
INFORMATICA, 2007, Vol. 18, No. 1, 37–54 37
© 2007 Institute of Mathematics and Informatics, Vilnius

Composition of Loop Modules in the Structural
Blanks Approach to Programming with
Recurrences: A Task of Synthesis of Nested Loops

Vytautas ČYRAS
Department of Software Engineering, Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania
e-mail: vytautas.cyras@maf.vu.lt

Received: January 2006

Abstract. The paper presents, first, the Structural Blanks (SB) approach, then a method to compose
loop programs. SB is an approach for expressing computations based on recurrence relations and
focuses on data dependencies in loops. The paper presents language constructs and semantics for
expressing programs that have complex data dependency patterns. These constructs are expressed
using structural “blanks” for computations based on recurrence relations. In SB the recurrence
structure and the functional part of a recurrence relation may be described separately. Therefore
declarative representation of data dependencies is examined. SB aims at supporting the transfor-
mational development and reuse of program modules. The approach deals with two aspects: prag-
matics and semantics. In the paper we aim at: (1) developing a theory and language for functional
and structural modules, (2) an algorithm for composition of structural modules. The approach is
illustrated by toy problems: the Fibonacci function, heat flow, etc. Hence the reuse and verification
are viewed as those of, e.g., stacks, queues, bubble sort, etc.

Key words: recurrence, decomposition of computation, program composition, polymorphism, data
dependency graph, loop program synthesis.

1. Introduction

The Structural Blanks (SB) approach and the composition of loop programs was first
presented in (Greshnev et al., 1985). SB was developed to explicitly modularise on the
basis of recurrent data dependencies. SB aims to express solutions to mutually dependent
recurrences in the form of reusable program components defining loops over arrays.

In this paper we continue with the development of the SB approach as it was presented
in (Čyras and Haveraaen, 1995). The SB concept is being revised, and the notation dif-
fers from the older papers. We start examining the composition of loop programs. The
composition produces a nested loop. We aim at the semi-automatic synthesis of the data
dependency of the nested loop thus obtained.

The way we utilize data dependencies is most closely related to the Constructive
Recursion (CR) approach which was developed by Haveraaen and early ideas are pre-
sented in (Haveraaen, 1990; Haveraaen, 1997). A comparison of SB and CR is provided

38 V. Čyras

in (Čyras and Haveraaen, 1995). A short comparison with other approaches is provided
in (Čyras and Haveraaen, 1995), too. A broader comparison is provided in (Haveraaen
and Čyras, 1995).

The problem of synthesizing a right sequence of array element updates in order to
compute a set of mutually dependent recurrences was formulated by Lyubimskii as early
as in 1958 (published in (Lyubimskii, 1960)) and later on investigated by Zadykhailo
(1963). The organization of computations for linear recurrences over multidimensional
arrays was studied by Karp et al. (1967) independently of the earlier research. The foun-
dations of data dependency in loops are presented in literature about compilers for parallel
computing, e.g., (Banerjee, 1993; Wolfe, 1996), etc. SB is also related to the Algorith-
mic Skeletons approach (Cole, 1989). The composition of data dependency graphs as
presented in our paper is related to systolic algorithm design, see, e.g., (Megson, 1992).
Data fields and index domains are major semantic objects in the language Crystal (Chen
et al., 1991) which proposes a functional view of arrays.

The SB approach distinguishes between structural components (S-modules) and func-
tional components (F-modules). F-modules encapsulate functions that compute new ele-
ments of a relation from given ones. S-modules encapsulate the control flow that applies
a function from an F-module in a way consistent with the data dependencies of the re-
currence relation. An integral part of both types of modules are interface specifications
(called templates) describing assumed and established data dependencies. A module is
called consistent if the data dependencies induced by its code are equal to the depen-
dencies specified by its template. An F-module describes the computational aspect of
one step of a recurrence. An S-module schedules calls to F-modules in order to com-
pute the whole recurrence. In other words, the F-module provides a local computation
on an array(s). The S-module organizes the traversal over the whole array(s). Each mod-
ule contains a data dependency part and a procedure part. The S-module describes the
data dependencies, the set of initial elements and the set of output elements, and in the
S-procedure it defines a driver algorithm for recurrences with this dependency structure.
SB provides a framework for defining data dependencies explicitly when writing proce-
dures, and taking these data dependencies into account when combining modules into
larger programs.

Motivation for the term “structural blank” is as follows. An S-module is parameterized
by an F-module (in future denoted by Φ) and is polymorphic in this sense. Thus the
S-module serves as a “blank”, “skeleton” or “pattern” to traverse over a certain data
structure. This higher-order feature can be easily implemented in most languages with a
well-developed typing system, which has formal function parameters. SB is built on top
of traditional programming languages like Fortran or Pascal.

