
INFORMATICA, 2006, Vol. 17, No. 4, 535–550 535
 2006 Institute of Mathematics and Informatics, Vilnius

Efficient Adaptive Algorithms for Transposing
Small and Large Matrices on Symmetric
Multiprocessors

Rami Al NA’MNEH, W. David PAN, Seong-Moo YOO
Department of Electrical and Computer Engineering, University of Alabama in Huntsville
301 Sparkman Drive, Huntsville, Alabama 35899, USA
e-mail: dwpan@ece.uah.edu

Received: November 2005

Abstract. Matrix transpose in parallel systems typically involves costly all-to-all communications.
In this paper, we provide a comparative characterization of various efficient algorithms for trans-
posing small and large matrices using the popular symmetric multiprocessors (SMP) architecture,
which carries a relatively low communication cost due to its large aggregate bandwidth and low-
latency inter-process communication. We conduct analysis on the cost of data sending / receiving
and the memory requirement of these matrix-transpose algorithms. We then propose an adaptive
algorithm that can minimize the overhead of the matrix transpose operations given the parame-
ters such as the data size, number of processors, start-up time, and the effective communication
bandwidth.
Key words: matrix transpose, SMP, MPI, all-to-all communication.

1. Introduction

Matrix transpose, which basically depends on all-to-all communication, is widely used
in implementations of Fast Fourier Transforms (FFT) (Calvin and Trystram, 1996; Choi
et al., 1995; Portnoff, 1999) and other applications such as seismic imaging (Claerbout,
1985) and synthetic aperture radars (Curlander and McDonough, 1991; Jakowatz et al.,
1996). For example, parallel implementation of the 1-D FFT using the classical six-step
algorithm requires matrix transpose three times (Bailey, 1990). Nonetheless, matrix trans-
pose on parallel computers requires intensive all-to-all communication, which adversely
affects the performance of the FFT, since it is difficult to scale pure all-to-all communi-
cation (Shan et al., 2003). For instance, matrix transpose in the 1-D FFT running on 32
processors is responsible for 50% of the overall run time compared to only 16% of the
sequential case (Shan et al., 2003). Therefore, matrix transpose is definitely a factor that
limits the scalability of FFT in parallel systems.

There has been extensive work on optimizing all-to-all communication in parallel sys-
tems (Bala et al., 1995; Barnnet et al., 1993; Barnnet et al., 1994; Bokhari, 1991; Bokhari
and Berryman, 1992; Bruck et al., 1997; Johnsson and Ho, 1991; Scott, 1991; Suh and



536 R. Al Na’mneh, W.D. Pan, S.-M. Yoo

Shin, 2001; Thakur and Gropp, 2001; Thakur and Gropp 2003; Traff, 2002), includ-

ing optimizing all-to-all communication in mesh systems (Barnnet et al., 1993; Bokhari,

1991; Bokhari and Berryman, 1992; Gupta and Kumar, 1993; Scott, 1991; Suh and Shin,

2001), torus (Suh and Shin, 2001; Swarztrauber and Hammond, 2001), and hypercube

systems (Gupta and Kumar, 1993; Johnsson and Ho, 1991; Swarztrauber and Hammond,

2001). For example, (Scott, 1991) proposed efficient algorithms that minimize link con-

tentions in hypercube and mesh topologies. (Johnsson and Ho, 1991) introduced optimal

broadcasting and personalized communication in hypercube systems. In (Suh and Shin,

2001), an optimal all-to-all personalized communication was proposed for multidimen-

sional torus and mesh networks.

