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Abstract. This paper proposes a threshold key escrow scheme from pairing. It tolerates the passive
adversary to access any internal data of corrupted key escrow agents and the active adversary that
can make corrupted servers to deviate from the protocol. The scheme is secure against threshold
adaptive chosen-ciphertext attack. The formal proof of security is presented in the random oracle
model, assuming the decision Bilinear Diffie-Hellman problem is computationally hard.
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1. Introduction

During the last decade there has been a large growth in communication over the Internet.
There has also been an increased focus on privacy and sending messages encrypted. This
however poses a problem for law enforcement agencies that have relied on their ability
to make wiretaps and get warrants to solve crimes. This has led to the concept of key
escrow (Denning, 1994).

In 2001, D. Boneh and M. Franklin proposed a practical Identity-Based Encryption
(IBE) (Boneh, 2001) system from the weil pairing. It provides a public key encryption
mechanism where an arbitrary string can be served as the public key. The direct derivation
of public keys in identity-based public key cryptography (IB-PKC) eliminates the need
for certificates. On the other hand, IB-PKC has an inherent problem of key escrow, since
a trusted third party named the Private Key Generator (PKG), who uses the master key
to generate private keys for every entity. S.S. Al-Riyami and K.G. Paterson introduced
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the concept of Certificateless Public Key Cryptography (CL-PKC) (Sl-Riyami, 2003) to
solve the problem of IB-PKC. In CL-PKC, the private key of every entity is created by
the PKG and the entity unitedly. However, the law enforcement agency (LEA) is unable
to monitor communications in such a scheme. Another way to solve the problem is to
share the power of monitor among a set of key escrow agents (KEAs). A trusted key
management center serves as the PKG, to generate private keys for KEAs, while it is
given no access to any ciphertext. To monitor the communications of some entity needs
at least a threshold value KEAs’ co-operation.

Our contribution is to propose such a scheme from ID-based cryptosystems, named
ID-based threshold key escrow (IB-ThKE) scheme. This scheme is provably secure in
threshold adaptive chosen-ciphertext attack model, assuming the decision Bilinear Diffie–
Hellman problem is computationally hard.

Other Related Works. In 1989, Y. Desmedt and Y. Frankel presented the first practi-
cal threshold scheme (Desmedt, 1989). Afterwards, a lot of threshold cryptosystems are
proposed. The threshold decryption was formalized by V.Shoup and R.Gennaro (Shoup,
1998). Many schemes (Libert, 2003; Chai, 2004; Baek, 2004) have been put forward
subsequently in the context of ID-based cryptography. However, schemes in (Libert,
2003; Chai, 2004) were only semantically secure, and the scheme in (Baek, 2004) did
not analyze the probability of the event that the adversary obtains the decryptions of
ill-formed but still valid-look ciphertexts. What’s more, all of these schemes could not
tolerate active adversary that can modify the public verification keys of corrupted servers.

2. Preliminaries

2.1. Admissible Bilinear Pairings

Let G1 be a cyclic additive group and G2 be a cyclic multiplicative group of the same
prime order q. Assuming that the discrete logarithm problem in both G1 and G2 are hard,
an admissible bilinear pairing is a map ê: G1 × G1 → G2 which satisfies the following
properties:

• Bilinear: for any P, Q ∈ G1 and a, b ∈ Z
∗
q , ê(aP, bQ) = e(P, Q)ab.

• Non-degenerate: there exists P ∈ G1 and Q ∈ G1 such that ê(P, Q) �= 1.
• Computable: given P, Q ∈ G1, there is an efficient algorithm to compute

ê(P, Q) ∈ G2.

2.2. Decision Bilinear Diffie–Hellman (BDH) Assumption

Let ê: G1 ×G1 → G2 be an admissible bilinear map. Let P be a generator of G1, whose
order is a large prime q. Let a, b, c be elements of Z

∗
q . Randomly choose D ∈ G2.

Decision Bilinear Diffie–Hellman Problem
Given (P, aP, bP, cP, D), determine whether D = ê(P, P )abc or not.
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An algorithm A that outputs b′ ∈ {0, 1} has an advantage ε in solving the deci-
sion BDH problem in < G1, G2, ê > if |Pr[A(P, aP, bP, cP, ê(P, P )abc) = 1] −
Pr[A(P, aP, bP, cP, D) = 1]| > ε, where D is randomly chosen from G2. In general,
the decision BDH problem is believed to be hard in < G1, G2, ê > (Waters, 2005). That
means there is no probabilistic algorithm that can solve the decision BDH problem with
a non-negligible advantage ε within polynomial time.

