The following LMIs are feasible

[
AT X + XT A CT − XT B

C − BT X −(D + DT )

]
< 0, (28)

ET X = XT E >= 0, (29)

where G(s) = C(sE − A)−1B + D.

COROLLARY 1. Condition ii) of Theorem 3 holds if and only if

I + KG(s)

is ESPR and 2I + KD + DT K is positive definite.

Proof. By simple computation, we have

τ(I + KD) + τKC(sE − A)−1B = τ
(
I + KG(s)

)
.

Then by Lemma 3 and under the assumption that (E, A) is admissible, condition ii) of
Theorem 3 holds if and only if τ(I +KG(s)) is ESPR and 2I +KD +DT K is positive
definite. At the same time, it is evident that for any τ > 0, τ(I + KG(s)) is ESPR if and
only if I + KG(s) is ESPR, thus we complete the proof.

REMARK 6. Corollary 1 is a generalization of the classical circle criterion.

Corollary 1 indicates that the variable τ in LMI (21) is not necessary for the LMI
feasibility problem of Theorem 3 and we can set it to be any fixed positive real number,
for example, τ = 1. However, when one deals with multiple objects analysis problem
of LDS (5), the variable τ is useful and can reduce the conservatism. To see this, we
consider the following uncertain LDS

Eẋ = (A + ΔA)x + (B + ΔB)w,

σ = Cx + Dw,

w = −φ(t, σ), (30)

where ΔA and ΔB are time-invariant matrix representing norm-bounded parameter un-
certainty and assumed to be of the form

[
ΔA ΔB

]
= HF (θ)

[
E1 E2

]
, (31)

FT (θ)F (θ) <= I, ∀θ ∈ Ξ, (32)
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θ ∈ Ξ, where Ξ is a compact set. The matrix H, E1, E2 are known.

Theorem 4. Uncertain LDS (30) is robustly strongly absolutely stable with respect to
F [0, K] if there exists P , τ > 0 and ε > 0, such that

⎡
⎣ AT P + PT A + ET

1 E1 τCT K − PT B + ET
1 E2 PT H

τKC − BT P + ET
2 E1 −τ(KD + DT K) − 2τI + ET

2 E2 0
HT P 0 −εI

⎤
⎦ < 0, (33)

ET P = PT E >= 0. (34)

Proof. By Theorem 3, system (30) is strongly absolutely stable with respect to F [0, K]
if there P , such that

[
(A + ΔA)T P + PT (A + ΔA) τCT K − PT (B + ΔB)

τKC − (B + ΔB)T P −τ(KD + DT K) − 2τI

]
< 0, (35)

ET P = PT E >= 0. (36)

Denote

Y0 =
[

AT P + PT A τCT K − PT B

τKC − BT P −τ(KD + DT K) − 2τI

]
,

Y =
[

PT ΔA −PT ΔB

0 0

]
.

By (31), we have

Y (t) =
[

PT (HF (θ)E1) −PT (HF (θ)E2)
0 0

]

=
[

PT H

0

]
F (θ)

[
E1 E2

]
. (37)

Thus, using the routine method of handling norm bounded uncertainties (Xie, 1996),
there exists ε > 0 such that

Y0 + ε

[
PT H

0

] [
PT H

0

]T

+ ε−1
[
E1 E2

]T [
E1 E2

]
< 0, (38)

which is equivalent to (33).

4. Numerical Examples

In this section, numerical examples are given to illustrate our results. Matlab 6.5 is used
to check the LMIs feasibility problem. To deal with the non-strict LMI (22), let E0 ∈
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Rn×(n−r) be a matrix of full-column rank such that ET E0 = 0, and r = rankE. We
introduce two new matrix variables X ∈ Rn×n and Q ∈ R(n−r)×n and assume that
P = XE + E0Q. Then it easy to show that ET P = ET XE = PT E >= 0 if X is
symmetric and positive definite. Then, by the statements in (Ishihara and Terra, 2002),
we have the following to corollaries.

COROLLARY 2. Condition ii) of Theorem 3 holds if and only if there exist X ∈ Rn×n

with X > 0, Q ∈ R(n−r)×n, and τ > 0 such that

[
AT (XE + E0Q) + (XE + E0Q)T A τCT K − (XE + E0Q)T B

τKC − BT (XE + E0Q) −2I − KD − DT K

]
< 0. (39)

COROLLARY 3. Conditions of Theorem 4 hold if and only if there exist X ∈ Rn×n with
X > 0, Q ∈ R(n−r)×n, τ > 0 and ε > 0 such that

⎡
⎣ (1, 1) (1, 2) (XE + E0Q)T H

(1, 2)T (2, 2) 0
HT (XE + E0Q) 0 −εI

⎤
⎦ < 0, (40)

where (1, 1) = AT (XE + E0Q) + (XE + E0Q)T A + ET
1 E1 and (1, 2) = τCT K −

(XE + E0Q)T B + ET
1 E2, (2, 2) = −τ(KD + DT K) − 2τI + E2E2.

