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Abstract. In this paper we propose a modified framework of support vector machines, called
Oblique Support Vector Machines(OSVMs), to improve the capability of classification. The prin-
ciple of OSVMs is joining an orthogonal vector into weight vector in order to rotate the support
hyperplanes. By this way, not only the regularized risk function is revised, but the constrained
functions are also modified. Under this modification, the separating hyperplane and the margin
of separation are constructed more precise. Moreover, in order to apply to large-scale data prob-
lem, an iterative learning algorithm is proposed. In this iterative learning algorithm, three different
schemes for training can be found in this literature, including pattern-mode learning, semi-batch
mode learning and batch mode learning. Besides, smooth technique is adopted in order to con-
vert the constrained nonlinear programming problem into unconstrained optimum problem. Con-
sequently, experimental results and comparisons are given to demonstrate that the performance of
OSVMs is better than that of SVMs and SSVMs.
Key words: SVMs, rotate, orthogonal vector, pattern-mode, batch-mode.

1. Introduction

Support vector machines (SVMs), a classification algorithm for the machine learning
community, have attracted much attention in recent years (Schölkopf and Smola, 2002;
Vapnik, 1998). In many applications, SVMs have been shown to provide higher perfor-
mance than traditional learning machines (Chapelle et al., 1999; Guo et al., 2001).

The principle of SVMs is based on approximating structural risk minimization (Vap-
nik, 1998). The idea of SVMs originates from finding an optimal separating hyperplane
in order to separate the largest possible fraction of training set of the same class on the
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same side, while maximizing the distance from either class to the separating hyperplane.
According to Vapnik (Vapnik, 1998), this hyperplane minimizes the risk of misclassify-
ing not only the examples in the training set, but also the unseen examples of the test
set.

Although there are numerous researches concerning about SVMs, some drawbacks
still exist on SVMs. Fig. 1 depicts the geometric construction of separating hyperplane
and support hyperplanes by SVMs. Two support hyperplanes which represent the borders
of margin of separation are used to generate the separating hyperplane. In Fig. 1, the sep-
arating hyperplane is the maximal margin hyperplane with geometric margin d1. Can the
separating hyperplane achieve the optimal solution? Fig. 2 shows an example to illustrate
that the validity of classifying by the separating hyperplane is worse to the testing sam-
ples. In Fig. 2, the training samples appeared in Fig. 1 are replaced with • and the testing
samples are represented with symbols ’x’ and ’o’, respectively. Obviously, in Fig. 2 the
solution which is provided by SVMs is worse in this case. It is because the margin of
separation constructed by SVMs doesn’t fit the optimal margin of separation.

In this paper we propose a new model of the support vector machines, which is called
oblique support vector machines (OSVMs). The idea of oblique support vector machines
originates from joining an orthogonal vector into the weight vector in order to rotate the
support hyperplanes. Under this modification, the support hyperplanes can fit the borders
of optimal margin of separation. After joining an orthogonal vector, these two support
hyperplanes become (w1 + w2)T x + (b1 − b2) = 0 and (w1 − w2)T x + (b1 + b2) = 0.
This new model is shown in Fig. 3. On the new architecture, OSVMs are adaptable for
any cases and have excellent performance on pattern classification problem.

As we know, the major problem of SVMs is the dependence of the nonlinear sepa-
rating surface on the entire dataset which creates unwieldy storage problems. Some re-
searches are proposed to overcome this problem, such as SMO, PCGC, RSVM, etc (Gill
et al., 1981; Lee and Mangasarian, 2001b; Schölkopf and Smola, 2002). For overcoming
this problem, in this paper we propose an interactive learning algorithm which can be im-

Fig. 1. The illustration of constructing optimal hyperplane by SVMs.
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Fig. 2. The illustration of difference between SVMs and OSVMs.

Fig. 3. Illustration of the idea of Oblique Support Vector Machines.

plemented on pattern-mode learning and batch-mode learning (Heskes and Wiegerinck,
1996; Qin et al., 1992). On the learning algorithm, smooth technique is adopted in order
to convert the constrained nonlinear programming problem into unconstrained optimum
problem (Lee and Mangasarian, 2001a), so that conjugate gradient method can be used
to speed up the convergent rate. Batch-mode learning is completely deterministic but re-
quires additional storage for each parameters which may be inconvenient for large dataset
problem. Pattern-mode learning, is less demanding on the memory side, but the arbitrari-
ness of the order in which the patterns are presented makes them stochastic. Further
discussion concerning pattern learning and batch learning can be found in (Heskes and
Wiegerinck, 1996; Qin et al., 1992). They mentioned that pattern learning is approximat-
ing to batch learning when the learning rate is small. This conclusion is shown in our



140 C.-C. Yao, P.-T. Yu

simulation results.
To demonstrate the efficiency of OSVMs, OSVMs are compared with Smooth Sup-

port Vector Machines (SSVMs) (Lee and Mangasarian, 2001a). The principle of SSVMs
is introduced a smoothing technique into SVMs. By this way the optimal problem with
constrained function can be converted into unconstrained optimal problem which pos-
sesses the property of convexity and infinitely differentiability. SSVMs have been com-
pared to possess better performance than RLP, FSV, 1-norm approach (SVM‖·‖1 ) and the
classical support vector machines (SVM‖·‖2

2
) (Bennett and Mangasarian, 1992; Bradley

and Mangasarian, 1998; Cherkassky and Mulier, 1998; Vapnik, 1998). And for massive
dataset, the iterative learning algorithm is compared with RSVMs which are compara-
ble than SMO, SOR and SVMlight (Joachims, 1999; Lee and Mangasarian, 2001b; Platt,
1999). The experimental results demonstrate that OSVMs are better than SSVMs.