2.3. Threshold Security

The idea of (t, n) threshold secret sharing was proposed in (Shamir, 1979). The formal
security model of threshold cryptosystems has been discussed in (Shoup, 1998; Fouque,
2001). In threshold setting, the adversary first corrupts t − 1 out of n decryption servers
and obtains secret key shares held by them. During the course of the chosen-ciphertext
attack, the adversary can submit ciphertexts to the uncorrupted decryption servers. So
in the threshold chosen-ciphertext attack (IND-TH-CCA) (Bellare, 1998) the adversary
sees both the decryptions of chosen ciphertexts and the decryption shares of these cipher-
texts. This extra information makes it very difficult to construct an IND-TH-CCA secure
threshold cryptosystem.

The paper (Shoup, 1998) proposed two secure threshold cryptosystems against chosen
ciphertext attack. In this work, the non-interactive zero knowledge proof of membership
was used to make the ciphertext publicly checkable (Blum, 1991; Lim, 1993). Motivated
by (Shoup, 1998), we present a threshold key escrow scheme IB-ThKE, and prove its
security in the sense of threshold adaptive chosen ciphertext attack in the random oracle
model (Bellare, 1993).

2.4. Non-Interactive Proof of Membership

Similar to (Baek, 2004), a non-interactive zero knowledge proof of membership system
named Proof-Log can be constructed for the language L = {(v, ṽ) ∈ G2×G2|loggv =
logg̃ ṽ}, where g = ê(P, P ) and g̃ = ê(P, P̃ ). P and P̃ are generators of G1. G1, G2, ê

have the same definitions as in section 2.1.
Given (P, P̃ , g, g̃), a one-way hash function H5: G2 × G2 × G2 × G2 → Z∗

q and

(k, k̃) ∈ L, the Prover wants to convince the Verifier that he indeed knows a secret
S = (loggk)P = (logg̃k̃)P ∈ G1 without yielding any “knowledge” of S. The proof
system works like this:

• The Prover randomly chooses T ∈ G
∗
1, then computes γ = ê(T, P ), γ̃ =

ê(T, P̃ ), h = H5(ê(P, S), ê(P̃ , S), ê(T, P ), ê(T, P̃ )) and L = T+ hS ∈ G1.
Send {γ, γ̃, L} to the Verifier.

• The Verifier computes h = H5(k, k̃, γ, γ̃) and checks whether ê(L, P ) = γ · kh

and ê(L, P̃ ) = γ̃ · k̃h. If both equations hold, then the Verifier returns “Accept”,
else returns “Reject”.

It’s easy to prove that (k, k̃) ∈ L if and only if there is an element S ∈ G
∗
1 such that

k = ê(S, P ) and k̃ = ê(S, P̃ ), and the properties of this protocol can be discussed as in
(Baek, 2004).
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3. (t, n) Threshold Key Escrow Scheme from Pairing

In the (t, n) threshold key escrow scheme IB-ThKE from pairing, the system is consisted
of a trusted authority called the Key Management Center (KMC), a Law Enforcement
Agent (LEA) with n Key Escrow Agents (KEAs), and many communication users.

The plaintext M that is encrypted under an identity is recoverable from at least t of n

KEAs. We assume that the KMC has no access to any ciphertext, since KMC knows the
private key of every user.

3.1. Defining IB-ThKE

First, we sketch the characteristics of IB-ThKE.
Similar to IB-PKC, all the users participating in this scheme are connected to KMC by

secret channels. The secret key of each user is issued by KMC, and the public key is the
unambiguous identity of the user, such as the email address or a telephone number. On the
one hand, the prospective of every communication user is identical to the traditional ID-
based cryptosystem. On the other hand, to monitor the communication that is encrypted
under an identity and a plaintext M , the LEA needs at least t of n KEAs’ co-operation.

Every KEA has a private key chosen by himself. And the corresponding public veri-
fication key is given to the KMC. When the LEA wants to decrypt a received ciphertext
of an user Alice, KMC returns the partial secret keys and the public verification keys of
Alice to at least t KEAs. Then every KEA can generate a decryption share of this ci-
phertext, taking as input the ciphertext and the partial secret key and his private key, after
checking the validity of partial secret key. These shares are sent to the LEA, who starts
checking the validity of every share. If more than t shares are valid, the LEA combines
them to obtain the plaintext.

Additionally, each KEA can update his private key. The KMC accepts the KEA’s
request after verifying its validity, then transmits the new partial secret key to this KEA.
This character is attractive in designing a dynamic threshold key escrow scheme. It will
be discussed in latter section.

