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Abstract. In this paper we consider branching time temporal logics of knowledge and belief. These
logics involve the discrete time linear temporal logic operators “next” and “until” with the branch-
ing temporal logic operator “on all paths”. The latter operator is interpreted with respect to a version
of the bundle semantics. In addition the temporal logic of knowledge (belief) contains an indexed
set of unary modal operators “agent i knows” (“agent i believes”) and it contains the modality of
common knowledge (belief). For these logics we present sequent calculi with a restricted cut rule.
Thus, we get proof systems where proof-search becomes decidable. The soundness and complete-
ness for these calculi are proved.
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1. Introduction

Temporal logics of knowledge and belief are becoming increasingly important in both
mainstream computer science and AI. In AI, temporal logics of knowledge and belief
are used as knowledge representation formalism (Catach, 1988), and may be used in the
specification and verification of distributed intelligent systems (Wooldridge, 1992).

In this paper we consider the branching time temporal logics of knowledge and belief.
These logics involve the discrete time linear temporal logic operators “next” and “until”
with the branching temporal logic operator “on all paths”. The latter operator is inter-
preted with respect to a version of the bundle semantics (Stirling, 1992). In addition the
temporal logic of knowledge (belief) contains an indexed set of unary modal operators
“agent i knows” (“agent i believes”) that allow to represent the information possessed
by the group of agents. These operators satisfy the analogues of the modal logic S5
(KD45).This system is widely accepted as a logic of idealized knowledge (belief) (Fagin
et al., 1995; Halpern and Moses, 1992). Also this logic contains the modality of com-
mon knowledge (belief). For these logics we present sequent calculi with a restricted cut
rule. Thus, we get proof systems where proof-search becomes decidable. The soundness
and completeness for these calculi are proved. Our work uses the ideas from Alberucci
(2002); Halpern et al. (2004) and van der Meyden et al. (2003).
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We mention some related works. In van der Meyden et al. (2003) the Hilbert style
axiom system is presented for branching time temporal logic of knowledge. The linear
time temporal logic of knowledge without common knowledge operator is considered
in (Wooldridge et al., 1998; Dixon et al., 1998). In Wooldridge et al. (1998) a tableau
based decision procedure is presented for the considered logic. In Dixon et al. (1998)
a resolution-based proof system is presented which is shown to be correct. The logic of
common knowledge without temporal operators is considered in Alberucci (2002), where
complete Tait-style sequent calculus with restricted cut rule for the logic is presented.

The paper is organized as follows. In the next section we provide formal definitions for
the logics we consider. In Section 3 we present sequent calculi and prove the soundness
theorem. In Section 4 we prove the completeness of the presented sequent calculi. In Sec-
tion 5 we present an algorithm to check the provability in the considered sequent calculi.

2. Language and Semantics

To define the language L for the temporal logic of knowledge (belief) we start from a set
of primitive propositions P = {p, q, . . .}, the constant true, the propositional connec-
tives ¬,∧,∨, the epistemic modalities [1], . . . , [n], the epistemic modality E, the common
knowledge (belief) modality C and the temporal modalities: unary operator ◦, a binary
operator U and unary operator A. If φ is a formula [i]φ says that agent i knows (believes)
φ, a formula Eφ says that every agent knows (believes) φ, a formula Cφ says that φ is
a common knowledge (belief) of all agents, a formula ◦φ says that φ is true at the next
time moment, a formula φUψ says that φ holds until ψ does, a formula Aφ says that on
all paths φ holds.

The semantics for all operators except for the operator A is defined as in Wooldridge et
al. (1998). The semantics for A is defined as in Stirling (1992), which is called the bundle
semantics. We assume that the world may be in any of a set S of states. We generally use
s to denote a state. The internal structure of states is not an issue in this work. A timeline
l is an infinitely long, linear, discrete sequence of states, indexed by natural numbers. For
convenience, we define a timeline l to be a total function l: N → S. Let T lines be the
set of all timelines. Note that timelines correspond to the runs of Halpern, Meyden and
Vardi (Halpern et al., 2004). A point, p, is pair (l, u), where l ∈ T lines is a timeline and
u ∈ N is a temporal index into l. Any point (l, u) will uniquely identify a state l(u). Two
timelines l, l′ are equivalent to time n if l(j) = l′(j) for j = 0, . . . , n. Let the set of all
points (over S) be Points. We then let an agent’s knowledge (belief) accessibility relation
Ri hold over Points, i.e., Ri ⊆ Points × Points, for all i ∈ {1, . . . , n}. A valuation, π,
is a function π: Points × P → {T, F}. We can now define models for L.