We briefly outline the contents of the paper now. In Section 2 we review the basic
concept of SVMs. In Section 3 the basic idea of OSVMs is introduced. In Sections 4 and
5 we conduct the principle of noniterative and iterative algorithm for OSVMs. Last, in
Section 6 some experimental results are discussed.

2. Basic Concepts

2.1. Support Vector Machines for Linearly Case

Consider the training samples {(xi, yi)}N
i=1, where xi is the input pattern for the ith

sample and yi is the corresponding desired response; xi ∈ Rm and yi ∈ {−1, 1}. The
objective is to define a separating hyperplane which divides the set of examples such that
all the points with the same class are on the same sides of the hyperplane.

Let wo and bo denote the optimum values of the weight vector and bias, respectively.
Correspondingly, the optimal separating hyperplane, representing a multidimensional lin-
ear decision surface in the input space, is given by

wT
o x + bo = 0. (1)

The set of vectors is said to be optimally separated by the hyperplane if it is separated
without error and the margin of separation is maximal. Then, the separating hyperplane
wT x + b = 0 must satisfy the following constraints:

yi(wT xi + b) � 1, i = 1, 2, . . . , N. (2)

Two support hyperplanes wT xi+b = 1 and wT xi+b = −1, which define the two borders
of margin of separation, are specified on (2). According to (2), the optimal separating
hyperplane is the maximal margin hyperplane with the geometric margin 2

‖w‖ . Hence the
optimal separating hyperplane is the one that satisfies (2) and minimizes the cost function,

Φ(w) =
1
2
wT w. (3)
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Since the cost function is a convex function, a Lagrange function can be used to minimize
the constrained optimization problem:

L(w, b, α) =
1
2
wT w −

N∑
i=1

αi[yi(wT xi + b) − 1], (4)

where α1, α2, . . . , and αN are the Lagrange multipliers.
Once the solution αo = (αo

1, α
o
2, . . . , α

o
N ) of (4) has been found, the optimal weight

vector is given by,

wo =
N∑

i=1

αo
i yixi. (5)

Classical Lagrangian duality enables the primal problem to be transformed to its dual
problem. The dual problem of (4) is reformulated as

Q(α) =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj , (6)

with αi � 0, constrained by
∑N

i=1 yiαi = 0.

2.2. Nonlinear Support Vector Machines

Input data can be mapped onto an alternative, higher-dimensional space, called feature
space through a replacement to improve the representation.

xi · xj → ϕ(xi)T ϕ(xj). (7)

The functional form of the mapping ϕ(·) does not need to be known since it is implicitly
defined by selected kernel function: K(xi, xj) = ϕ(xi)T ϕ(xj), such as polynomials,
splines, radial basis function networks or multilayer perceptrons (Schölkopf and Smola,
2002). A suitable choice of kernel can make the data separable in feature space despite
being non-separable in the original input space.

When xi is replaced by its mapping ϕ(xi), (6) becomes,

Q(α) =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj). (8)

3. Oblique Support Vector Machines for Classification

This section proposes a new framework for classification, called OSVMs. The new frame-
work is based on the theory of SVMs, but uses a different way to construct the margin
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of separation. Accordingly, the borders of margin of separation and the separating hyper-
plane are constructed precisely.

Figs. 1 and 2 depict different approaches to construct the optimal separating hyper-
plane in a two-dimensional input space. In these two figures, two support hyperplanes
which define the borders of margin of separation are used to construct the separating
hyperplane. Fig. 1 depicts the geometric construction of an optimal separating hyper-
plane with maximum margin based on SVMs. In contrast to Fig. 1, Fig. 2 depicts the
geometric construction of OSVMs. The idea of oblique support vector machines origi-
nates from finding two support hyperplanes to fit the optimal borders of margin of sep-
aration, and then choosing the hyperplane which is located on the middle of these two
support hyperplanes as the separating hyperplane. Suppose the weight vector of the sep-
arating hyperplane is w1, these two support hyperplanes can be formed by adding or
subtracting an orthogonal vector. Fig. 3 shows the idea of oblique support vector ma-
chines. Based on SVMs, the design goal is to maximize the distance between two support
hyperplanes. The varying of the distance can be viewed as moving the two support hy-
perplanes from the separating hyperplane in a direction opposite to each other. Suppose
that, after moving away from the separating hyperplane, the distance between the support
hyperplane with wT

1 x + b1 = 0 is b2
‖w1‖ ; then, the upper support hyperplane is given by,

wT
1 x + (b1 − b2) = 0.

Next, an orthogonal vector w2 is added into weight vector w1. This causes the up-
per support hyperplane to be rotated θ. Under this modification, the new upper sup-
port hyperplane is (w1 + w2)T x + (b1 − b2) = 0. Then the angle between hyperplane
wT

1 x + (b1 − b2) = 0 and (w1 + w2)T x + (b1 − b2) = 0 is

cos θ =
wT

1 (w1 + w2)
‖w1‖‖w1 + w2‖

. (9)

In contrast to the upper support hyperplane, the lower support hyperplane is also
moved away from the separating hyperplane but in opposite direction and subtracted the
weight vector w1 by w2. The moving distance is also equal to b2

‖w1‖ . Finally the lower

support hyperplane is (w1 − w2)T x + (b1 + b2) = 0.