The SB approach aims in the reuse a loop program. For example, the Fibonacci func-
tion Fn (see next section) can be reused to synthesize another program (which has an
“isomorphic traversal”). This is a case for G(2n) according to the recurrence equation
on the exponential scale G(2i+2) = G(2i+1) ∗ G(2i), where G(21) = 3, G(20) = 1,
defining the sequence G(22) = 3 ∗ 1 = 3, G(23) = 3 ∗ 3 = 9, G(24) = 9 ∗ 3 = 27,
G(25) = 27∗9 = 243, etc. (see Subsection 3.3). In the SB approach, a program synthesis

A Task of Synthesis of Nested Loops 39

task is treated as pattern matching, the complexity of which does not depend on n. Thus,
constructing the program G(210) or G(2n) has the same complexity.

The aim of this paper is to provide a theory for F- and S-modules. Examples in the
paper are very simple. The demonstration of a formalism is aimed at. The paper is struc-
tured as follows. First, we discuss some basic properties of recurrences. Second, the SB
approach is presented. Third, an algorithm for the composition of S-modules is given.
Forth, examples are presented.

2. Motivation

An order k linearly dependent recurrence r with the natural numbers as index domain is
a relation defined by a set of equations

rn = φ(rn−1, rn−2, . . . , rn−k), n � k, rk−1 = εk−1, . . . , r0 = ε0, (1)

where the indices are natural numbers, φ is a k-ary expression, k � 0, not referring to r,
and the εi, representing initial values, are expressions not referring to r. The choice of
r0, . . . , rk−1 as initial elements is arbitrary. The archetypical second order recurrence
relation is the Fibonacci function Fn = Fn−1 + Fn−2, where F1 = 1 and F0 = 0,
defining the sequence 0, 1, 1, 2, 3, 5, 8, 13, The dependency pattern of this function
is illustrated in Fig. 1.

To compute all values r0, r1, . . . , rn the array should be declared R[0:n], and the
computations be R[j] := φ (R[j-1], R[j-2], . . . , R[j-k]), where R[j] will then contain rj for
0 � j � n. Other result sets may also be defined.

Recurrences may be generalized to arbitrary index domains. Given a sufficient set of
initial values εi1,...,im , the m-dimensional order k general recurrence has the form

rn1,...,nm = φ
(
rδ1(n1,...,nm), . . . , rδk(n1,...,nm)

)
, (2)

where each δj each returns an m-tuple of indices. Since the δj have a more complex
relationship than the linear dependency in (1), it is impossible to give a general algorithm
for computing rn1,...,nm . But the structure of the algorithm is dependent only on the δj ,

Fig. 1. Data dependency graph of a second order one-dimensional recurrence, such as the Fibonacci function.
The numbers in circles label the two arcs from a node. The nodes are enumerated by the plain numbers un-
derneath them. The dependency of one step is a pair {n − 1, n − 2} � {n}. The dependency of the whole
computation is a pair of index sets {0, 1} � {2, 3, 4, . . . , N}.

40 V. Čyras

the data dependency pattern of the recurrence, and is independent of the actual φ, known
as the computational aspect of the recurrence.

A set of mutually dependent recurrences is of the form

r1
n1,...,nm1

= φ1

(
r

i1,1

δ1,1(n1,...,nm1), . . . , r
i1,k1
δ1,k1 (n1,...,nm1)

)
,

...

r�
n1,...,nm�

= φ�

(
r

i�,1

δ�,1(n1,...,nm�
), . . . , r

i�,k�

δ�,k�
(n1,...,nm�

)

)
, (3)

together with a suitable set of initial values. Here ij,q ∈ {1, . . . , �}, and δj,q is an mj-ary
function returning an mij,q -tuple of indices.

The data dependency of (2) will be represented as a pair of index sets

δ1(n1, . . . , nm), . . . , δk(n1, . . . , nm) � (n1, . . . , nm).

We use a syntactically sugared form to denote a dependency. The data dependency of the
following Fibonacci-like assignment statement

R[j] := ϕ
(

R[j-1], R[j-2]
)

(4)

is denoted by R[j-1], R[j-2] � R[j]. The same pair denotes the data dependency of a call
to a procedure F below where the assignment (4) constitutes procedure’s body:

procedure F(j : integer);
R[j] := ϕ (R[j-1], R[j-2])

end

3. Structural Blanks

The SB approach distinguishes between structural modules (S-modules) and functional
modules (F-modules). An F-procedure defines the algorithm to compute one step of one
recurrence expression rj of (3), and the containing F-module describes the data depen-
dencies of this step. An S-module is applied to a collection of F-modules by matching the
dependencies of the F-modules with those of the S-module as defined by a substitution Ξ
on the S-module. A result is a new F-module containing an algorithm to compute the full
recurrence.