Nowadays, Symmetric Multiprocessing (SMP) may be one of the most popular archi-

tectures. SMP typically has a low communication cost since it provides large aggregate

bandwidth and low latency inter-process communication. Furthermore, networks of SMP

machines have long been viewed as an effective platform for obtaining supercomputer

performance on parallel applications (Culler, et al., 1995). Moreover, SMP can support

two programming models: message passing and shared address space. Shared address

space offers ease of programming, particularly for irregularly structured computations,

but suffers from performance limitation due to the protocol overhead and poor spatial

locality (Shan et al., 2003). On the other hand, there are performance advantages in in-

tegrating message passing in cache coherent multiprocessors (Woo et al., 1993). These

advantages include the ability to overlap the communication and computation, and the

ability to effectively move data with large sizes. Therefore, there have been efforts that

attempt to efficiently implement all to-all communication on clusters of SMP’s (Sistare

et al., 1999; Traff, 2002). Furthermore, the performances of some applications with in-

tensive all-to-all communication (including the FFT) were compared in (Karlsson and

Brorsson, 1998; Shan et al., 2003). It was found that the message-passing model outper-

formed the shared address space model for most of the applications considered.

The goal of this paper is to develop fast parallel algorithms that transpose matrices

on SMP using the message-passing model. To this end, we first provide a comparative

characterization of several existing algorithms that can transpose matrices efficiently in

hypercube systems (Johnsson and Ho, 1991; Scott, 1991). We then propose a matrix-

transpose algorithm that is adaptive with varying data sizes, number of processors, start-

up time, and effective bandwidths.

The rest of the paper is organized as follows. Section 2 provides an introduction to

matrix transpose in parallel systems. In Section 3, we first give a survey on the existing

algorithms for transposing matrices, and then introduce an algorithm suitable for trans-

posing large matrices. Section 4 discusses the Butterfly algorithms for transposing small

matrices. In Section 5, we introduce the adaptive algorithm for transposing matrices of

varying sizes. In Section 6, we present the experimental results of the proposed algo-

rithms, along with discussions. Section 7 contains the concluding remarks.



Algorithms for Transposing Small and Large Matrices on Symmetric Multiprocessors 537

2. Matrix Transpose

After a matrix (array) is transposed, a row will become a column and vice versa. Hier-
archal transpose (Portnoff, 1999) is widely used, since it creates more opportunities for
parallelization. In hierarchal transpose, an array is first divided into smaller square ar-
rays. These smaller sub arrays are then transposed. In a parallel system, the jth block
sent from process i is received by process j and is placed in the ith block of the receive
buffer. Inside each of these arrays, sub arrays are then transposed until the entire array is
transposed.

Matrix transpose requires all-to-all communication between processors. Assume that
the data size is N and there are a total of P processors. Before the transpose, each proces-
sor initially has P blocks of data, each block of size

√
N

P ×
√

N
P . Hence, each processor

has
√

N
P ×

√
N of data. The goal is to exchange the ith block of processor j with the jth

block of processor i. Fig. 1 shows an example of transposing the matrix using all-to-all
communication for P = 4, where each processor transposes one block locally and sends
one block to each other processor in the system. The ith block of processor j will be
exchanged with the jth block of processor i.

3. Transposing Large Matrices

In this section we present the algorithms for transposing large matrices, where matrix
transpose can be completed in P − 1 steps, with each processor exchanging a square
block with size

√
N

P ×
√

N
P to all other processors.

3.1. The MPICH-1.2.4 Algorithm

The MPICH-1.2.4 algorithm implements all-to-all in P−1 steps by simply posting all the
non-blocking receives and sends, and then calling MPI_Waitall on all of them (Thakur

Fig. 1. Transposing the matrix using all-to-all communication for P = 4. (a) The entry (i, j) represents the
jth data block located in processor Pi. The jth block of processor Pi will be exchanged with the ith block of
processor Pj . (b) the entry (i, j) represents the ith data block located in processor Pj .



538 R. Al Na’mneh, W.D. Pan, S.-M. Yoo

and Gropp, 2001). Each processor exchanges a square block with size
√

N
P ×

√
N

P to all
other processors. So the overhead associated with this algorithm is

H(N, P ) =
(
Ts + Tw

N

P 2

)
(P − 1), (1)

where Tw is the effective per 8-byte communication time supported by the inter-
processor communication network, and Ts is the start-up time associated with all basic
communication operations. This algorithm requires memory space to hold its data of size
N
P and two temporary buffers (to send and receive) each of size N

P .
The disadvantage of this algorithm is that messages are not ordered. All messages are

first sent to process 0, then to process 1, and so forth, resulting in a single-node bottleneck.
Fig. 2 shows the pseudo code for the MPICH-1.2.4 algorithm.