4. Architecture of Oblique Support Vector Machines

4.1. Oblique Support Vector Machines in Linearly Case

In Fig. 3, the separating hyperplane wT
1 x + b1 = 0 is the median hyperplane between the

two hyperplanes (w1 +w2)T x+(b1 − b2) = 0 and (w1 −w2)T x+(b1 + b2) = 0, where
w1 is orthogonal to w2.
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Since the input data xi, 1 � i � N, is located outside the bounded region, first,
(xi, yi) is supposed to be above the hyperplane (w1 + w2)T x + (b1 − b2) = 0. Then the
distance between xi and the separating hyperplane is,

l1 + l2 =
|wT

1 xi + b1|
‖w1‖

. (10)

And that between xi and the hyperplane (w1 + w2)T x + (b1 − b2) = 0 is,

l3 =
|(w1 + w2)T xi + (b1 − b2)|

‖w1 + w2‖
. (11)

From Fig. 3,

l2 =
l3

cosθ
= l3 × (

wT
1 (w1 + w2)

‖w1‖‖w1 + w2‖
)−1 =

|(w1 + w2)T xi + (b1 − b2)|
‖w1‖

. (12)

Since xi is supposed to be located outside the margin of separation bounded by (w1 +
w2)T x + (b1 − b2) = 0 and (w1 − w2)T x + (b1 + b2) = 0. So we can conclude:

{
(w1 − w2)T xi + (b1 + b2) < 0 ⇒ wT

1 xi + b1 < 0,

(w1 + w2)T xi + (b1 − b2) > 0 ⇒ wT
1 xi + b1 > 0.

(13)

Eq. 13 is applied to (12) to yield,

l1 =
|wT

1 xi + b1|
‖w1‖

− l2 =
|wT

2 xi − b2|
‖w1‖

. (14)

On SVMs, the design goal of the classifier is to determine maximal margin hyper-
plane. However, this design goal is hard to achieve on oblique support vector machines
because the margin of separating is not bounded by two parallel hyperplane. Rather than
maximizing the geometric margin, on oblique support vector machines the distances l1
on each training samples are taken into consideration. OSVMs maximize the summation
of l1 for each training samples, so the problem is stated as follows:

maximize
1
2

N∑
i=1

(wT
2 xi − b2)2

‖w1‖2
2

(15)

subject to yi

(
(w1 + w2)T xi + (b1 − b2)

)
� 0, i = 1, 2, . . . , N,

yi

(
(w1 − w2)T xi + (b1 + b2)

)
� 0, i = 1, 2, . . . , N,

wT
1 w2 = 0.

Another, constraint: k‖w2‖2
2 � ‖w1‖2

2 is applied to increase tolerance. From Fig. 3
and (9), the angle θ is determined by the ratio of ‖w1‖ to ‖w2‖. If k is approaching to



144 C.-C. Yao, P.-T. Yu

∞, then the oblique support vector machines are like support vector machines. On the
contrary, if k is approaching to zero, the support hyperplanes are almost orthogonal to
the optimal hyperplane and are useless for classification. Such a case may arise when few
training samples are available. The lower bound on k should be set to avoid this case.

Let X = [x1, x2, . . . , xN ]T , e1 = [1, 1, . . . , 1]T , e0 = [0, 0, . . . , 0]T , X ∈ RN×m,
e1, e0 ∈ RN . Matrix Y is an N ×N diagonal matrix with yi as the ith diagonal element.
Then, (15) can be expressed as vector form. Hence, the problem is stated as follows:

maximize
1
2
‖Xw2 − b2e1‖2

2

‖w1‖2
2

(16)

subject to Y (X(w1 + w2) + (b1 − b2)e1) � e0,

Y (X(w1 − w2) + (b1 + b2)e1) � e0,

wT
1 w2 = 0,

k‖w2‖2
2 � ‖w1‖2

2,

where k is a user-specified positive parameter.
Accordingly, the model of OSVMs have been reformed to nonlinear optimization

problem. For simplistically, on (16) b2 can be set to 1 because b2
‖w1‖ represents the widen-

ing distance between the support hyperplane and separating hyperplane and is used to
set to 1

‖w1‖ on SVMs. Besides, ‖Xw2 − b2e1‖2
2 can be set as a constant t (t > 0) if it

is satisfied with some constraints which are discussed later. Then the above problem is
equivalent to,

minimize
1
2
‖ŵ1‖2

2 (17)

subject to Y
(
X(ŵ1 + ŵ2) + (b̂1 − b̂2)e1

)
� e0,

Y
(
X(ŵ1 − ŵ2) + (b̂1 + b̂2)e1

)
� e0,

ŵ1
T ŵ2 = 0,

k‖ŵ2‖2
2 � ‖ŵ1‖2

2,

where k is a user-specified positive parameter and ŵ1 = w1
‖Xw2−b2e1‖ , ŵ2 = w2

‖Xw2−b2e1‖ ,

b̂1 = b1
‖Xw2−b2e1‖ .

The reason why ‖Xw2 − b2e1‖2
2 can be set as a constant is discussed as follows.

First, ‖Xw2 − b2e1‖2
2 can be expressed as a quadratic form. Let �A = [X, −e1] and

�w2 = [wT
2 , b2]T . Then

‖Xw2 − b2e1‖2
2 = ‖ �A �w2‖2

2 = ( �A �w2)T ( �A �w2) = �w2
T �AT �A �w2, (18)
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where �w2
T �AT �A �w2 is a quadratic form with respect to �w2. In (18), �A ∈ RN×(m+1)(N �

m) and �AT �A ∈ R(m+1)×(m+1).
Next, �AT �A is a positive semidefinite matrix. As we know, a symmetric matrix Q is

positive semidefinite if and only if xT Qx � 0, where Q ∈ Rn×n, ∀x ∈ Rn×1 (Kreysig,
1999). Trivially, ‖Xw2 − b2e1‖2

2 = �w2
T �AT �A �w2, ∀ �w2 ∈ R(m+1)×1, �w2

T �AT �A �w2 � 0.

Note that �AT �A is a symmetric matrix.