EXAMPLE 1. Consider a descriptor system with system matrices

E =

⎡
⎢⎢⎣

2 0 0 0
0 1 2 0
1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣
−10 0 4 0
0 −10 2 0
0 0 −4 1
0 2 0 1

⎤
⎥⎥⎦ ,

C =
[

0 1 1 0
1 1 4 0

]
, BT =

[
1 1 0 0
0 1 0 −1

]
,

K =
[

2 1
1 1

]
, D =

[
0 0
0 0.5

]
.

Let

E0 =
[
0 0 0 1

]T
.

Solving LMI (39) gives

X =

⎡
⎢⎢⎣

0.0662 0.0324 −0.0988 0.0000
0.0324 0.0977 −0.1062 0.0000

−0.0988 −0.1062 0.3294 −0.0000
0.0000 0.0000 −0.0000 0.5443

⎤
⎥⎥⎦ ,

Q =
[
−0.0777 0.2074 −0.0563 −0.0739

]
, τ = 0.0530.
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Fig. 1. State responses with x(0) = [1, 2, 4.6,−4]T .

So this system is strongly absolutely stable with respect to F [0, K]. In addition, LMI (39)
is also feasible if we set τ = 1.

Let φ(t, σ) =
[

φ1

φ2

]
, where φ1 = 0.5∗(2σ1+σ2+sin(2σ1+σ2)), φ2 =sin2(t)(σ1+σ2)

and Fig. 1 shows the state response of the system.

EXAMPLE 2. Consider the uncertain LDS (30) with the system matrices A, B, C, D are
the same as those given in Example 1. The uncertainties are represented in the form of
(31) with

H =

⎡
⎢⎢⎣

1 0
0 1
0 1
0 0

⎤
⎥⎥⎦ , E1 =

[
1 0 0 0
0 1 0 0

]
, E2 =

[
1 0
0 1

]
.

Solving LMIs in Corollary 3 yields

X =

⎡
⎢⎢⎣

0.3459 0.1498 −0.4934 0.0000
0.1498 0.4920 −0.5555 0.0000

−0.4934 −0.5555 1.9239 −0.0000
0.0000 0.0000 −0.0000 2.3088

⎤
⎥⎥⎦ × 103,

Q =
[
−0.5664 1.1087 −0.4541 −0.3097

]
× 103,

τ = 301.9121, ε = 2.3454 × 103.

So the system is robustly strongly absolutely stable. At the same time, if we set τ = 1,
the LMIs are found to be not feasible. This also demonstrates that the variable τ results
in less conservative result if there exist uncertainties in the system matrices.
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5. Conclusions

In this paper, we consider Lur’e type descriptor systems(LDS) and introduced a new
stability concept – strongly absolute stability for LDS. Such a notion is a generalization
of absolute stability for LSS and admissibility of linear time-invariant descriptor systems.
Following the methodologies of absolute stability of LSS, a linearized system of LDS
is introduced to derive a necessary condition on strongly absolute stability. A reduced-
order LSS is obtained by a standard coordinate transformation, and the strongly absolute
stability of the LDS is proved to be equivalent to the absolute stability of the LSS. The
obtained stability criterion can be view as a generalization of the classical circle criterion
for LSS. Finally, numerical examples illustrate our results.
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Deskriptorini ↪u sistem ↪u griežto absoliutinio stabilumo problema

Chunyu YANG, Qingling ZHANG, Linna ZHOU

Straipsnyje nagrinėjamos Lur tipo deskriptorinės sistemos (LDS). Apibrėžiama griežto absoliu-
tinio stabilumo s ↪alyga ir teigiama, kad tai yra standartini ↪u Lur tipo būsen ↪u erdvės sistem ↪u (LSS)
apibendrinimas. LDS eilė yra sumažinama transformuojant koordinates. Parodyta, kad LDS griež-
tas absoliutinis stabilumas ekvivalentus žemesnės eilės LSS absoliutiniam stabilumui. Panaudota
apibendrintoji Liapunovo funkcija ir išvestas griežtas absoliutinis stabilumo kriterijus. Paaiškinama
šio kriterijaus prasmė dažni ↪u srityje. Pateiktas skaitmeninis pavyzdys, iliustruojantis gaut ↪u teorini ↪u
rezultat ↪u efektyvum ↪a.