A model, M , for L, is a structure M = (TL, R1, . . . , Rn, π), where:

• TL ⊆ T lines is a set of timelines;
• Ri, for all i ∈ {1, . . . , n}, is an agent accessibility relation over Points, i.e., Ri ⊆

Points × Points;
• π: Points × P → {T, F} is a valuation.
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As usual, we define the semantics of the language via satisfaction relation “|=”. For L,
this relation holds between pairs of the form (M, (l, u)), where M is a model and (l, u)
is a point of M , and L formulas. Eφ stands for [1]φ ∧ . . . ∧ [n]φ.

• (M, (l, u)) |= true;
• (M, (l, u)) |= p iff π(l, u)(p) = T (where p ∈ P );
• (M, (l, u)) |= ¬φ iff (M, (l, u)) �|= φ;
• (M, (l, u)) |= φ ∨ ψ iff (M, (l, u)) |= φ or (M, (l, u)) |= ψ;
• (M, (l, u)) |= φ ∧ ψ iff (M, (l, u)) |= φ and (M, (l, u)) |= ψ;
• (M, (l, u)) |= [i]φ iff ∀l′ ∈ TL, ∀v ∈ N , if ((l, u), (l′, v)) ∈ Ri, then

(M, (l′, v)) |= φ;
• (M, (l, u)) |= Cφ iff (M, (l, u)) |= Ekφ for k = 1, . . . , where

E1φ = Eφ, Ek+1φ = EEkφ;
• (M, (l, u)) |= ◦φ iff (M, (l, u + 1)) |= φ;
• (M, (l, u)) |= φUψ iff ∃v ∈ N such that v � u and (M, (l, v)) |= ψ and ∀ω ∈ N ,

if u � ω < v then (M, (l, ω)) |= φ;
• (M, (l, u)) |= Aφ iff for all timelines l′ of M that are equivalent to l to time u, we

have M, (l′, u) |= φ.

The semantics we have adopted for the branching quantifier A is called the bundle or the
narrow semantics. There is an alternative definition, which is called the broad semantics:
(M, (l, u)) |= Aφ if for all timelines l′ of M and times u′ with l(u) = l′(u′), we have
(M, (l′, u′)) |= φ. An L formula φ is satisfiable iff there is some (M, (l, u)) such that
(M, (l, u)) |= φ, and unsatisfiable otherwise. An L formula φ is valid in a model M iff
(M, (l, u)) |= φ for every point (l, u) ∈ M . If C is a class of models, then φ is C− valid
iff φ is valid in every model in C. An L model M = (TL, R1, . . . , Rn, π) is a KLn

(BLn) model iff for all i ∈ {1, . . . , n}, Ri is an equivalence relation (Euclidean, serial
and transitive relation).

It is well-known that the following axioms are valid in BLn models: K: [i]φ∧ [i](φ ⊃
ψ) ⊃ [i]ψ D: [i]φ ⊃ ¬[i]¬φ 4: [i]φ ⊃ [i][i]φ 5:¬[i]φ ⊃ [i]¬[i]φ. C: Cφ ⊃ Eφ ∧ ECφ.

It is well-known that the following axioms are valid in KLn models: K, 4, 5, C and

T : [i]φ ⊃ φ.

There is a graphical interpretation of the semantics C which is useful in the sequel.
Fix a model M . A point (l′, u′) in M is reachable from a point (l, u) if there exists
points (l0, u0), . . . , (lk, uk) such that (l, u) = (l0, u0), (l′, u′) = (lk, uk), and for all
j = 0, . . . , k − 1 there exists i such that (lj , uj)Ri(lj+1, uj+1). The following result is
well known (Halpern et al., 2004).

Lemma 2.1. (M, (l, u)) |= Cφ iff (M, (l′, u′)) |= φ for all points (l′, u′) reachable from
(l, u).
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3. Tait-Style Sequent Calculi

In this section we introduce Tait-style sequent calculi KT and BT for the branching
temporal logics of knowledge and belief.