3.1. The F-module

An elementary F-module defines the dependency pattern and the computational aspect of
one step of the recurrence equation.

A Task of Synthesis of Nested Loops 41

The F-module for each step of the Fibonacci function is

F-module FIBSTEP (q : integer) ==
global X : array[*] of integer

template X[q–1], X[q–2] � X[q]
procedure X[q] := X[q–1] + X[q–2]

end

(5)

This is to be interpreted as: FIBSTEP contains a one-dimensional second order recurrence
expression over the array X. The size of the array X will be declared in the program unit
that uses the modules. A loop program to compute Fibonacci numbers up to the N-th can
be represented as the following F-module

F-module FIB (N : integer) ==
global X : array[*] of integer

template X[0], X[1] � X[2..N]
procedure

var q: integer;
for q := 2 to N do

X[q] := X[q–1] + X[q–2]
od

end

(6)

The template of FIB specifies that X contains Fibonacci numbers numbered from 0 to N,
where X[2..N] are regarded as output, based on the initial values of X[0] and X[1].

The basic form of an F-module is

F-module FNAME (n1, n2, . . . , nm : integer) ==
global X1 : array[*,. . . ,*] of <type1>;

. . . X�X : array[*,. . . ,*] of <type�X>
template

Fin � Fout

procedure
Ψ

end

(7)

where Ψ are program statements, n1, . . . , nm are index domain parameters, X1, . . . , X�X

are global array names. In the case of an elementary F-module FNAME, the Ψ is the
program statement defining the actual expression φj in (3). The template Fin �Fout in
(7) represents the data dependency of Ψ.

An F-module is consistent when his template describes correctly the data dependency
of his F-procedure. A programmer has to ensure consistency.

The template of the F-module FNAME is denoted by templ(FNAME) and the program
statements Ψ by pgmf(FNAME). We may place the F-module name as a subscript to
these operators.

Assume, that an F-module operates on a d-dimensional array X. A language for sets
Fin and Fout is proposed according to parametric description of l-dimensional surfaces
in d-dimensional space. Both Fin and Fout are supposed to be finite unions of sets of the
form

42 V. Čyras

{
X
[
e1(t1, . . . , tl, n1, . . . , nm), . . . , ed(t1, . . . , tl, n1, . . . , nm)

]
:

t1 ∈
{
b−1 (t2, . . . , tl, n1, . . . , nm), . . . , b+

1 (t2, . . . , tl, n1, . . . , nm)
}
,

... (8)

tl−1 ∈
{
b−l−1(tl, n1, . . . , nm), . . . , b+

l−1(tl, n1, . . . , nm)
}
,

tl ∈
{
b−l (n1, . . . , nm), . . . , b+

l (n1, . . . , nm)
}

}

We call sets of such form segments. In short the segment is written

X[e1, . . . , ed], t1 = b−1 ..b+
1 , . . . , tl = b−l ..b+

l .

The index expressions ej , j = 1, . . . , d and the upper and lower limit expressions b−j and
b+
j , j = 1, . . . , l (b−j < b+

j) take integer values. The enumeration variables t1, . . . , tl are
local to the segment. According to the class of the expressions ej , b−j and b+

j different
classes of segments are obtained. If l = 0 (i.e., in (9) there are no enumeration variables)
and ej = ij − Δj , where Δj , j = 1, . . . , d are integer constants, the segments of the
form X[i1 − Δ1, . . . , id − Δd] called uniform are obtained.

3.2. The S-module

In case of an order k linear recurrence (1) an S-module would be

S-module LDEP (Fmod Φ(integer); k, N : integer) ==
formal x : array[*]

internal-template
(var q: integer; (x[t], t=q–k..q–1) � x[q])

external-template
(x[t], t=0..k–1) � (x[t], t=k..N)

procedure
var q: integer;
for q := k to N do

call Φ(q)
od

end

(9)

This is to be interpreted as: given a one-dimensional recurrence over the array x (as de-
clared in the internal template), the S-module defines a procedure that will invoke Φ to
compute all elements x[k], . . . , x[N] given that x[0], . . . , x[k–1] are defined (external tem-
plate). The set of array elements to the left of the “�” (gives) in the external template is
the set of initial elements, and the set to the right is the set of output elements. The data
dependency graph of the computation organized by the S-module LDEP when k = 2 is
shown in Fig. 1, where square nodes mean that the nodes here have initial values, while
the disc nodes represent nodes that will be computed.