Lemma 1 (Horn and Johnson, 1990). If A ∈ Rm×n, then r(A) = r(AT A) = r(AAT ),
where r(A) denotes the rank of A.

Lemma 2. The rank of �AT �A is m.

Proof. See Appendix.

Since �AT �A is a real symmetric matrix, ∃P , PT P = PPT = I , � �AT �A =
PDP−1 = PDPT where D is a diagonal matrix and let D be

D =

⎡
⎢⎢⎢⎢⎢⎣

λ1 0 . . . 0 0
0 λ2 . . . 0 0
...

...
...

...
...

0 0 . . . λm 0
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦ =

[
D1 Om×1

O1×m O1×1

]
. (19)

Note that λi > 0, i = 1, 2, . . . , m. Also, the orthogonal matrix P can be let as P =[
P11 P12

P21 P22

]
, where P11 ∈ Rm×m, P12 ∈ Rm×1, P21 ∈ R1×m, P22 ∈ R1×1. Then

PDPT =
[

P11 P12

P21 P22

] [
D1 Om×1

O1×m O1×1

] [
PT

11 PT
21

PT
12 P22

]

=
[

P11D1 Om×1

P21D1 O1×1

] [
PT

11 PT
21

PT
12 P22

]
=

[
P11D1P

T
11 P11D1P

T
21

P21D1P
T
11 P21D1P

T
21

]
. (20)

Lemma 3. If t satisfies below constraints:

(1) H = t − b2P21D1P
T
21b2 + b22u2

1
λ1

+ . . . + b22u2
m

λm
> 0.

(2)

√(
b2u1
λ1

)2

+
(

b2u2
λ2

)2

+ . . . +
(

b2um

λm

)2

< min
(√

H
λ1

,
√

H
λ2

, . . . ,
√

H
λm

)
,

where P21D1 = [u1, u2, . . . , um], then �w2
T �AT �A �w2 = t is an m-dimensional ellipsoid

with the origin of coordinate inside this ellipsoid.

Proof. See Appendix.

On the design of OSVMs, w2 is the key factor to control the degree of rotating. If w2

can be guaranteed to point to any direction in Rm, then the optimal solution is possibly
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obtained by running the nonlinear programming. For instance, in R2, Fig. 4(a) shows a
case of origin inside the ellipse (ellipsoid in R2 is called ellipse). We can find that the
vector on this ellipse can point to any direction in R2. That is, the vector on this ellipse
can be rotated to any degree between 0o to 360o. In Fig. 4(b), we can find that the vector
on the ellipse only can be rotated between 0o to 90o due to the origin not inside the ellipse.

Therefore, a theorem can be concluded as follows.

Theorem 1. In (16), ‖Xw2 − b2e1‖2
2 can be set as a constant t (t > 0) and the optimal

solution can be found by running nonlinear programming without loss accuracy if t is
satisfied conditions stated in Lemma 3.

Theorem 1 reveals that the optimal solution can be obtained if ‖Xw2 − b2e1‖2
2 is set

as a constant t (t > 0) under two constraints stated in Lemma 3. However, it is hard to
run the nonlinear programming by adding these two extra conditions into (17). To solve
the nonlinear programming problem with these two constraints is still an open problem
and is left as a future work. In this paper, a heuristic algorithm is proposed to determine
the value of t such that the optimal solution can be found with high probability sense.

PROPOSITION 1. The nonlinear optimization problem which is stated in (17) can be
solved by introducing the Lagrangian function.

Proof. See Appendix.

In addition, the model of OSVMs also suffers with another problem. Equality con-
straint wT

1 w2 = 0 causes the optimization problem is not convex (Bertsekas and Hard-
cover, 1999). Since the nonlinear programming problem with equality constraint is hard
to solve, an approximate approach can be got by rewriting the cost function and equality
constraint. After rewriting the cost function and equality constraint, the problem is stated
as follows:

minimize
1
2
‖ŵ1‖2

2 + Cςς
2 (21)

subject to Y
(
X(ŵ1 + ŵ2) + (b̂1 − b̂2)e1

)
� e0,

Fig. 4. Two possible cases for w2 can be pointed to any direction or not.
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Y
(
X(ŵ1 − ŵ2) + (b̂1 + b̂2)e1

)
� e0,

0 � ŵ1
T ŵ2 � ς,

k‖ŵ2‖2
2 � ‖ŵ1‖2

2,

where k is a user-specified positive parameter. In (21), when Cς is big enough, ŵ1
T ŵ2

will approximate to zero.
The Lagrangian function is introduced to solve the above problem. Let

L(ŵ1, ŵ2, b̂1, b̂2, ς) =
1
2
‖ŵ1‖2

2 + Cςς
2 − αT

[
Y

(
X(ŵ1 + ŵ2) + (b̂1 − b̂2)e1

)]
− βT

[
Y

(
X(ŵ1 − ŵ2) + (b̂1 + b̂2)e1

)]
− γ1(ς − ŵ1

Tŵ2)

− γ2(ŵ1
T ŵ2) − γ3

(
‖ŵ1|22 − k‖ŵ2‖2

2

)
, (22)

where the nonnegative variables α, β, γ1, γ2 and γ3 are Lagrange multipliers where
α, β ∈ RN×1. The optimal value is obtained by setting the results of differentiating
L(ŵ1, ŵ2, b̂1, b̂2, ς) with respect to ŵ1, ŵ2, b̂1, b̂2, ς equal to zero. Thus, (23)–(26) are
yielded.