3.2. Description of our Scheme

The IB-ThKE consists of the following polynomial-time algorithms.

Setup(k0): run by KMC and n KEAs Γi (i = 1, 2, ..., n).
• Given a security parameter k0, the KMC outputs two groups G1 and G2 of the same

prime order q(> 2k0), an admissible bilinear map ê: G1 × G1 → G2, a generator
P ∈ G1, a master key s ∈ Z

∗
q . Compute Ppub = sP and choose five hash functions

H1: {0, 1}∗ →G1, H2: G2 → {0, 1}l, H3: G1×G1×G1 → G
∗
1, H4: G1×G1×G1

→ Z
∗
q and H5: G2 × G2 × G2 × G2 → Z

∗
q . Note that H1, H2, H3, H4 are viewed

as random oracles (Bellare, 1993) in the security analysis.
• Key escrow agent Γi (i = 1, 2, ..., n) randomly selects si ∈ Z

∗
q , and computes

Pi = siP .
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The system public parameters are

cp =
{
q, l, G1, G2, P, ê, H1, H2, H3, H4, H5, Ppub, {P1, P2, ..., Pn}

}
.

KeyGen1(ID, s, cp): given an user’s identity ID, the KMC returns dID = sH1(ID)
through a secret channel to this user as his complete decryption key.

KeyGen2(ID, s, {Pi}(i=1,2,...,n), cp): given an user’s identity ID and an authorized
request for monitoring this user’s communication, the KMC chooses a polynomial of
degree t − 1 over Z

∗
q :

f(x) = s + a1x + · · · + at−1x
t−1.

For i = 1, 2, ..., n, it computes S
(i)
ID = f(i)QID + sPi, V

(i)
ID = ê(f(i)QID, P ). S

(i)
ID are

returned to Γi secretly as his partial secret key, and V
(i)
ID are published.

Encryption(M, ID, cp): To encrypt a message M ∈ {0, 1}l under the receiver’s
identity ID, the sender chooses r, t ∈ Z

∗
q uniformly at random and computes

QID = H1(ID). Then set the ciphertext to be (V, U, Ū , e, f), where V = M ⊕
H2(ê(QID, Ppub)r), U = rP, W = tP, P̄ = H3(U, V, W ), Ū = rP̄ , W̄ = tP̄ , e =
H4(P̄ , Ū , W̄ ) and f = t + er.

User’s Decryption(C, dID, cp): Let C = (V, U, Ū , e, f) be a ciphertext encrypted
under an identity ID. To decrypt C with the the corresponding private key dID, the
receiver runs as

• (Ciphertext validity verification) Check if e = H4(P̄ , Ū , W̄ ), where W = fP −
eU , P̄ = H3(U, V, W ) and W̄ = fP̄ − eŪ . If C can not pass this test, output
“Invalid \Ciphertext”.

• Else compute M = V ⊕ H2(ê(dID, U)).
KEA’s Sub-Decryption(C, {S(i)

ID, V
(i)
ID}(i=1,2,...,n), cp): Given a ciphertext C =

(V, U, Ū , e, f) and a key pair (S(i)
ID, V

(i)
ID ) (i = 1, 2, ..., n), the KEA Γi checks the validity

of (S(i)
ID, V

(i)
ID ) and computes his decryption share as follows:

• (Key share verification) First, Γi checks the validity of (S(i)
ID, V

(i)
ID ) with

ê(S(i)
ID, P ) = V

(i)
ID · ê(Pi, Ppub). And everybody can check if

∏
i∈T (V (i)

ID )LT
i =

ê(QID, Ppub) for any subset T ⊂ {1, 2, ..., n} such that |T | = t, where
LT

i denotes the appropriate Lagrange coefficient with respect to the set T ,

LT
i =

∏
j∈T,j �=i

j
j−i (mod q). If (S(i)

ID, V
(i)
ID ) can not pass this test, Γi outputs (i,

“Invalid \KeyShare”).
• Else Γi checks the validity of the ciphertext as in the User’s Decryption. If it does

not hold, output (i, “Invalid \Ciphertext”).
• Otherwise, both tests succeed. Compute ki

ID = ê(S(i)
ID − si(Ppub), U), Ri =

ê(Ti, P ), R̃i = ê(Ti, U), hi = H5(V
(i)
ID , ki

ID, Ri, R̃i), λi = Ti + hi(S
(i)
ID −

si(Ppub)) for random Ti ∈ G
∗
1. Then output the decryption share δi

ID,C =
{i, ki

ID, hi, λi}.