As usual p, q, . . . stand for primitive propositions and small Greek letters for arbitrary
formulas. Further, the capital Greek letters Γ, Δ, Σ, . . . stand for finite subsets of L for-
mulas which are called sequents. For any sequents Γ, Δ and formulas α, β the sequent
Γ∪Δ∪{α}∪{β} is denoted by Γ, Δ, α, β. Let Γ be the sequent {α1, . . . , αn}, we often
use the following convenient abbreviations:

• ∨Γ = {α1 ∨ . . . ∨ αn};
• ¬Γ = {¬α1, . . . ,¬αn};
• ¬[i]Γ = {¬[i]α1, . . . ,¬[i]αn};
• [i]Γ = {[i]α1, . . . , [i]αn};
• ◦Γ = {◦α1, . . . , ◦αn};
• ¬CΓ = {¬Cα1, . . . ,¬Cαn};
• AΓ = {Aα1, . . . , Aαn};
• ¬AΓ = {¬Aα1, . . . ,¬Aαn}.

With the help of de Morgans laws and the law of double negation we push the negation
as far as possible, i.e., if φ is α∧β then ¬φ is ¬α∨¬β, if φ is α∨β, then ¬φ is ¬α∧¬β,
if φ is ¬α, then ¬φ is α.

Let us introduce the Tait-style calculus KT for the branching temporal logic of knowl-
edge. All the rules are represented as schemes.

Axiom of KT : Γ, α,¬α

Basic inference rules of KT :

Γ, α, β

Γ, α ∨ β
(∨)

Γ, α Γ, β

Γ, α ∧ β
(∧)

¬CΛ,¬[i]Γ, [i]Δ, α

¬CΛ,¬[i]Γ, [i]Δ, [i]α,Σ
([i])

Γ,¬α

Γ,¬[i]α,
(¬[i])

C-rules of KT :

Γ,¬Eα

Γ,¬Cα
(¬C1)

Γ,¬ECα

Γ,¬Cα
(¬C2)

¬α, Eα ∧ Eβ

¬α, Cβ,Σ
(IndC)

The rules for temporal modalities:

Γ
◦Γ, Σ

(◦) Γ, ◦¬α

Γ,¬ ◦ α
(¬◦)

Γ, φ2, φ1 ∧ ◦(φ1Uφ2)
Γ, φ1Uφ2

(U)
Γ,¬φ2 Γ,¬φ1,¬ ◦ (φ1Uφ2)

Γ,¬(φ1Uφ2)
(¬U)
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¬φ′,¬ψ ∧ ◦φ′
¬φ′,¬(φUψ), Σ

(IndU )

The rules for A:

¬AΓ, AΔ, α

¬AΓ, AΔ, Aα,Σ
(A)

Γ,¬α

Γ,¬Aα
(¬A)

Γ, p

Γ, Ap
(Ap)

Γ, A ◦ α

Γ, ◦Aα
(◦A)

Γ, [i]α
Γ, A[i]α

(A[i])

The sequent calculus BT for the branching temporal logic of belief is obtained from
KT by changing the rule ([i]) by the following rule

¬CΛ,¬Γ,¬[i]Γ, [i]Δ, Θ
¬CΛ,¬[i]Γ, [i]Δ, [i]Θ, Σ

,

where Θ = ∅ or Θ = α and dropping the rule(¬[i]). We did not introduce any cut rules
since we want to distinguish KT and BT with various additional cuts. Hence, we always
mention explicitly which cut rules are admitted. Let us introduce the most general cut
scheme, the general cut rule.

General cut:

Γ, α Γ,¬α

Γ
(G − cut).

In this case the designated formulas α and ¬α are called cut formulas of (G − cut).

Γ, α Γ,¬α

Γ
(Π − cut),

where Π is a subset of formulas closed under the negation, α ∈ Π.
Let we have a rule

Γ1

Γ
or

Γ1, Γ2

Γ

of KT (BT ). It can be verified that if ∨Γ1 is KLn (BLn)-valid or ∨Γ1 and ∨Γ2 are
KLn (BLn)-valid, then ∨Γ is KLn (BLn)-valid. So, by induction on the length of the
proof it can be showed the following

Theorem 3.1 (soundness). If KT + (G − cut) � Γ (BT + (G − cut) � Γ), then ∨Γ is
KLn (BLn)-valid.