αT Y e1 = βT Y e1 = 0, (23)

2Cςς = γ1, (24)

ŵ2 =
γ1−γ2+2γ3−1

(γ1−γ1)2−2kγ3+4kγ2
3

XTY T α+
γ1−γ2−2γ3+1

(γ1−γ2)2−2kγ3+4kγ2
3

XTY T β, (25)

ŵ1 =
γ1−γ2−2kγ3

(γ1−γ2)2−2kγ3+4kγ2
3

XTY T α− γ1−γ2+2kγ3

(γ1−γ2)2−2kγ3+4kγ2
3

XTY T β. (26)

Then the decision surface wT
1 x + b1 = 0 becomes

( γ1 − γ2 − 2kγ3

(γ1 − γ2)2− 2kγ3+ 4kγ2
3

XT Y T α − γ1 − γ2 + 2kγ3

(γ1 − γ2)2− 2kγ3+ 4kγ2
3

XT Y T β
)T

x

+ b̂1 = 0. (27)

The value of b̂1 and b̂2 don’t appear in the above equations, but it can be found by
making use of the primal constraints:

b̂1 = −minyi=1(ŵ1 + ŵ2)T xi + maxyi=−1(ŵ1 − ŵ2)T xi

2
, (28)

b̂2 = −minyi=1(ŵ1 + ŵ2)T xi − maxyi=−1(ŵ1 − ŵ2)T xi

2
. (29)

The linearly nonseparable case can be obtained by adding variable ξ+, ξ− into (17)
and proceeding in a manner to that described in this subsection.
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4.2. Nonlinear Oblique Support Vector Machines

The input data are mapped into a high-dimensional feature space by some nonlinear map-
ping chosen a priori. Let ϕ denote a set of nonlinear transformations from the input space
Rm to a higher dimensional feature space. Then (27) becomes,

( γ − 2kγ3

γ2−2kγ3+4kγ2
3

ϕ(X)TY T α − γ + 2kγ3

γ2−2kγ3+4kγ2
3

ϕ(X)TY T β
)T

ϕ(x) + b̂1 = 0,

where γ = γ1 − γ2.
The inner product of the two vectors induced in the feature space can be replaced by

the inner-product kernel denoted by K(x, xi) and defined by K(x, xi) = ϕ(x) · ϕ(xi).
Once a kernel K(x, xi), which satisfies Mercer’s condition has been selected, the decision
function becomes,

( γ − 2kγ3

γ2−2kγ3+4kγ2
3

αTY K(X, x) − γ + 2kγ3

γ2−2kγ3+4kγ2
3

βTY K(X, x)) + b̂1 = 0. (30)

Using the method of Lagrange multipliers and proceeding in a manner similar to that
described in this subsection, the dual problem for nonlinearly nonseparable case can be
gotten.

5. Iterative Learning Algorithm for Oblique Support Vector Machines

A number of optimization techniques can be directly applied to the case of SVMs, in-
cluding Newton method, conjugate gradient method, primal dual interior-point methods,
and others. However, several of these require that the kernel matrix is stored in memory,
implying that the space complexity is quadratic in the sample size. This section proposes
an iterative learning algorithm to overcome this problem with a large dataset.

5.1. Iterative Learning Algorithm with Linear Kernel

The preceding section established that the constrained optimal problem can be trans-
formed into a Lagrangian function and solved by Newton’s method. In this section
SSVMs are adopted to remove the constraints (Lee and Mangasarian, 2001a). Hence,
the nonlinear programming problem is converted into unconstrained optimization and
conjugate gradient method can be used to get the solution.

On linearly nonseparable case, the square of the 2-norm of the variable ξ+, ξ− is
included. Then the problem is formulated as,

minimize
1
2
‖ŵ1‖2

2 + Cςς
2 +

Cξ

2
(
‖ξ+‖2

2 + ‖ξ−‖2
2

)
(31)

subject to Y
(
X(ŵ1 + ŵ2) + e1(b̂1 − b̂2)

)
+ ξ+ � e0, (32)
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Y
(
X(ŵ1 − ŵ2) + e1(b̂1 + b̂2)

)
+ ξ− � e0, (33)

ξ+, ξ− � 0, (34)

k‖ŵ2‖2
2 � ‖ŵ1‖2

2, (35)

0 � ŵ1
T ŵ2 � ς. (36)

Eqs. (32), (33) and (35) can be rewritten as

ξ+ =
(
e0 − Y

(
X(ŵ1 + ŵ2) + e1(b̂1 − b̂2)

))
+

, (37)

ξ− =
(
e0 − Y

(
X(ŵ1 − ŵ2) + e1(b̂1 + b̂2)

))
+

, (38)

τ =
(
k‖ŵ2‖2

2 − ‖ŵ1‖2
2

)
+

, (39)

where (·)+ replaces negative components of a vector by zeros.
Smoothing technique is introduced to replace x+ by a given p(x, μ), where

p(x, μ) = x +
1
μ

log(1 + e−μx), μ > 0. (40)

Consequently, (31) is rewritten as

minimize
1
2
‖ŵ1‖2

2+Cςς
2+

Cξ

2

(∥∥∥p
(
e0−Y

(
X(ŵ1+ŵ2)+e1(b̂1−b̂2)

)
, μ

)∥∥∥2

2

+
∥∥∥p

(
e0 − Y

(
X(ŵ1 − ŵ2) + e1(b̂1 + b̂2)

)
, μ

)∥∥∥2

2

)

+
∥∥p(k‖ŵ2‖2

2 − ‖ŵ1‖2
2), μ)

∥∥2

2
. (41)

Besides, constraint 0 � ŵ1
T ŵ2 � ς can also be removed by rewriting (41).

minimize
1
2
‖ŵ1‖2

2 + Cς(ŵ1
T ŵ2)2 +

Cξ

2

(∥∥∥p
(
e0 − Y

(
X(ŵ1 + ŵ2)