Monitoring(C, {δi
ID,C}i∈T ′,|T ′|>=t, cp): given a ciphertext C = (V, U, Ū , e, f) and

a set of decryption shares {δi
ID,C}i∈T ′ , the law enforcement agent (LEA) runs as follows:
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• (Decryption share verification) For i ∈ T ′, check if hi = H5(V
(i)
ID , ki

ID, Ri, R̃i),
where Ri = ê(λi, P )/(V (i)

ID )hi and R̃i = ê(λi, U)/(ki
ID)hi . If it fails, discard the

decryption share and return (i, “Invalid KEA”).
• Else if the LEA collects t valid decryption shares from Γi (i ∈ T , T ⊆ T ′, |T | = t),

it computes K =
∏

i∈T (ki
ID)LT

i and M = V ⊕ H2(K). Then the ciphertext is
decrypted by LEA.

KEA’s public key updating(P ′
i , ∆i, ID): in this scheme, we allow KEA Γi (i ∈

{1, 2, ..., n}) to renew his private key si as follows:

• Γi chooses s′i ∈ Z
∗
q . Compute P ′

i = s′iP and ∆i = s′iPpub. Then transmit
< i, P ′

i , ∆i > to the KMC secretly.
• The KMC checks the validity of P ′

i by ê(P ′
i , Ppub) = ê(∆i, P ). If it holds, KMC

changes Pi to P ′
i publicly and renews S

(i)
ID in KeyGen2 accordingly. Else KMC

refuses Γi’s request.

Note that each KEA uses the non-interactive zero knowledge protocol Proof-Log to
make its decryption share checkable.

4. Security Analysis

4.1. Adversary Types

To give the formal definition of the IB-ThIBE scheme, we need to define adversaries for
it. Since the communication users and the KEAs have different views in this scheme, we
will distinguish between two adversary types:

IB-ThKE Type1 Adversary. The general adversary A1 against the underlying iden-
tity based cryptosystem is called the type1 adversary. A1 operates in several phases which
were formally defined in (Boneh, 2001). A1 can adaptively issue hash queries, decryption
queries and complete decryption key extraction queries.

IB-ThKEType2 Adversary. The adversary that can corrupt KEAs is called the type2
adversary. Since we use a (t, n) threshold scheme, it’s reasonable to assume that at most
t − 1 out of n KEAs will be corrupted by A2. Assume {Γi}i∈S(|S| = t − 1) be the
set of corrupted KEAs. A2 can learn the secret information of corrupted KEAs, get all
broadcasting messages and decryption shares of uncorrupted KEAs. Furthermore, the A2

can make the corrupted KEAs to deviate from the protocol in an unrestricted fashion. The
actions that A2 against the IB-ThKE are listed below:

• KEA’s private key and partial secret key extraction queries. For i ∈ S, A2 is al-
lowed to make request for Γi’s private key si, and A2 can ask for partial decryption
key S

(i)
ID for a given identity ID.

• Complete decryption key extraction queries. A2 is allowed to query on an identity
ID’s complete decryption key. However, it is not reasonable for A2 to extract the
complete decryption key of the selected challenge identity IDch.

• Decryption queries. A2 is allowed to query on chosen ciphertexts, to get the plain-
texts and decryption shares from uncorrupted KEAs.
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• Update KEA’s public key. Since Γi’s public key Pi = siP (i = 1, 2, . . . , n) is
not associated with Γi’s identity, A2 can choose s′i ∈ Z

∗
q and try to replace Pi by

P ′
i = s′iP for the corrupted KEAs.

4.2. Security Model for IB-ThKE

In this section, we give the formal security definition of IB-ThKE scheme. There are
two distinct ways to define the threshold adaptive chosen ciphertext attacks against the
IB-ThKE scheme, depending on whether the adversary acts as A2 or as A1. Explicitly,
if IB-ThKE can resist against A2, it is secure against A1. So we only discuss the former.

DEFINITION 4.1 (IND-IDTH-CCA). The (t, n) threshold key escrow scheme from ID-
based cryptosystem is secure against adaptive chosen ciphertext attacks (denoted by IND-
IDTH-CCA) if no polynomially bounded adversary has a non-negligible advantage in the
following game:

Init. The adversary A2 chooses a set S of t − 1 players it wants to corrupt.
Setup. The challenger runs Setup algorithm and gives the resulting public parameters

to A2, including the public key Pi of Γi (i = 1, 2, ..., n).
KEA’s private key extraction queries. Given S, the challenger generates t−1 KEAs’

private keys si(i ∈ S). Send (i, si) to A2.
Key extraction queries1. On an identity ID, A2 performs a number of queries adap-

tively:

• Complete decryption key extraction queries. The challenger generates complete
decryption key dID. Send it to A2.