Fig. 2. The pseudo code for the MPICH-1.2.4 algorithm.

3.2. The Bruck Algorithm

The Bruck algorithm consists of three steps (Bruck et al., 1997). In the first step, each
processor Pi independently rotates its n data blocks i steps upwards in a cyclic manner.
In the second step, each processor rotates its jth data block j steps to the right in a cyclic
manner. The third step is the same as step one except that the rotation is downwards in a
cyclic manner. More specifically, step 2 consists of w sub-phases, where w = �log rP �.
During each sub-phase, each processor needs to perform send/receive operations r − 1
times, except for the last sub-phase, where each processor needs to send/receive � P

rw−1 �−
1 times. During step z of sub-phase x, where 0 � x � w − 1 and 1 � z � r − 1, all data
blocks, for which the xth digit of their block-id is z, are rotated z × rxsteps to the right.
If we use the Bruck algorithm with radix-P, the overhead associated with this algorithm
is the same as that in (1). The total memory space required by the transpose algorithm
includes that for the data with size N

P , two temporary buffers (to send and receive) each of
size N

P 2 , and one extra buffer for local data movement (rotation) of size N
P . Fig. 3 shows

an example of the Bruck algorithm using three processors.



Algorithms for Transposing Small and Large Matrices on Symmetric Multiprocessors 539

Fig. 3. The Bruck algorithm using P = 3.

3.3. The Transpose Algorithm

In this section, we introduce the transpose algorithm that can be completed in P −1 steps.
The transpose algorithm stems originally from the hypercube systems (Scott, 1991),
hence it is limited to systems with an even number of processors. It has been shown
that in hypercube systems, the transpose algorithm minimizes the link contention at each
step (Scott, 1991). In each step of the algorithm, each processor exchanges its data block
with the destination (the processor rank exclusive-ored with the step number i, where
1 � i � P − 1). This all-to-all communication can be accomplished by overlapping the

communication (sending the data) and computation (packing the data of size
√

N
P ×

√
N

P ).

The transpose algorithm can be generalized to any number of processors. In step k,
each processor receives from the k − 1 processor and sends to the k + 1 processor in

Fig. 4. The pseudo code for the general transpose algorithm.



540 R. Al Na’mneh, W.D. Pan, S.-M. Yoo

the round-robin fashion. This is illustrated in Fig. 4. The mod (x, y) function gives the
remainder of dividing x by y. The overhead associated with this algorithm is given by
(1). The transpose algorithm requires memory space to hold its data of size N

P and two
temporary buffers (to send and receive), each of size N

P 2 .

4. Transposing Small Matrices

In parallel systems, the start-up time Ts is usually larger than the transfer time Tw. For
example, in our SMP system, Ts = 300 Tw. From (1), we notice that Ts is multiplied by P

(number of communication steps required by the algorithm), and Tw is multiplied by N
P

(if we assume that P − 1 ≈ P ). Therefore, for relatively small data sizes, it is important
to reduce the number of communication steps required by an algorithm.

4.1. The Butterfly Algorithm

In the following, we will discuss the butterfly algorithm suitable for transposing small
matrices. The butterfly algorithm was based on the hypercube system (Johnsson and Ho,
1991). In the butterfly algorithm, the data array of size

√
N

P ×
√

N in each processor is

divided into P blocks with size of
√

N
P ×

√
N

P . The array is then transposed in log 2P

phases. In phase k, all nodes swap half of their data (
√

N
P ×

√
N
2 ) with their peers along

the dimension k of the hypercube (swap half of the data with myproc (processor rank)
XOR k, where k = 1, 2, . . . , log2 P ). Since some blocks will not be sent at all and some
blocks may be sent more than once, we must ensure that all the blocks are transposed
in the first phase. Therefore, blocks are sent row/column wise and received column/row
wise. Other blocks that are not sent in the first phase should be transposed internally. In
all other phases, the data are sent row/column wise and received row/column wise. This
all-to-all communication can be carried out by overlapping the communication (sending
the data) with the computation (packing the data

√
N

P ×
√

N
2 ). Fig. 5 gives an example of

transposing the array in log 2P steps using 4 processors on the SMP.
In order to transpose the array using the butterfly algorithm, each node must swap

log 2P messages of size (
√

N
P ×

√
N
2 ). Thus, the total overhead is given by:

H(N, P ) =
(
Ts + Tw

N

2P

)
log 2P. (2)

Fig. 5. Transpose the array in log2 P steps on the SMP.