By the induction on the height of derivations it can be verified the following

PROPOSITION 3.1. The inference rule Γ
Γ,α (W ) is derivable in the calculi KT and BT .
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4. Completeness of KT and BT with a Restricted Cut Rule

In this section we prove completeness of the Tait-style calculi KT and BT with the cut
rule, where the cut formula is from some finite set of formulas. Thus we get proof systems
where proof-search becomes decidable (see the next section).

Now we define the Fisher-Ladner closure FL(α) of a formula α of L. FL(α) is
defined to be the smallest set such that:

• α belongs to FL(α);
• true ∈ FL(α);
• if ¬β ∈ FL(α), then β ∈ FL(α);
• if β ∨ γ ∈ FL(α), then β, γ ∈ FL(α);
• if β ∧ γ ∈ FL(α), then β, γ ∈ FL(α);
• if [i]β ∈ FL(α), then β ∈ FL(α);
• if Cβ ∈ FL(α), then Eβ, ECβ ∈ FL(α);
• if ◦β ∈ FL(α), then β ∈ FL(α);
• if βUγ ∈ FL(α), then β, γ, ◦(βUγ) ∈ FL(α);
• if Aβ ∈ FL(α), then β ∈ FL(α);
• FL(α) is closed under the negation.

We define the closure FL0(α) to be FL(α) ∪ {A(φ1 ∨ . . . ∨ φn),¬A(φ1 ∨ . . . ∨
φn)|, φ1, . . . , φnare distinct formulas in FL(α)}.

As in Fisher et al. (1979) can be verified

PROPOSITION 4.1. For an arbitrary formula α the set FL(α) is finite and contains not
more than c|α|, where |α| is the length of α.

The set FLK(α) is defined to be FL0(α). The set FLB(α) is to be defined
FL0(α) ∪ {[i][i]β,¬[i][i]β, |[i]β ∈ FL0(α), 1 � i � n} ∪ {[i]¬[i]β,¬[i]¬[i]β‖¬[i]β ∈
FL0(α), 1 � i � n}.

Let X be a finite set of formulas. Then we write ϕX for the a finite conjunction
formulas in X .

In the remainder of the paper W ∈ {K, B}.
The set C ′

FLW (α) is defined to be the set {ϕM1 ∨ . . . ∨ ϕMk
, ◦(ϕM1 ∨ . . . ∨

ϕMk
), [i](ϕM1∨. . .∨ϕMk

), [i]¬(ϕM1∨. . .∨ϕMk
), ◦AϕM1 |M1, . . . , Mk ⊆ FLW (α), k �

1} ∪ {AφM |M ⊆ FLW (α)}. The closure CFLW (α) is defined to be the set C ′
FLW (α) ∪

{¬φ|φ ∈ C ′
FLW (α)}. A finite set of L formulas Γ is CFLW (α) - consistent if WT +

(CFLW (α) − cut) �� ¬Γ. We write | �W Γ if WT + (CFLW (α) − cut) � Γ.
Suppose CL is a finite set if formulas with the property that for all φ ∈ CL, either

¬φ ∈ CL or φ is of the form ¬φ′ and φ′ ∈ CL. We define an atom for WT of CL to be
a maximal CFLW

(α) - consistent subset of CL.
First, define a state formula to be a formula φ such that | �W ¬φ, Aφ. We write XST

for the set of states formulas in the set X .
Let α be a CFLW (α) - consistent formula. We begin the construction of a WLn -

model of α by first constructing a pre-model MW (α), which is a structure < SW ,→
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,≈A, R1, . . . Rn > consisting of a set SW of states, a binary relation → on SW , a binary
relation ≈A on SW and for each agent i a relation Ri on SW , which is an equivalence
(Euclidean, serial, transitive) relation for W = K (W = B).