A Task of Synthesis of Nested Loops 43

To be able to use FIBSTEP to compute the Fibonacci function, we need a driver pro-
cedure that will schedule the computations of its F-procedure. Driver procedures are part
of the S-modules, and are applicable if the internal template Iin � Iout of the S-module
matches the template Fin �Fout of the F-module. In our example we obtain an equality
by substituting

k �→ 2; x[·] �→ X[·]; Φ(·) �→ FIBSTEP(·). (10)

Calling the substitution (10) for Ξ, we denote the application by FIB =
LDEP

Ξ
(FIBSTEP). It is represented above as the S-module in (6).

The purpose of an S-module is to organize the computations needed to solve a re-
currence equation. An S-module declares a set of arrays x1, . . . , x�S , and is polymorphic
in the sence that element types are immaterial, as are the dimensions (the number of di-
mensions however is important). The internal templates of the S-module serve the same
purpose as the template of the F-module: to identify the data dependencies of the compu-
tation steps. The external template, Ein � Eout, of the S-module states which elements,
Ein, of the arrays must be initialized in order to compute the recurrences for a specific
output set Eout of index domain points.

The S-module only relates to the dependency pattern of a recurrence (i.e., functions
δj,i, i = 1, . . . , kj). The dependency pattern embedded in each F-module parameter Φj

is described in the internal template using

(var qj,1,. . . ,qj,mj : integer; Ij,in � Ij,out)

where the qj,i denote index domain variables. The alphabet for Ij,in and Ij,out is a set of
indexes of formal arrays x1, . . . , x�S . The specific patterns for each Φj will depend on the
variables qj,1, . . . , qj,mj

of the pattern, and sometimes we will accentuate this by writing
Ij,in(qj,1, . . . , qj,mj

) and Ij,out(qj,1, . . . , qj,mj
). In this presentation the index domain

variables qj,i will be ranging over the full Cartesian product domain of mj integers. The

S-module SNAME (Fmod Φ1(q1,1, . . . ,q1,m1 : integer);
...

Fmod Φ�(q�,1, . . . ,q�,m�
: integer);

N1 : t1; . . . ; Nm : tm) = =
formal x1 : array[*, . . . ,*]; . . . x�S : array[*, . . . ,*]

internal-template
(var q1,1, . . . ,q1,m1 : integer; I1,in � I1,out);

...
(var q�,1, . . . ,q�,m�

: integer; I�,in � I�,out)
external-template

Ein � Eout

procedure
Ψ

end

Fig. 2. The general form of an S-module based on a set of mutually dependent recurrences (3).

44 V. Čyras

interpretation of the pattern is similar to the F-module case: the call Φj(qj,1, . . . , qj,mj
)

will use the array elements in Ij,in to compute the ones in Ij,out.
The S-procedure is a driver routine that will call the F-procedures in a predetermined

order, so that the computation successively will define new elements of the arrays until
the entire output has been computed. The Ψ is the program statement defining the driver
algorithm, and (N1 : t1, . . . , Nm : tm) are other parameters the S-module may need. In
our examples they play the role of loop limits.

To refer to the constituents of an S-module S, we introduce simple operators.
The internal template Ij,in � Ij,out for parameter F-module Φj is referred to by
int templ(S, j), the external template of S by ext templ(S) and the program statements
Ψ by pgms(S). We may place the arguments as subscripts.

An S-module S is consistent when its external template describes correctly the data
dependency of its S-procedure assuming that each internal template Ij,in � Ij,out de-
scribes correctly the data dependency of the call Φj(qj,1, . . . , qj,mj

) for every formal
F-module Φj of S. It is up to the programmer to ensure consistency.

3.3. Development Procedure

The development procedure of the SB approach can be formulated as three steps. In the
first step a domain expert, e.g., a physicist, formulates the problem as a set of mutu-
ally dependent recurrence equations, which is encoded as a collection of F-modules and
global array declarations. As an example take the problem that can be formulated as the
real valued general recurrence equation on the exponential scale

g(2i+2) = γ
(
g(2i+1), g(2i)

)
, g(21) = ε1, g(20) = ε0, (11)

where we want to find g(2i) for i = 0, 1, 2, . . . , N. This may be formulated as the decla-
ration of “Y : array[1..2**N] of real” together with the F-module

F-module GSTEP (i : integer) ==
global Y : array[*] of real

template Y[2**i], Y[2**(i+1)] � Y[2**(i+2)]
procedure Y[2**(i+2)] := γ (Y[2**(i+1)], Y[2**i])

end

(12)

The data dependency graph of this recurrence is shown in Fig. 3.
The second step is to devise a driver routine for the computational model, i.e., to find

an appropriate S-module. For this purpose there may be a library of S-modules. In the
case of the (11) we may reuse the S-module LDEP with the substitution

Ξ = [k �→ 2; x[·] �→ Y[2** ·]; Φ(·) �→ GSTEP(· –2)]. (13)

Here the array domain substitution of x does the exponential expansion, while the formal
F-module’s Φ domain substitution, shifts the parameter two positions in order to adjust

A Task of Synthesis of Nested Loops 45

Fig. 3. Data dependency graph of the recurrence g defined in (11).

the starting point of the loop in the S-procedure to the indices used by the F-module
GSTEP. This yields the application G = LDEP

Ξ
(GSTEP)

F-module G (N : integer) ==
global Y : array[*] of real

template Y[1], Y[2] � (Y[2**t], t=2..N)
procedure

var q: integer;
for q := 2 to N do

call GSTEP(q–2)
od

end

(14)

The third step is to show that an application is correct. In this case it is obvious since
the function j �→ 2j as embodied in “x[·] �→ Y[2** ·]”, is injective.