Algorithms for Transposing Small and Large Matrices on Symmetric Multiprocessors 541

The butterfly algorithm requires memory space to hold its data of size N
P and two

temporary buffers (to send and receive) each of size N
2P .

4.2. The Generalized Butterfly Algorithm

The generalized algorithm for the butterfly algorithm is based on the Bruck algorithm
(radix-2) (Bruck et al., 1997). If the number of processors is even, then the overhead of
the Bruck algorithm is the same as that given by (2). However, if the number of processors
is odd, then this algorithm can be completed in �log 2P � steps. In the first �log 2P � steps,
the overhead is given by:

H(N, P ) =
(
Ts + Tw

N

2P

)
�log 2P �. (3)

In the last step, each processor should send/receive the following data size

DS1 =
√

N

P
×

√
N

P
(P − 2�log2 P�). (4)

The generalized butterfly algorithm requires memory space to hold its data of size N
P ,

two temporary buffers (to send and receive), each of size (
√

N
P ×

√
N
2 ), and an extra buffer

for local data movement (rotation) of size N
P .

5. The Adaptive Algorithm

(Bruck et al., 1997) introduced a general algorithm (the index algorithm) for all-to-
all communication. The index algorithm (Bruck et al., 1997) consists of three phases.
Phase1 and phase 3 involve only local data movement. Phase 2 consists of a sequence of
point-to-point communication operations, which can be divided into w sub-phases, where
w = �log rP �. During each sub-phase, each processor needs to perform send/receive
operations r − 1 times, except for the last sub-phase, where each processor needs to
send/receive � P

rw−1 � − 1 times. During step z of sub-phase x, where 0 � x � w − 1
and 1 � z � r − 1, all data blocks, for which the xth digit of their block-id is z, are
rotated z× rxsteps to the right. In (Bruck et al., 1997) (pp. 1148), the upper bound of the
overhead can be expressed as follows:

H(r, P ) = (r − 1) �log rP �Ts + b(r − 1)
⌈P

r

⌉
�log rP �Tw, (5)

where 2 � r � P and b is the block size. Since we divide the array into P blocks, each
of the size (

√
N

P ×
√

N
P ), the overhead can be given by:

H(r, P, N) = (r − 1) �log rP �Ts +
√

N ×
√

N

P 2
(r − 1)

⌈P

r

⌉
�log rP �Tw. (6)



542 R. Al Na’mneh, W.D. Pan, S.-M. Yoo

In (6), Ts is multiplied by (r − 1)�log rP �(which represents the number of commu-
nication operations), and Tw is multiplied by N

P 2 (r − 1)�P
r ��log rP �(which represents

the total amount of data to be transferred). As we increase r from 2 to P, �log rP � will
decrease and r−1 will increase. But the increasing rate of r−1 is higher than the decreas-
ing rate of �log rP �. In other words, r − 1 will be the dominant term in (r − 1)�log rP �.
Therefore, if r = 2, then the number of communication operations will be minimal. On
the other hand, if we assume, for simplicity, that P

r is an integer and r−1
r ≈ 1, then

N
P 2 (r − 1)�P

r ��log rP � can be simplified into N
P �log rP �. By tuning r (between 2 and

P ), we can find the minimum overhead based on the data size N , the number of proces-
sors P , the start-up time Ts, and the effective communication time Tw.