The set SW consists of all atoms of FLW (α). The relation → is defined so that
X → Y iff not | �W ¬ϕX ,¬◦ϕY . The relation Ri on SB is defined so that (X, Y ) ∈ Ri

iff {φ|[i]φ ∈ X} ⊆ Y . The relation Ri on SK is defined so that (X, Y ) ∈ Ri iff {φ|[i]φ ∈
X} = {φ|[i]φ ∈ Y }. The relation ≈A is defined so that X ≈A Y iff XST = YST . As in
Alberucci (2002) it can be proved

Lemma 4.1. If X ⊆ FLW (α), and X is CFLW (α) - consistent, then there exists an atom
Y of FLW (α) such that X ⊆ Y .

Using the definition of an atom we can verify the following

PROPOSITION 4.2. 1) If X is an atom of FLW (α), φ ∈ FLW (α) and
| �W ¬X, φ, then φ ∈ X;

2) If X is an atom of FLW (α), φ ∈ FLW (α), then φ �∈ X iff ¬φ ∈ X;

Using the definition of a state formula we can prove the following

PROPOSITION 4.3. 1) If φ is a state formula, then ¬φ is a state formula;
2) If φ is a primitive proposition, or φ is of the form [i]φ1, Aφ1, then φ is a state

formula;
3) If s is a state in SW , φ ∈ s and φ is a state formula, then | �W ¬φs, Aφ.

Let SB be a set of states in the pre-model MB(α) and X, Y, Z be states from SB .

Lemma 4.2. • For each X ∈ SB there exists Y ∈ SB such that (X, Y ) ∈ Ri.
• if [i]β ∈ X and (X, Y ) ∈ Ri, then [i]β ∈ Y ;
• if (X, Y ) ∈ Ri and (X, Z) ∈ Ri and [i]β ∈ Y , then β ∈ Z.

From Lemma 4.2 it follows that the relation Ri in MB(α) is a serial, transitive and
Euclidean relation for each i ∈ {1, . . . , n}.

In the remainder of the paper "state" means a state in SW .
Let U be a set of states. We write ϕU for disjunction of the formulas ϕu for u ∈ U .
Define a → - sequence of states to be a (finite or infinite) sequence s0, s1, . . . such

that s0 → s1 → . . . (in particular, → - sequence may consist of one element).
As in Sakalauskaitė (2004), Sakalauskaitė (2006) it can be verified.

Lemma 4.3. a) if ◦φ ∈ FLW (α), then for all states t such that s → t we have
◦φ ∈ s iff φ ∈ t;

b) if [i]φ ∈ FLW (α), then ¬[i]φ ∈ s iff there is some state t such that sRit and
¬φ ∈ t;
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c) if φ1Uφ2 ∈ FLW (α), then φ1Uφ2 ∈ s iff there exists a →-sequence
s = s0 → s1 → . . . → sn, where n � 0 such that φ2 ∈ sn and φ1 ∈ sk for all
k < n.

d) If Cφ ∈ FLW (α), then ¬Cφ ∈ s iff there is a state t reachable from s through
the relations Ri, 1 � i � n, such that ¬φ ∈ t.

Lemma 4.4. If Aφ ∈ FLW (α) and Aφ ∈ s, then for all states t such that s ≈A t, we
have φ ∈ t.

Proof. If Aφ ∈ s and s ≈A t, then Aφ ∈ t. Hence ¬φ �∈ t by (¬A). So φ ∈ t.

Lemma 4.5. If Aφ ∈ FLW (α) and ¬Aφ ∈ s, then there exists a state t such that s ≈A t

and ¬φ ∈ t.

Proof. Suppose Aφ ∈ FLW (α) and ¬Aφ ∈ s, i.e., | �W ¬ϕs,¬Aφ. We show by
contraposition that sST ∪ {¬φ} is CFLW (α) - consistent. Let sST ∪ {¬φ} is CFLW (α) -
inconsistent, i.e., | �W ¬ϕsST

, φ. So, by the rules (A), (¬A) | �W ¬A{φ1, . . . , φk}, Aφ,
where sST = {φ1, . . . , φk}. But | �W ¬ϕsST

, Aφi, 1 � i � k. So by the appropriate
cuts we get | �W ¬ϕsST

, Aφ. Since | �W ¬ϕs, φi we derive | �W ¬ϕs, Aφ. Contra-
diction. Thus sST ∪ {¬φ} is CFLW (α) - consistent, and by Lemma 4.1 there exists an
atom t of FLW (α) such that sST ∪ {¬φ} ⊆ t. Clearly, ¬φ ∈ t. Moreover, s ≈A t. This
is because t contains sST , which in turn contains either φ or ¬φ for every state formula
φ ∈ FLW (α).