+ e1(b̂1 − b̂2)
)
, μ

)∥∥∥2

2
+

∥∥∥p
(
e0 − Y

(
X(ŵ1 − ŵ2)

+ e1(b̂1 + b̂2)
)
, μ

)∥∥∥2

2

)
+

∥∥∥p
(
k‖ŵ2‖2

2 − ‖ŵ1‖2
2

)
, μ)

∥∥∥2

2

Now the nonlinear programming problem has been converted into unconstrained op-
timization problem as follows:

Given the training samples {(xi, yi)}N
i=1, find optimal ŵ1, ŵ2, b̂1, b̂2 such that mini-

mize the cost function:

1
2
‖ŵ1‖2

2 + Cς(ŵ1
T ŵ2)2 +

Cξ

2

(∥∥∥p
(
e0 − Y

(
X(ŵ1 + ŵ2)
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+ e1(b̂1 − b̂2)
)
, μ

)∥∥∥2

2
+

∥∥∥p
(
e0 − Y

(
X(ŵ1 − ŵ2)

+ e1(b̂1 + b̂2)
)
, μ

)∥∥∥2

2

)
+

∥∥∥p
(
k‖ŵ2‖2

2 − ‖ŵ1‖2
2

)
, μ

)∥∥∥2

2
(42)

Eq. 42 is a quadratic function. An optimization problem with a quadratic function is
well known to be solvable by adopting the conjugate gradient algorithm (Bertsekas and
Hardcover, 1999; Hagan et al., 1996). When the conjugate gradient algorithm is adopted,
(43) is used to obtain optimal solutions.

(ŵ1(k + 1), ŵ2(k + 1), b̂1(k + 1)) = (ŵ1(k), ŵ2(k), b̂1(k)) + α(k)P (k). (43)

Here, αk is a step length obtained by one-dimensional search for the direction of descent,
the set of vectors {Pj} gives the conjugate directions (Bertsekas and Hardcover, 1999).

In supervised learning, the solution to (42) can be solved by adopting batch-mode
learning or pattern-mode learning. When batch-mode learning is adopted, all input sam-
ples are taken as a whole batch and the parameters are not updated until the entire batch
of data is processed. (42) is a typical batch model. On the other hand, if pattern-mode
learning is chosen, the parameters are adapted immediately after each input signal is fed
in. Pattern-mode learning can be implemented by choosing the subset of the dataset given
by S samples of the original N data samples, where 1 � S � N . Herein, �Xi is used to
represent the variant structure matrix of X and �Xi = {xi, xi+1, . . . , xi+S−1}.

Theoretically, batch-mode learning is more precise and efficient than other methods
of learning. However, it may be unrealizable when it requires huge memory. On the other
hand, pattern-mode learning is easily implemented and performed in the same way batch-
mode learning (Heskes and Wiegerinck, 1996; Qin et al., 1992). Based on these proper-
ties, the proposed iterative algorithm can be adapted to datasets of various sizes.

Iterative Learning Algorithm for OSVMs:
In this algorithm, j represents the training step for the jth input signal. In (42) matrix

X is replaced by �Xj . �Xj is an S × m matrix and Y is an S × S matrix, where S is the
number of input signals that are included in the j’th training.

Step 1. Start with any ŵ1(0), ŵ2(0), b̂1(0), where ŵ1(0), ŵ2(0) ∈ Rn and b̂1(0) ∈ R.
Step 2. In jth training step, using conjugate gradient algorithm to get the optimal

weight vector ŵ1
opt, ŵ2

opt, b̂1
opt

.
Step 3. Use the jth optimal weight vector that is generated in Step 2 to update the

global optimal weight vector according to (44).

(ŵ1
j+1, ŵ2

j+1, b̂1
j+1

) = (1 − μi)(ŵ1
j , ŵ2

j , b̂1
j
) + μi(ŵ1

opt, ŵ2
opt, b̂1

opt
). (44)

5.2. Iterative Learning Algorithm with Nonlinear Kernel

A nonlinear kernel is used to obtain the nonlinear oblique support vector machines and
construct a nonlinear classifier. After converting into the dual problem, the objection
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function of the nonlinear OSVMs model is stated as follows:

minimize
1
2
‖ γ1 − γ2 − 2kγ3

(γ1 − γ2)2 − 2kγ3 + 4kγ2
3

XT Y T α

− γ1 − γ2 + 2kγ3

(γ1 − γ2)2 − 2kγ3 + 4kγ2
3

XT Y T β‖2
2

+ Cς(
γ1

2Cς
)2 +

Cξ

2
(‖ξ+‖2

2 + ‖ξ−‖2
2). (45)

Constrained functions are got by applying (25) and (26) to (32), (33), (35) and (36). More-
over, the smooth technique is introduced to converted the constrained linear program-
ming problem into unconstrained optimization problem. Last, the product term XXT is
replaced with kernel function K(X, X). After that, optimal solution of can be got by
adopting conjugate gradient method.

Another, one of important factors for constructing an iterative nonlinear classifier is
to find representative samples from the entire database. Herein, �B is used to represent
the representative samples and the representative samples can be determined by partition
clustering method, such as Forgy Algorithm (Anderberg, 1973). After replacing the entire
database with representative samples, the size of the quadratic problem is greatly reduced
and the characterization of the nonlinear separating surface is simplified by making use
kernel K( �Xi, �B). The algorithm of determining representative samples is described as
follows:

(i) According to the distribution of each class in the whole dataset, randomly choosing
S samples as seed points.

(ii) Allocate each data unit to the cluster with the nearest seed point. The seed points
remain fixed for a full cycle through the entire data set.

(iii) Compute new seed points as the centroids of the clusters of data units.
(iv) Alternate Steps (ii) and (iii) until no data units change their cluster membership. If

this alternation does not end, stop after R alternations.