3.4. Substitution Rules

In order to compute the values of an actual recurrence, the expressions encoded in the
F-procedures must be combined with the driver routine of a compatible S-module. An S-
module is compatible with a list of F-modules, if the individual internal templates of the
S-module match the templates of the corresponding F-modules. The application yields a
new F-module. In order to combine such modules, they must be made to agree with each
other, hence certain substitution rules are needed for the S-modules.

In order to simplify the explanation and without loss of generality we can assume:
(i) F-modules operate with one actual array (usually named X, Y, etc.), (ii) S-modules
operate with one formal array (usually named x), and (iii) S-modules have one internal
template and thus one formal F-module parameter (named Φ).

A substitution Ξ is a triple [β, ξ, τ] where β is a sequence of binding substitutions,
ξ is a sequence of array domain substitutions, and τ is a sequence of formal F-module
index domain substitutions.

The binding substitution is of the form N �→ e where N is a normal parameter to
the S-module, and the e is an expression of the same type. The effect is to replace all

46 V. Čyras

occurrences of N in the body of the S-module with the expression e. The substitution is
regarded to have pass-by-value semantics.

The array domain substitution is of the form x[· 1, . . . , · n] �→ X[ξ(· 1, . . . , · n)]
where x is a formal array of at least n dimensions in the S-module, and X must be a
global array, of at least d dimensions, and ξ = <ξ1, . . . , ξd > is a d-tuple of n-ary func-
tions such that ξ is injective. It embeds x into X. The substitution is regarded as a rewrite
rule for textual templates.

The formal F-module index domain substitution is of the form

Φ(· 1, . . . , ·m) �→ F(τ(· 1, . . . , ·m)),

where Φ has m arguments and is a formal F-module parameter to the S-module, and F

is an actual F-module. The function τ must be injective. It plays the role of parameter
transformation when replacing Φ by F. The substitution is regarded as a higher-order
parameterization. An actual procedure is invoked for the formal one, Φ.

With these substitutions it is possible to let a two-dimensional S-module drive the
computations of a three-dimensional F-module along a hyperplane, or shift the indexing
conventions, e.g., by rotating the index domain, of a formal F-module.

3.5. Application of an S-module to F-modules

Given a declaration of an S-module of the form shown in Fig. 2, it may be applied to an
argument list of � F-modules F1, . . . , F�. Without loss of generality we can assume that
� = 1. Thus the application of the S-module S to the F-module F is a new F-module
denoted by F̃ = S

Ξ
(F), where Ξ is a parameter substitution.

The application of S to F with respect to the substitution Ξ is legal if the template of F

matches the internal template of S (essentially, with respect to ξ).

DEFINITION 3.1. Given an S-module S, an F-module F, and a substitution Ξ = [β, ξ, τ].
An application S

Ξ
(F) is legal if ξ(int templSβ (
q)) = templF (τ(
q)), where the super-

script β denotes the total effect of all binding substitutions.

The effect of the parameter transformation τ will show up in the code of the resulting
F-module, while the array transformation ξ plays a role in the template definition.

DEFINITION 3.2. Given a legal application F̃ = S
Ξ

(F) of an S-module S to an F-

module F with a substitution Ξ = [β, ξ, τ]. Then F̃ is defined by
1. The global arrays of F̃ are the global arrays of the actual F-module F;
2. The template of F̃ is the external template of the S-module after all substitutions

in Ξ have been performed, i.e.,

templ
(

S
Ξ

(F)
) def= ξ

(
ext templ(Sβ)

)
. (15)

A Task of Synthesis of Nested Loops 47

Fig. 4. The central theorem of the structural blanks approach states that the diagram above commutes, i.e.,
io ◦ pgmf = id ◦ templ = templ.

3. The statements of F̃ are the statements of the S-procedure that result when the
substitution Ξ has been performed, i.e.,

pgmf
(

S
Ξ

(F)
) def= τ

(
pgms(S)β

)
. (16)

The operation of applying an S-module to F-module thus producing a new F-module
can be viewed as one step of loop program synthesis. The complexity of this step is linear
with respect to the length N of the loop “for i:=1 to N”. Thus exponential grow during this
operation is avoided.