Let ∃ =df ¬A¬.

Lemma 4.6. Suppose that s, t are states such that s ≈A t. Then | �W ¬ϕs,∃ϕt.

Proof. From s ≈A t we have sST = tST (1). Write t = {φ1, . . . , φk, ψ1, . . . , ψl},
where t ∩ FL(α) = {φ1, . . . , φk}. Note that all remaining formulas ψj are of he form
Aφ or [i]φ, or negations of these forms, hence state formulas. From (1) it follows | �W

¬ϕs, A ∧l
j=1 ψj .

Let β = A ∨k
j=1 ¬φj . By construction, β ∈ FL0(α). Hence | �W ¬ϕt, β or | �W

¬ϕt,¬β. Since | �W ¬β,∨k
j=1¬φj by the rule (¬A) and t is CFLW (α) - consistent we

cannot have | �W ¬ϕt, β. It follows ¬β ∈ t. Hence ¬β ∈ s, since ¬β is a state formula.
Thus | �W ¬ϕs,¬β. Hence | �W ¬ϕs,∃ ∧k

j=1 φj . We have

| �W w,¬∃δ,¬Aγ,∃(γ ∧ δ)

and

| �W , w,∃δ | �W w,¬∃δ,¬Aγ,∃(γ ∧ δ)
| �W w,¬Aγ,∃(γ ∧ δ)

.

With | �W w,∃δ and | �W w, Aγ we get | �W w,∃(γ ∧ δ). Take w = ¬ϕs, γ =
∧l

j=1ψj , δ = ∧k
j=1φj . Lemma follows.
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We say that an infinite →-sequence of states (s0, s1, . . .) is acceptable if for all n � 0,
if φ1Uφ2 ∈ sn, then there exists m � n such that φ2 ∈ sm and φ1 ∈ sk for all
n � k < m.

Similar as in Halpern et al. (2004), Sakalauskaitė (2004) using c) of Lemma 4.3 we
can verify

Lemma 4.7. Every finite →-sequence of states can be extended to an infinite acceptable
sequence.

The following lemma concerning the branching operator will be useful for our con-
structions.

Below s, s′, t′ are states from the set SW from the pre-model MW (α).

Lemma 4.8. Suppose that s, s′, t′ are states such that s → s′ and s′ ≈A t′. Then there
exists a state t such that t → t′ and s ≈A t.

Proof. The proof follows the lines of the corresponding Lemma in van der Meyden et
al.(2003). We proceed by contradiction. Suppose that s → s′ and s′ ≈A t′ and there
does not exist a state t such that t → t′ and s ≈A t. Then for all states t, if s ≈A t

then | �W ¬ϕt,¬ ◦ ϕt′ (by the definition of →). By the definition of ≈A it follows that
| �W ¬ϕsST

,∨t:s≈Atϕt. So, | �W ¬ϕsST
,¬ ◦ ϕt′ . Since | �W ◦ϕt′ , ◦¬ϕt′(by the rule

(◦)) we get | �W ¬ϕsST
, ◦¬ϕt′ . By the rules (¬A) and (A) we derive | �W ¬AϕsST

, A◦
¬ϕt′ . Using the rule (◦A) we get | �W ¬AϕsST

, ◦A¬ϕt′ . Since | �W ¬ϕs, Aφ, where
φ ∈ sST , by the appropriate cuts, we have | �W ¬ϕs, ◦A¬ϕt′(1).

Since s → s′, we have not | �W ¬ϕs,¬ ◦ ϕs′ . Since

¬ϕs′ ,¬A¬ϕt′

¬ ◦ ϕs′ ,¬ ◦ A¬ϕt′
,

using (1), by the appropriate cut we get that not | �W ¬ϕs′ ,¬A¬ϕt′ . By Lemma 4.6 and
the assumption that s′ ≈A t′, we have | �W ¬ϕs′ ,∃ϕt′ . This is a contradiction.