6. Experimental Results

This section demonstrates the effectiveness of Oblique Support Vector Machines. The
experimental’s results that pertain to OSVMs are compared to those for classical sup-
port vector machines, SSVMs and RSVMs to evaluate the effectiveness of the OSVMs,
respectively (Lee and Mangasarian, 2001a; Lee and Mangasarian, 2001b; Vapnik, 1998).

In this work, six publicly available datasets are used as experimental samples. They
include: two Wisconsin Prognostic Breast Cancer databases and four datasets, “Iono-
sphere", “Cleveland Heart Problem", “Pima Indians" and “BUPA Liver", from the Irvine
Machine Learning Database Repository (Murphy and Aha, 1992).

At beginning, training samples and testing samples are normalized. The number of
t is chosen by heuristics but must be satisfied those two constraints stated in Lemma 3.
Obviously, t is the factor to control the length of radius and is independent to ui and
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λi. Accordingly, if t is chosen big enough, the optimal solution can be obtained. So a
heuristic algorithm for choosing t is stated as follows:

1. Randomly selecting m training samples and setting t as the summation of m train-
ing samples’ 1-norm.

2. Recording the experimental result.
3. Increasing the value of t and then training and testing again.
4. Comparing the experimental result. If the results are almost same, then stop. Oth-

erwise, repeat Step 3.

First, tenfold cross-validation is performed on each dataset to evaluate how well each
algorithm generalizes to future data (Stone, 1974). The method of tenfold cross-validation
involves extracting a certain proportion, typically 10%, of the training set as the tuning
set, which is a surrogate of the testing set. For each training, OSVMs are applied to
the rest of the training data to obtain a classifier and the tuning set correctness of this
classifier is computed. All parameters in the OSVMs algorithm are selected to optimize
the performance on the tuning set, a surrogate for a test set. Table 1 lists the experimental’s
results. Clearly, in Table 1 the correctness of the classification on testing samples by
OSVMs is better than that by SSVMs and SVMs. This result indicates that the ability of
prediction of OSVMs is better than the others.

Second, a checkerboard dataset is used as testing data to determine the effectiveness
of the OSVMs in generating a highly nonlinear separating hyperplane. Fig. 5 shows the
results for OSVMs.

Finally, Adult dataset is used to demonstrate the correctness and efficient about itera-
tive learning algorithm of OSVMs in solving larger problems (Murphy and Aha, 1992).
In this experiment Gaussian kernel is adopt and smooth parameter μ is set to 5. In our

Table 1

Tenfold cross-validation correctness results on six moderately sized datasets using three different methods

Tenfold Training Correctness, %

Tenfold Testing Correctness, %

Dataset size OSVM SSVMs SVM

WPBC (24 months) 86.59 86.16 81.94

155 × 32 91.61 83.47 82.02

WPBC (60 months) 77.5 80.20 80.91

110 × 32 77.8 68.18 61.83

Ionosphere 94.91 94.12 92.96

351 × 34 89.72 89.63 89.17

Cleveland 87.95 87.32 72.05

297 × 13 88 86.13 72.12

Pima Indians 75.40 78.11 77.92

768 × 8 80.37 78.12 77.07

BUPA Liver 70.8 70.37 70.57

345 × 6 71 70.33 69.86
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Fig. 5. Gaussian kernel separation of the checkerboard dataset.

Table 2

Computational results of OSVMs and RSVMs on Adult dataset

K( �Ai, �B) K( �B, �B)

representative OSVMs RSVMs OSVMs RSVMs

sample number Testing % Testing % Testing % Testing %

81 84.58 84.29 78.81 77.93

114 84.39 83.88 78.88 74.64

160 84.61 84.56 77.81 77.74

192 84.61 84.55 79.01 76.93

210 84.65 84.47 79.12 77.03

242 84.77 84.90 79.96 75.45

284 85.07 85.31 79.99 76.73

326 85.07 85.07 80.12 76.95

algorithm, S×S storage capacity is required for kernel matrix rather than N ×S storage
capacity on RSVMs. Table 2 shows the correctness of pattern-mode learning with differ-
ent numbers of input signals in each training epoch and compares the experimental results
of OSVMs with RSVMs. The results indicate that the correctness of the classification by
OSVMs is better than that by RSVMs and also indicate that, independently input signals
in each training epoch, the same stable classification rate is approached.

7. Conclusion

In this paper a modified framework of support vector machines, called OSVMs, has been
proposed to improve the capability of classification. For achieving an optimal solution,
an orthogonal vector is joined into the weight vector in order to rotate the support hy-
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perplanes. In constrast to the model of classical SVMs, the optimal separating hyper-
plane and the margin of separation are constructed more precisely. Six publicly available
datasets are used as training and testing samples for simulation. Consequently, our exper-
imental results definitely reveal the excellent ability of classification.

In addition, an iterative learning algorithm has been proposed to process the large-
scale data problem. In this iterative learning algorithm, three different schemes for train-
ing can be found in this literature including pattern mode, batch mode and semi-batch
mode learning. The main advantage of this iterative learning algorithm is greatly saving
the storage capacity. In this iterative learning, the storage capacity for kernel matrix is
only H ×H , whereas on RSVMs the storage capacity is N ×H , H � N . Experimental
results have been given to demonstrate that the performance of OSVMs is better than that
of RSVMs.

Appendix

Proof of Lemma 2
Due to N � m, without loss of generality, we can select the training samples
x1, x2, . . . , xN such that dim(Span{x1, x2, . . . , xN}) = m. Note that Span(S) de-
note the subspace spanned by the set S (Leon, 2002). Therefore, the rank of X is equal

to m. Note that again, X =
[
x1 x2 . . . xN

]T
. Consequently, r( �A) = m, where

�A = [X − e1] =
[

x1 x2 . . . xN

−1 −1 . . . −1

]T

. By Lemma 1, the rank of �AT �A is equal to

m, where the structure of �AT �A can be specified as follows.