Theorem 3.3 [The central theorem of the SB approach]. Given a legal application S
Ξ

(F)

of an S-module S to an F-module F with a substitution Ξ = [β, ξ, τ], then the data
dependency of the F-procedure of S

Ξ
(F), which is defined by (16), equals to the template

of S
Ξ

(F), which is defined by (15).

In other words, the theorem states, that the diagram shown in Fig. 4 commutes. The proof
is provided in (Haveraaen and Čyras, 1995).

4. S-module Composition

Suppose that semantics of two loop programs which operate with recurrences is given.
What is the semantics of a program, which is obtained by inserting one loop into another?
In other words, what is the form of recurrences the resulting program operates with, and
what is its data dependency?

Nested application of S-modules S1, . . . ,Sc to an F-module F is a new F-module de-
noted by Sc

Ξc

(. . . S1
Ξ1

(F). . .) with Ξ1, . . . , Ξc standing for substitutions. First, an F-

module S1
Ξ1

(F) is yielded. Then an F-module S2
Ξ2

(S1
Ξ1

(F)), and so on.

Composition of S-modules S1 and S2 is an S-module denoted by S2◦S1 such
that satisfies the following. If an F-module S2

Ξ2

(S1
Ξ1

(F)) is defined for a certain F-

module F and substitutions Ξ1 and Ξ2, then a substitution Ξ exists, such that an F-module
S1◦S2

Ξ
(F) is defined.

48 V. Čyras

Further we focus on constructing the composition of two S-modules. First we present
the composition algorithm, then examples, which illustrate it.

4.1. S-module Composition Algorithm

INPUT OF THE ALGORITHM: S-modules S1 and S2.
OUTPUT OF THE ALGORITHM: An S-module S, the composition of S1 and S2.

Consider that the parts of S1 are denoted as follows

S-module S1(Fmod Φ1(integer, . . . ,integer); P1, . . . ,Pb1 : type_b) ==
formal . . .

internal-template (var p1, . . . ,pm1 : integer; I1,in � I1,out)
external-template E1,in � E1,out

procedure Ψ1

end

and the parts of S2 are denoted by

S-module S2(Fmod Φ2(integer, . . . ,integer); Q1, . . . ,Qb2 : type_b) ==
formal . . .

internal-template (var q1, . . . ,qm2 : integer; I2,in � I2,out)
external-template E2,in � E2,out

procedure Ψ2

end

As one can see above, without loss of generality we assume that all limit parameters Pj

and Qj are of the same type.
Then the resulting S-module S has the following parts

S-module S(Fmod Φ(integer, . . . ,integer); P′
1, . . . ,P′

b1
, Q′

1, . . . ,Q′
b2

: type_b) ==
formal – – Subset of S1 array names, each being primed and extended.

internal-template (var p1, . . . ,pm1 ,q1, . . . ,qm2 : integer; Iin � Iout)
external-template Ein � Eout

procedure Ψ
end

The idea of the algorithm is to hypothesize and match. First we hypothesize an array
domain substitution ξ◦ and binding substitutions
P �→β◦(
P′, q) as functions of
P′ and q.
Then we match the internal template of S2, I2,in � I2,out (referred to by int templ(S2))
to the external template of S1, E1,in � E1,out (referred to by ext templ(S1)), which
we extend in additional dimensions q1, . . . , qm2

. The match is established (or failed)
step by step, for all the segments, by accomplishing the following rewrite rules over
ext templ(S1):

1. First, supply all the arrays of S1 with additional m2 dimensions, where m2 is di-
mensionality of the index domain of Φ2 for which q1, . . . , qm2

denote its param-
eters (more formally, parameters of int templ(S2)). Second, rename each of the
extended arrays. During the renaming, several old arrays may obtain the same new
name.

2. Supply the segments of ext templ(S1) with additional index expressions,
δj(q1, . . . , qm2

) taken from int templ(S2).

A Task of Synthesis of Nested Loops 49

3. If necessary, split the segments of ext templ(S1) and/or int templ(S2).
The last rewrite rule is not obligatory. If necessary, then split the segments in accordance
with a certain heuristic.

After establishing a match, we construct S. For the role of the internal template of S
we take the internal template of S1, which we extend with additional index expressions,
δj(q1, . . . , qm2

), from int templ(S2). The external template of S is obtained by substi-
tuting into that of S2 in accordance with the constructed ξ◦.