In order to get the exact overheads rather than the upper bound of the overheads, we
assume, for simplicity, that r2 � P , then 2 � log rP , and thus w = �log rP � � 2. In
other words, we have at most 2 sub-phases, and the block with ID j (0 � j � P − 1),
can be encoded using �log rP � = w � 2 digits. We know from the index algorithm that
in the first sub-phase we need to perform send/receive operations r − 1 times. In the first
send/receive operation, all the data blocks, for which the 0th digit of their block is 1, are
rotated to the right. In the r − 1 send/receive operations, all those data blocks, whose 0th
digit of their block ID is r − 1, are rotated to the right. Therefore, if P

r is an integer, then
each processor must send/receive the following data with size being

DS2 =
√

N

P
×

√
N

P
(r − 1)

P

r
. (7)

If P
r is not an integer, then each processor must send/receive the following data size

DS3 =
√

N

P
×

√
N

P

{(
r − 1 − (P%r − 1)

)⌊P

r

⌋
+ (P%r − 1)

⌈P

r

⌉}
, (8)

where P%r gives the remainder of dividing P by r. Consequently, the total overhead for
the first sub-phase (assuming that P

r is an integer) is

H1(r, P, N) = (r − 1)Ts +
√

N

P
×

√
N

P
(r − 1)

P

r
Tw. (9)

In the second sub-phase we need to perform send/receive operations � P
rw−1 �−1 times,

where we send all the blocks with the 1st digit of the radix-r representation of their
blocks IDs is equal to z, where 1 � z � r − 1. Therefore, in the second sub-phases each
processor must send/receive the following data size

DS4 =
√

N

P
×

√
N

P
(P − r�logr P�). (10)

The total overhead for the second sub-phase is

H2(r, P, N) =
(⌈ P

rw−1

⌉
− 1

)
Ts +

√
N

P
×

√
N

P

(
P − r�logr P�

)
Tw. (11)



Algorithms for Transposing Small and Large Matrices on Symmetric Multiprocessors 543

Hence, the total overhead is the sum of (9) and (11). If we assume that r = 2, both P
r

and log 2P are integers (e.g., P = 8), then from (6) the overhead of the radix-2 algorithm
can be found as:

Hradix−2(N, P ) =
(
Ts +

N

2P
Tw

)
log2 P, (12)

which is the same as (2).
For the case of r = 4, if we again assume that P

r is an integer, and P � r2 = 16
(i.e., w = �log 4P � = 2), then by summing (9) and (11), the total overhead of the radix-4
algorithm can be found as

Hradix−4(N, P ) =
(⌈P

4

⌉
+ 2

)
Ts +

N

P 2

(7
4
P − 4�log4 P�

)
Tw. (13)

From (12) and (13), we can determine the following threshold Nth:

Nth =

(⌈
P
4

⌉
− log 2P + 2

)
Ts(

log2 P
2P − 7

4P + 4�log4 P�

P 2

)
Tw

(14)

such that

Hradix−2(Nth, P ) = Hradix−4(Nth, P ). (15)

If the data size is greater than the threshold Nth, then the radix-4 algorithm will have
less overhead, and vice versa. For the parallel system with eight processors (P = 8) and
Ts = 300 Tw, from (14), we have Nth = 9600. Therefore, we expect the radix-4 algorithm
will outperform the radix-2 algorithm for a data size N > 9600.

Next, we consider a special case where r=P . We have w=�log rP �=�log P P �=1.
Consequently, there is only one sub-phase (due to w = 1 digit) for this special case.
Therefore, we need to use only (9) to find the total overhead for the radix-P algorithm:

H(N, P )radix−P = H1(P, P, N) = (P − 1)Ts + (P − 1)
N

P
Tw. (16)

Similar to the comparison between the radix-2 and radix-4 algorithms, from (13) and
(16), we can find the following threshold of data size

NP
th =

(
P −

⌈
P
4

⌉
− 3

)
Ts(

3
4P + 1−4�log 4P�

P 2

)
Tw

(17)

such that

Hradix−P (NP
th, P ) = Hradix−4(NP

th, P ). (18)



544 R. Al Na’mneh, W.D. Pan, S.-M. Yoo

block located in processor Pj .