A canonical model for α is a tuple (R, R′
1, . . . , R

′
n, π), where R is a set of all se-

quences s0
ST , s1

ST , . . ., where s0, s1, . . . is an acceptable sequence of states in MW (α);
Let (r, n) and (r′, n′) be points in R× N . So r(n) = sST , r′(n′) = tST for some states
s, t in MW (α). Then R′

i is a binary relation on points in R×N such that (r, n)R′
i(r

′, n′)
iff sRit. Let r(n) = sST . Then π(r, n)(p) = T iff p ∈ s. The following theorem gives
a sufficient condition for a formula in the Fisher-Ladner closure to hold at a point in the
canonical model. Let s0, s1, . . . be an acceptable sequence of states and r be a timeline
obtained from that sequence, i.e., r(n) = sn

ST . We call the state sn corresponding to the
point (r, n).

Theorem 4.1. Let W ∈ {K, B}. If I is the canonical model for α, φ is in FLW (α),
then (I, (r, n)) |= φ if and only if φ ∈ s, where s is the state , corresponding to the point
(r, n).
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Proof. We proceed by induction on the complexity of φ. The cases for φ of the form
¬φ1, φ1 ∨φ2, φ1 ∧φ2 are trivial. The cases for φ of the form ◦φ1, φ1Uφ2, [i]φ1, Cφ1 are
proved as in Sakalauskaitė (2006) using Lemma 4.3 and Lemma 4.7. We prove the case
φ = Aφ1.

We prove the “only if” part. Suppose Aφ1 ∈ s. Then by Lemma 4.4, we have
φ1 ∈ t for all states t such that s ≈A t. Then by the induction hypothesis we get that
(I, (r′, n′)) |= φ1),where t is the corresponding state to the point (r′, n′). Let r′ be a
timeline such that r′ is equivalent to r to time n.Then we have s ≈A t′, where t′ is a state
corresponding to the point (r′, n). Thus, (I, (r′, n)) |= φ1. Thus, (I, (r, n)) |= φ.

Conversely, suppose that ¬Aφ1 ∈ s, where s corresponds to the point (r, n). Thus we
have an acceptable sequence Σ= s0, . . . , sn = s, . . . such that r is obtained from Σ. By
Lemma 4.5, there exists a state t such that ¬φ1 ∈ t and s ≈A t. By repeated application
of Lemma 4.8, there exist states t0, . . . , tn such that t = tn, si ≈A ti for 0 � i � n and
t0 →, . . . → tn. By Lemma 4.7, we may extend this sequence to an acceptable sequence
t0, . . . , tn, . . . ,. Let r′ be the timeline , obtained from this sequence. By the definition of
timelines it follows that r′ is equivalent to r to time n. By the induction hypothesis we
have (I, (r′, n)) |= ¬φ1, hence (I, (r, n)) |= ¬Aφ1.

COROLLARY 4.1. If I is the canonical model for α, (r, n) is a point of I such that α ∈ s,
where s is the corresponding state to the point (r, n), then (I, (r, n)) |= α.

Let W ∈ {K, B}. Assume that α is CFLW (α) - consistent formula. Let s be a state in
SW such that α ∈ s. Such a state must exist as follows by Lemma 4.1. By Lemma 4.7
there exists an acceptable sequence s0, s1, . . . with s = s0. Let r be the corresponding
timeline in the canonical model I for α. Corollary 4.1 implies that (I, (r, 0)) |= α. This
establishes the following completeness theorem for the calculi KT + (CFLK(α) − cut)
and BT + (CFLB(α) − cut)

Theorem 4.2 (completeness). Let α be a KLn (BLn) - valid formula . Then KT +
(CFLK(α) − cut) � α (BT + (CFLB(α) − cut) � α).

5. Decidability of Provability

In this section we define the sequent calculi KT ′, BT ′ obtained from the calculi KT, BT

by replacing the induction rules (IndU ), (IndC) by the slightly modified induction rules.
Then we prove the decidability of provability in these sequent calculi together with the
restricted cut rule.