The parameter list of Φ consists of those of Φ1 and Φ2, i.e., p1, . . . , pm1
and q1, . . . ,

qm2
. The limit parameters of S are P′

1, . . . , P′
b1

, Q′
1, . . . , Q′

b2 , shortly
P′,
Q′. They are
primed in order to distinguish from those of S1 and S2. The S-procedure of S, Ψ, is
obtained by replacing calls to Φ2(
e2) in the S-procedure body of S2, Ψ2, with Ψ1,

in which calls to Φ1(
e1) are replaced with calls to Φ(
e1,
e2). More formally, Ψ def=
Ψ2(Ψ1(Φ,
P′),
Q′), or formally

τ◦ : Φ2(· 2) �→ pgms(S1)
(
Φ(· 1, · 2),
P′) and β◦ :
P �→ β◦(
P′,
q). (17)

The aim of the rewrite rules above is to construct ξ◦ that embeds the formal arrays of
S2 into renamed and extended arrays of S1. One element is embedded into the whole
shape. In case this embedding is “rectangular”, the binding substitution also is, i.e.,

P �→β◦(
P′) does not depend on
q. Otherwise a new limit depends on the counters
q

of outer loops, and the function β◦(
P′,
q) has to be hypothesized.
The order in which the segments are matched is important. Input segments I2,in are

matched to input segments E1,in and output I2,out to E1,out. In case of mismatch, all
segment permutations have to be tried (in the worst case). In our examples output consists
of one segment, therefore, the rule is to start with the output segment.

The match of two segments of the form (9) with respect to linear ξ◦ avoids exponential
growth with respect to values of limit expressions. For example, matching of the segment
x[t], t=1..P does not depend on the value to which P is matched.

The construction of the S-procedure of S is explained below in more detail, in the
terms of an interpreter of S-procedures that are compiled to machine code. The substitu-
tion (17) is treated as follows. Calls to Φ2(�e2) in Ψ2 are replaced by calls to S1_Φ(�e2,�P′),
where the procedure S1_Φ is defined below

procedure S1_Φ (�P′: type_b; �q: integer);
call S1 (Φ(· 1,�q) , �P′)

end

(18)

or in more detail

procedure S1_Φ (�P′: type_b; �q : integer); – – Interface as of an F-module,
– – where �q plays limits’ role.

procedure Φ′ (�p : integer); – – 1. First define.
call Φ(�p,�q)

end;
call S1(Φ′,�P′) – – 2. Then call.

end

(19)

50 V. Čyras

Our interpreter of F-procedures is implemented in accordance with the above mode.

4.2. Example: Composition to Traverse a Rectangle

This example illustrates the composition of two S-modules, Sa and Sb shown in Fig. 5
where also the process of matching is depicted by arrows. Both Sa and Sb traverse one-
dimensional arrays. Their composition traverses a two-dimensional array shown in Fig. 7.
The data dependency graph of Sa is shown in Fig. 6. In the role of S2 is the same S-
module, but renamed for readability. Its parts are renamed and segments are permuted.

The hypothesis for ξ◦ is

ξ◦: v[·] �→ x’[1..P, ·]; w[·] �→ x’[0, ·]. (20)

One-dimensional x and y are renamed to two-dimensional x’. This hypothesis (20) deter-

Fig. 5. Match in the composition of Sa and Sb in order to traverse a rectangle.

Fig. 6. Data dependency graph of the S-module Sa, shown in Fig. 5. A computation is provided in accordance
with the internal template x[p–1], y[p] � x[p].

A Task of Synthesis of Nested Loops 51

mines success when the segments below (in Fig. 5 they are shown connected by arrows)
are matched

v[q] �→ x’[1..P,q], v[q–1] �→ x’[1..P,q–1], w[q] �→ x’[0,q].

The τ -substitution is τ◦: Φ2(· 2) �→ pgms(Sa)(Φ(· 1, · 2), P’). As a result of the compo-
sition the following S-module (let us name it Sb_Sa) is yielded

S-module Sb_Sa (Fmod Φ(integer, integer); P’, Q’ : integer) ==
formal x’ : array[*,*]

internal-template (var p, q: integer; x’[p–1,q], x’[p,q–1] � x’[p,q])
external-template x’[0,1..Q’], x’[1..P’,0] � x’[1..P’,1..Q’]
procedure

var q: integer;
for q := 1 to Q’ do

var p: integer; – – Internal loop
for p := 1 to P’ do – – x’[0,q], x’[1..P’,q–1] � x’[1..P’,q]

call Φ(p,q)
od

od
end

(21)

The traversal organized by Sb_Sa (21) is shown in Fig. 7. The internal template in (21)
represents the data dependency of the recurrence (22).

x′
p,q = ϕ(x′

p−1,q, x
′
p,q−1)

x′
t,0 = ε′t, t = 1, 2, . . . , P’

x′
0,t = ε′′t , t = 1, 2, . . . , Q’ (22)

Fig. 7. A rectangle is traversed using the S-module Sb_Sa (21). Its internal template defines one step of the
recurrence (22). Array elements assumed to be initialized are denoted by squares. Data dependency graph to
produce one row is to the right: the row q depends on the row q − 1 and the element x′

0,q .