Table 1

The cost of sending/receiving and the memory required by the algorithms

Algorithm Number of steps Transmission rate Memory space

MPICH-1.2.4 P − 1
√

N
P

×
√

N
P

2 N
P

Bruck (radix = P ) P − 1
√

N
P

×
√

N
P

N
P

+ 2 N
P2

Transpose P − 1
√

N
P

×
√

N
P

2 N
P2

Butterfly log2 P
√

N
P

×
√

N
2

N
P

Generalized Butterfly log2 P
√

N
P

×
√

N
2

N
P

+ N
P

=2N
P

(log2 P = integer)

Adaptive algorithm (r−1)+� P
rw−1 � − 1

√
N×

√
N

P2 [(r−1)P
r

+(P−r�log rP�)] � N
P×r

� + N
P

If data size N > NP
th, the radix-P algorithm will have less overhead than that of the

radix-4 algorithm, and vice versa. For the parallel system with eight processors (P = 8)
and Ts = 300 Tw, from (17), we have NP

th = 19200. Therefore, we expect the radix-8
algorithm will outperform the radix-4 algorithm for a data size N > 19200.

From the foregoing discussions, we know that the index r can be chosen adaptively
(between 2 and P ) in order to minimize the overhead given the data size N , the number
of processors P , the start-up time Ts, and the effective communication time Tw. The
total memory space required by the adaptive algorithm is �

√
N×

√
N

P×r � = � N
P×r �, which is

the maximum data size to be sent in both the first sub-phase and the second sub-phase.
Moreover, we need an extra buffer for local data movement (rotation) of size N

P (Bruck et
al., 1997). Table 1 summarizes the cost of sending/receiving (in terms of number of steps
and transmission rate) and the memory space required (including the extra buffering and
temporary buffers) for the six algorithms discussed in this paper.

6. Experimental Results

All the above parallel matrix-transpose algorithms were implemented on an 8-node SMP.
The size of the input data vector varied between 64 (8 ×8) and 4 MB (2 KB ×2 KB). Each
entry of this input vector is a complex number. The MPI function, MPI_Wtime(), was
used to measure the time for the parallel code in micro seconds. In order to measure Ts

and Tw, we send the data between two processors 10000 times. In addition, by changing
the data size and measuring the time for each run, we plot the measured time as a function
of the data size. The intersection between the time vs. data size curve and the Y-axis
is the startup time Ts and the slope is Tw. The results showed that the Ts (24 µsec) is
approximately 300 times of Tw (0.08 µsec). In order to get accurate results, for each data
size we transpose the array 1000 times, and then we measured the overhead associated
with each algorithm.



Algorithms for Transposing Small and Large Matrices on Symmetric Multiprocessors 545

Fig. 6. Running times of three transpose algorithms for large matrices.

Fig. 7. Comparison between the transpose algorithm, butterfly algorithm, and the MPICH 1.2.4 for small data
size using 8 processors.



546 R. Al Na’mneh, W.D. Pan, S.-M. Yoo

Fig. 8. The overheads of the transpose algorithm and the butterfly algorithm.

Fig. 6 shows the running times for the three algorithms for transposing large matrices.
Among the three algorithms, the Transpose algorithm is the fastest, whereas the Bruck
algorithm is the slowest. This is because of the extra data copying in phase one of the
index algorithm and the extra rotation in phase three of the index algorithm.

Fig. 7 shows that the Butterfly algorithm outperforms the Transpose algorithm and the
MPICH-1.2.4 algorithm in transposing small data arrays using 8 processors. Fig. 8 shows
that, as the data size increases, the Transpose algorithm starts to outperform the Butterfly
algorithm whenever the data size N � 4000 (for P = 4), or N � 15000 (for P = 8).

Fig. 9 illustrates the overhead of the adaptive algorithm. For small data sizes (less than
approximately 10000) radix-2 is the best. For data sizes between approximately 10000
and 25000, radix-4 is the best, and for large data sizes radix-8 is the best. The minor
difference between these empirically obtained values and the analytical values given in
Section 5 is due to the fact that we have neglected the cost of data packing, unpacking
and copying.