We define the rules (Ind′C) and (Ind′U ) as follows:

¬φ′,¬ψ ∧ ◦φ′

¬φ′,¬(trueU¬φ′) ∧ ¬(φUψ)
(Ind′U )

¬φ, Eφ ∧ Eψ

¬φ, Cφ ∧ Cψ
(Ind′C)

These rules are derivable in the calculi KT + (G − cut), BT + (G − cut). So they
are sound.
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Let KT ′, BT ′ be the calculi obtained from the calculi KT, BT by replacing the rules
(IndC), (IndU ) by the rules (Ind′C), (Ind′U ). The rules (IndC), (IndU ) are derivable
in the calculi KT ′, BT ′ if we have cut rules with additional cut formulas. In the case of
the rule (IndU ) these cut formulas are of the form ¬(trueU¬φ′) ∧ ¬(φUψ). In the case
of the rule (IndC) these cut formulas are of the form Cφ ∧ Cψ.

We extend the closure set of cut formulas CFLW (α) to the set C ′′
FLW (α) by adding the

set of additional cut formulas ΦW = {¬(trueU¬ψ′) ∧ ¬(φUψ),
(trueU¬ψ′) ∨ (φUψ)|φUψ ∈ FLW (α), ψ′ ∈ CFLW (α)} ∪ {Cφ ∧ Cψ,¬Cφ ∨
¬Cψ|Cφ ∈ FLW (α), ψ ∈ CFLW

(α)}.
We define the set of formulas Φ̄W such that:

• they are obtained from formulas in CFLW
(α) ∪ ΦW using the inference rules of

WT ′ + (C ′′
FLW (α) − cut) upwards;

• formulas from Φ̄W are not included in CFLW
(α) ∪ ΦW .

Φ̄W is defined as follows: {¬(trueU¬ψ′),¬ ◦ (trueU¬ψ′), ◦¬(trueU¬ψ′),
¬ψ ∧ ◦ψ′, ◦ψ′, trueU¬ψ′, true ∧ ◦(trueU¬ψ′), ◦(trueU¬ψ′)|φUψ ∈ FLW (α),
ψ′ ∈ CFLW

(α)} ∪ {Cψ, Eφ ∧ Eψ, Eψ, [1]ψ, . . . , [n]ψ,¬Cψ,¬Eψ,¬ECψ,

¬[1]ψ, . . . ,¬[n]ψ,¬[1]Cψ, . . . ,¬[n]Cψ, |Cφ ∈ FLW (α), ψ ∈ CFLW
(α)} ∪ {Eφ ∧

Eψ|Cφ∧Cψ ∈ CFLW
(α)} ∪ {A ◦ φ, | ◦Aφ ∈ CFLW (α)} ∪ {◦¬φ|¬ ◦ φ ∈ CFLW (α)}.

Let C̄FLW (α)= C ′′
FLW (α) ∪ Φ̄W . Using Proposition 4.1 we can verify that the set

C̄FLW (α) is finite.
We can verify

PROPOSITION 5.1. Let

Γ1

Γ
or

Γ1 Γ2

Γ

be an inference rule in the calculus WT ′ + (C ′′
FLW

(α) − cut). If Γ ⊆ C̄FLW (α) then
Γ1, Γ2 ⊆ C̄FLW (α).

From the proposition above it follows that the number of distinct sequents in any
branch generated by the inference rules upward from α is finite.

Now we describe the following decision algorithm to check if a formula α is provable
in the calculus WT ′ + (C ′′

FLW (α) − cut) or not, where W ∈ {K, B}.
Algorithm. Try to construct the proof from the end sequent upward. It is clear that

for the last inference there are finitely many possibilities. We will repeat this again for
the sequents which are obtained in this way. When we reach a sequent which doesn’t
produce any new sequent on the considered branch the construction of this branch stops
and we check whether this leaf it is an axiom. Since the number of distinct sequents in
any such branch is finite the construction of each branch stops. Note that the number of
trees generated in such a way is finite. If in this set of trees we get the tree such that all
the leafs are axioms the formula α is provable. Otherwise, we fail.
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Sekvencij ↪u skaičiavimas skaidaus laiko žini ↪u ir tikėjimo logikoms

Jūratė SAKALAUSKAITĖ

Nagrinėjamos skaidaus laiko žini ↪u ir tikėjimo logikos. Skaidaus laiko operatoriaus “visiems ke-
liams” semantika yra apribota. Šioms logikoms pateikti sekvencij ↪u skaičiavimai su apribota pjūvio
taisykle. ↪Irodytas ši ↪u skaičiavim ↪u korektiškumas, pilnumas ir išsprendžiamumas.