52 V. Čyras

5. Summary

The structural blanks approach extends a traditional imperative programming language
with constructs for defining explicitly the dependency pattern of a recurrence. The pro-
gram to compute the recurrence is defined as a collection of global arrays and several
program components: one for each equation of the recurrence (3), and a scheduler for
the entire computation. These components may be reused, and especially the scheduler
may be applied on many different recurrence relations. Since the notation used is based
on well known programming languages, it should be fairly easy to start using it for a
practitioner in a field where recurrences are used.

6. Acknowledgements

I have profited greatly by collaboration with Magne Haveraaen. He also contributed con-
siderably to the formalisation and presentation of SB. This paper could not appear without
his contribution.

References

Banerjee, U. (1993). Loop Transformations for Restructuring Compilers: The Foundations. Kluwer, Dordrecht.
Chen, M., Y. Choo and J. Li (1991). Crystal: theory and pragmatics of generating efficient parallel code. In

B.K. Szymanski (Ed.), Parallel Functional Languages and Compilers, Addison-Wesley. pp. 255–308.
Cole, M.I. (1989). Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman, London,

and The MIT Press.
Greshnev, S.N., E.Z. Lyubimskii and V.A. Chiras (1985). Synthesis of programs on data structures. Program-

ming and Computer Software, 11(5), 282–291, 1986. Translated from Programmirovanie, 1985, 5, 44–54
(in Russian).

Čyras, V., and M. Haveraaen (1995). Modular programming of recurrences: a comparison of two approaches.
Informatica, 6(4), 397–444.

Haveraaen, M. (1990). Distributing programs on different parallel architectures. In Proc. of the 1990 Interna-
tional Conference on Parallel Processing, ICPP, vol. II, Software. pp. 288–289.

Haveraaen, M. (1997). Data dependencies and space time algebras in parallel programming. Reports Informat-
ics, 45, Department of Informatics, University of Bergen, UiB.

Haveraaen, M., and V. Čyras (1995). The structural blanks approach to solve generalized recurrences. Reports
in Informatics, 100, Department of Informatics, University of Bergen, UiB.

Karp, R.M., R.E. Miller, and S. Winograd (1967). The organization of computations for uniform recurrence
equations. Journal of the ACM, 14(3), 563–590.

Lyubimskii, E.Z. (1960). Issues of automatic programming. Vestnik Akademii Nauk SSSR, 8, 47–55 (in Russian).
Megson, G.M. (1992). An Introduction to Systolic Algorithm Design. Oxford University Press, Oxford.
Wolfe, M.J. (1996). High Performance Compilers for Parallel Computing. Addison-Wesley.
Zadykhailo, I.B. (1963). The organization of a cyclical computing process using a parametric representation of

special form. U.S.S.R. Computational Mathematics and Mathematical Physics, 3(2), 442–468. Translated
from Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 1963, 3(2), 337–357 (in Russian).

A Task of Synthesis of Nested Loops 53

V. Čyras is a docent (associate professor) in computer science at Vilnius University. In
1979 he graduated from Vilnius University. In 1985 he received the degree of candidate
of sciences of physics and mathematics from M.V. Lomonosov Moscow State University.
His research interests include semantics of loop programs, artificial intelligence in law,
and information systems.

54 V. Čyras

Ciklini ↪u moduli ↪u kompozicija struktūrini ↪u ruošini ↪u metode, skirtame
programavimui rekurencijomis: ↪idėt ↪u cikl ↪u sintezės uždavinys

Vytautas ČYRAS

Pirma pristatomas struktūrini ↪u ruošini ↪u (SR) metodas, pasiūlytas 1985 metais. Tai teorinės in-
formatikos metodas, skirtas ciklini ↪u program ↪u semantikos vaizdavimui ↪ieities-išeities šablonais.
Ciklinėje programoje pagal SR metod ↪a yra atskiriamas apėjimas, vaizduojamas struktūriniu mo-
duliu (S-moduliu), nuo rekurentinės duomen ↪u priklausomybės, vaizduojamos funkciniu moduliu
(F-moduliu). Toliau straipsnyje pirm ↪a kart ↪a pristatoma originali S-moduli ↪u kompozicijos s ↪avoka
ir pateikiamas algoritmas. Tokiu būdu, mes iškeliame ciklini ↪u program ↪u kompozicijos uždavin↪i:
tegu duoti du S-moduliai S1 ir S2; kaip gauti j ↪u kompozicijos (aprašančios ciklinės programos S1

↪idėjim ↪a ↪i S2) semantik ↪a?