Algorithms for Transposing Small and Large Matrices on Symmetric Multiprocessors 547

Fig. 9. Comparison between the radix-2, radix-4, and the radix-8 algorithms using 8 processors.

7. Conclusions

We have discussed several efficient algorithms for transposing matrices on symmet-
ric multiprocessors (SMP). These algorithms are efficient since they have less over-
head than transposing the array using the built–in collective communication function
MPI_Alltoall(). Analysis and experimental results show that, on an SMP with gigaplane
bus, the transpose algorithm is best suited for transposing large matrices and the butterfly
algorithm is most suitable for transposing small matrices. We have also proposed an adap-
tive algorithm that can choose the radix adaptively so as to minimize the overhead, based
on the data size, number of processors, start-up time, and the effective communication
bandwidth.

References

Bailey, D.H. (1990). FFTs in external or hierarchical memory. Journal of Supercomputing, 1(4), 23–35.
Bala, V., J. Bruck, R. Cyper, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis and M. Snir (1995). CCL: A Portable

and tunable collective communication library for scalable parallel computers. IEEE Transactions on Parallel
and Distributed Systems, 6(2), 154–164.

Barnnet, M., R. Littlefield, D. Payne and R. van de Geijn (1993). Global combine on mesh architecture with
wormhole routing. In Proceedings of the 7th International Parallel Processing Symposium.

Barnett, M., L. Shuler, R. van de Geijn, S. Gupta, G. Payne and J. Watts (1994). Inter-processor collective com-
munication library (InterCom). In Proceedings of the Scalable High-Performance Computing Conference.
pp. 357–364.

Bokhari, S. (1991). Complete Exchange on the iPSC/860. Technical Report 91–4, ICASE, NASA Langley
Research Center.

Bokhari, S., and H. Berryman (1992). Complete exchange on a circuit switched mesh. In Proceedings of the
Scalable High Performance Conference. pp. 300–306.

Bruck, J., C. Ho, S. Kipnis, E. Upfal, and D. Weathersby (1997). Efficient algorithms for all-to-all communica-
tions in multi-port message-passing systems. IEEE Transactions on Parallel and Distributed Systems, 11(8),
1143–1155.

Calvin, C., and D. Trystram (1996). Matrix transpose of block allocations on torus and de bruijn networks.
Journal of Parallel and Distributed Computing, 34(1), 36–49.

Choi, J., J. Dongarra and D. Walker (1995). Parallel matrix transpose algorithms on distributed memory con-
current computers, Parallel Computing, 21(9), 1387–1405.



548 R. Al Na’mneh, W.D. Pan, S.-M. Yoo

Claerbout, F.J. (1985). Imaging the Earth’s Interior, Blackwell Scientific.
Culler, D.E. et al. (1995). A Case for networks of workstations: NOW. IEEE Micro.
Curlander, J., and R. McDonough (1991). Synthetic Aperture Radar. Wiley.
Gropp, W., E. Lusk and A. Skjellum (1994). Using MPI: Portable Parallel Programming with the Message

Passing Interface, MIT Press. pp. 88–92.
Gupta, A., and V. Kumar (1993). The Scalability of FFT on parallel computers. IEEE Transactions on Parallel

and Distributed Systems, 4(8), 922–932.
Jakowatz C.V., P. Thompson, D.E. Wahl, P.H. Eichel and D.C. Ghiglia (1996). Spotlight-Mode Synthetic Aper-

ture Radar, Kluwer.
Johnsson, S., and C.-T. Ho (1991). Optimal all-to-all personalized communication with minimum span on

boolean cubes. In Proceedings of the Distributed Memory Computing Conference. pp. 299–304.
Karlsson, S., and M. Brorsson (1998). A comparative characterization of communication patterns in applica-

tions using MPI and shared memory on an IBM SP2. In Proceedings of 1998 Workshop on Communication,
Architecture, and Applications for Network-based Parallel Computing, Las Vegas. pp. 189–201.

Portnoff, M. (1999). An efficient parallel-processing method for transposing large matrices in place. IEEE
Transactions on Image Processing, 9(8), 1265–1275.