�AT �A =
[

XT X −XT e1

−eT
1 X eT

1 e1

]
=

[
XT X −

∑N
i=1 xi

−
∑N

i=1 xT
i N

]
. (46)

Proof of Lemma 3

�w2
T �AT �A �w2 = �w2

T PDPT �w2 = [wT
2 b2]

[
P11D1P

T
11 P11D1P

T
21

P21D1P
T
11 P21D1P

T
21

] [
w2

b2

]

= wT
2 P11D1P

T
11w2 + wT

2 P11D1P
T
21b2 + b2P21D1P

T
11w2 + b2P21D1P

T
21b2

After the coordinate is translated, the new coordinate w′
2 = PT

11w2, where w′
2 =

[w′
21, w

′
22, . . . , w

′
2m]T . Then

�w2
T �AT �A �w2 = t ⇒ w

′T
2 D1w

′
2 + 2b2P21D1w

′
2 + b2P21D1P

T
21b2 = t. (47)

Suppose P21D1 = [u1, u2, . . . , um], then (47) becomes

λ1w
′2
21 + λ2w

′2
22 + . . . + λmw

′2
2m + 2b2(u1w

′
21 + u2w

′
22 + . . . + umw′

2m)

= t − b2P21D1P
T
21b2
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⇒ λ1(w′
21 +

b2u1

λ1
)2 + . . . + λm(w′

2m +
b2um

λm
)2

= t − b2P21D1P
T
21b2 +

b2
2u

2
1

λ1
+ . . . +

b2
2u

2
m

λm
. (48)

The geometric form of (48) is an m-dimensional ellipsoid. Let H = t −
b2P21D1P

T
21b2 + b22u2

1
λ1

+ . . . + b22u2
m

λm
, then (48) become,

(w′
21 + b2u1

λ1
)2

H
λ1

+
(w′

22 + b2u2
λ2

)2

H
λ2

+ . . . +
(w′

2m + b2um

λm
)2

H
λm

= 1. (49)

We can find that (− b2u1
λ1

,− b2u2
λ2

, . . . ,− b2um

λm
)(= O1) is the center of the ellipsoid and√

H
λi

is the length of radius in the direction νi where νi is the eigenvector corresponding

to λi. In order to guarantee the origin O inside the ellipsoid, the distance between O and
O1 must be less than the length of any radius. Therefore, when t satisfies

(1) t − b2P21D1P
T
21b2 + b22u2

1
λ1

+ . . . + b22u2
m

λm
> 0,

(2)
√

( b2u1
λ1

)2 + ( b2u2
λ2

)2 + . . . + ( b2um

λm
)2 < min

(√
H
λ1

,
√

H
λ2

, . . . ,
√

H
λm

)
,

the origin of coordinate is located inside the ellipsoid.

Proof of Proposition 1
(1) In (17), the constraint gradients are linearly independent.
(2) The Lagrangian function for (17) is listed as follow:

L(ŵ1, ŵ2, b̂1, b̂2) =
1
2
‖ŵ1‖2

2 − αT
[
Y (X(ŵ1 + ŵ2) + (b̂1 − b̂2)e1)

]
− βT

[
Y (X(ŵ1 − ŵ2) + (b̂1 + b̂2)e1)

]
+ γ1(ŵ1

T ŵ2)

− γ2

(
‖ŵ1‖2

2 − k‖ŵ2‖2
2

)

⇒ ∇2L(ŵ1, ŵ2, b̂1, b̂2) =

⎡
⎢⎢⎣

(1 − 2γ2)I γ1I 0 0
γ1I 2kγ2I 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⇒ yT∇2L(ŵ1, ŵ2, b̂1, b̂2)y = (1 − 2γ2)yT
1 y1 + 2γ1y

T
1 y2 + 2kγ2y

T
2 y2

= (1 − 2γ2)
∥∥∥y1 +

γ1

1 − 2γ2
y2

∥∥∥2

+ 2kγ2
2yT

2 y2 −
γ2
1

1 − 2γ2
yT
2 y2.

If the twice differential function is semi-positive, then the solution which is provided by
Lagrangian function is global minimum. Hence, when the two conditions are satisfied:

(1) 1 − 2γ2 > 0, (2) 2kγ2
2 � γ2

1
1−2γ2

.

The solution of (17) which is provided by Lagrangian function is global minimum solu-
tion.
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Pakrypusio atraminio vektoriaus klasifikatorius

Chih-Chia YAO, Pao-Ta YU

Šiame straipsnyje klasifikavimo galimybi ↪u pagerinimui pasiūlyta modifikuota atraminio
vektoriaus klasifikatoriaus schema, pavadinta pakrypusio atraminio vektoriaus klasifikatoriais
(OSVMs). Šio klasifikatoriaus principas yra ortogonalaus vektoriaus ↪itraukimas ↪i svori ↪u vektori ↪u
atramini ↪u hiperplokštum ↪u pasukimui. Tokiu būdu ne tik rizikos funkcija yra pataisoma, bet ir ri-
bojim ↪u funkcijos yra modifikuojamos. Po šio modifikavimo, skiriančioji hiperplokštuma ir skiria-
masis kraštas yra tiksliau sudaromi. Be to iteracinis mokymo algoritmas yra pasiūlytas taikymui
dideliems duomenims. Pateikti eksperimentiniai rezultatai ir palyginimai, parodantys, kad OSVMs
yra pajėgesni už SVMs ir SSVMs.