Scott, D. (1991). Efficient all-to-all communication patterns in hypercube and mesh topologies. In Proceedings
of the Distributed Memory Computing Conference. pp. 398–403.

Shan, H., J. Singh, L. Oliker and R. Biswas (2003). Message passing and shared address space parallelism on
an SMP cluster. Parallel Computing, 29(2), 167–186.

Sistare, S., R. Vaart and E. Loh (1999). Optimization of MPI collectives on clusters of large-scale SMP’s. In
Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, Portland.

Suh, Y., and K. Shin (2001). All-to-all personalized communication in multi-dimensional torus and mesh net-
works. IEEE Transactions on Parallel and Distributed Systems, 1(12), 38–59.

Swarztrauber, P.N., and S.W. Hammond (2001). A comparison of optimal FFTs on torus and hypercube multi-
computers. Parallel Computing, 6(27), 847–859.

Thakur, R., and W. Gropp (2001). Improving the Performance of MPI Collective Communication on Switched
Networks, Mathematics and Computer Science Division, Argonne National Laboratory, USA.

Thakur, R., and W. Gropp (2003). Improving the performance of collective operations in MPICH. In Proc. of
the 10th European PVM/MPI Users’ Group Conference (Euro PVM/MPI 2003). pp. 257–267.

Thakur, R., R. Rabenseifner and W. Gropp (2005). Optimization of collective communication operations in
MPICH. International Journal of High Performance Computing Applications, 1(19), 49–66.

Traff, J.L. (2002). Improved MPI all-to-all communication on Giganet SMP cluster. Lecture Notes in Computer
Science, 2474, 392–400.

Woo, S.C., J.P. Singh and J.L. Hennessy (1993). The Performance Advantages of Integrating Message Passing
in Cache-Coherent Multiprocessors. Technical Report, CSL-TR-93-593, Stanford University.



Algorithms for Transposing Small and Large Matrices on Symmetric Multiprocessors 549

R. Al Na’mneh is a PhD student in the Department of Electrical and Computer Engineer-
ing, University of Alabama in Huntsville, USA. His research interests include parallel
algorithms and digital signal processing.

W.D. Pan is an assistant professor in the Department of Electrical and Computer En-
gineering, University of Alabama in Huntsville, USA. He received his PhD degree in
electrical engineering from the University of Southern California in 2002, and his MS
degree in computer engineering from the University of Louisiana at Lafayette in 1998.
His research interests include digital signal and image processing, video coding, and mul-
timedia information assurance.

S.-M. Yoo received the BS degree in economics from Seoul National University, Seoul,
Korea, and the MS and PhD degree in computer science from the University of Texas at
Arlington in 1989 and 1995, respectively. Since September 2001, he is an associate pro-
fessor in Electrical and Computer Engineering Department of the University of Alabama
in Huntsville, Huntsville, Alabama, U.S.A. Dr. Yoo is the conference chair of ACM
Southeast Conference 2004, April, 2004, Huntsville, Alabama, U.S.A. He was the co-
program chair of ISCA 16th International Conference on Parallel and Distributed Com-
puting Systems (PDCS-2003), August 2003, Reno, Nevada, USA. Dr. Yoo’s research in-
terests include wireless networks, parallel computer architecture, and computer network
security. Dr. Yoo is a senior member of IEEE and a member of ACM.



550 R. Al Na’mneh, W.D. Pan, S.-M. Yoo

Efektyvus adaptuotas algoritmas simetriniams mikroprocesoriams
mažos ir didelės dimensijos matricoms transponuoti

Rami Al NA’MNEH, David W. PAN, Seong-Moo YOO

Straipsnyje dėstoma ↪ivairi ↪u mažos ir didelės dimensijos matric ↪u transponavimo algoritm ↪u lygi-
namoji analizė. Siūlomas algoritmas, kuris gali minimizuoti atliekam ↪u operacij ↪u skaiči ↪u, priklau-
somai nuo toki ↪u uždavinio parametr ↪u, kaip duomen ↪u kiekis, procesori ↪u skaičius ir pan. Pateikti
autori ↪u atlikt ↪u eksperiment ↪u rezultatai.