• Verification key and the corrupted KEA’s private key share queries. The challenger
returns V

(i)
ID for i ∈ {1, 2, ..., n} and S

(j)
ID for j ∈ S.

• Update KEA’s public key. For i ∈ S, suppose the request is to update the public
key of Γi with < P ′

i = s′iP, ∆i = s′iPpub >. After receiving < ID, P ′
i , ∆i >, the

challenger accepts A2’s request, and returns S
(i)
ID

′
associated with P ′

i and ID.

Decryption queries1. A2 arbitrarily feeds the challenger ciphertexts, then obtains
plaintexts and decryption shares of uncorrupted KEAs.

Challenge. A2 chooses two equal length plaintexts (M0, M1) and an identity IDch

which it wishes to be challenged on. It’s not allowed to choose an identity on which A2

has made a complete decryption key extraction query, during the key extraction queries1.
The challenger picks a bit b′ ∈ {0, 1} uniformly and sets the challenge ciphertext to be
C∗ = Encryption(Mb′ , IDch, cp). Return C∗ to A2.

Key extraction queries2. A2 issues more key extraction queries as in key extraction
queries1, except the complete decryption key of IDch.

Decryption queries2. A2 continues to interact with the challenger by feeding it with
ciphertexts C �= C∗.

Guess. A2 outputs a guess b′′ ∈ {0, 1}. A2 wins the game if b′′ = b′.
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Such an adversary A2 is called an IND-IDTH-CCA adversary. A2’s advantage is
defined to be

Adv(A2) =
∣
∣2Pr[b′′ = b′] − 1

∣
∣.

Theorem 4.1. Let H1, H2, H3, H4 be random oracles. Then IB-ThKE is an IND-IDTH-
CCA secure scheme assuming the decision BDH problem is hard in groups generated by
Setup. Concretely, suppose there is a type2 adversary A2 that has an advantages ε against
the IB-ThKE. Suppose A2 makes at most qE complete decryption key extraction queries.
Then there is an algorithm C that solves the decision BDH problem in groups generated
by Setup with the advantage at least ε′′ = ε/2e(1 + qE).

Proof. The proof is by reduction. First, we define a related non-identity based threshold
scheme called BasicThIBE, and show how the adaptive chosen ciphertext attack of
IB-ThKE can be reduced to the chosen plaintext attack of BasicThIBE, in the random
oracle model. Then we prove BasicThIBE’s semantic security.

BasicThIBE works as follows:
KeyGen(k0): Given a security parameter k0, a trusted third party T chooses two

groups G1 and G2 of the same prime order q > 2k0 , an admissible bilinear map ê:
G1×G1 → G2, a generator P ∈ G1, a secret key s ∈R Z

∗
q , Ppub = sP . Then T chooses

a polynomial of degree t − 1 over Z
∗
q :

f(x) = s + a′
1x + . . . + a′

t−1x
t−1.

For i = 1, 2, ..., n, it computes P
(i)
pub = f(i)P ∈ G1 and chooses one cryptographic hash

function H2: G2 → {0, 1}l. Randomly pick Q ∈ G
∗
1. The public parameters are

cp = {q, l, G1, G2, ê, H2, P, {P (i)
pub}(i=1,2,...,n), Ppub, Q}.

For i = 1, 2, · · · , n, T delivers di = f(i)Q ∈ G1 to decryption server i se-
cretly. When receiving di, server i can check its validity by ê(P (i)

pub, Q) = ê(di, P ) and
∑

i∈T LT
i (P (i)

pub) = Ppub, where T ⊂ {1, 2, ..., n}, |T | = t, and LT
i is the Lagrange co-

efficient with respect to the set T . If the validity test fails, he complains to T that issues
a new share.

Encrypt(M, cp): to encrypt a message M ∈ {0, 1}l, the sender chooses a random
r ∈ Z

∗
q . The ciphertext is given by (U, V ) = (rP, M ⊕ H2(ê(Ppub, Q)r)).

Decrypt(C, di): when receiving (U, V ), decryption server i computes his decryption
share δi = ê(U, di) and gives it to a special server called the combiner.

Recombine({δi}i∈T,|T |=t): the combiner selects a set T ⊂ {1, 2, · · · , n} of t de-

cryption shares δi and computes g =
∏

i∈T

δ
LT

i
i . Then the plaintext can be recovered by

M = V ⊕ H2(g).
The correctness of this scheme is easy to verify. The BasicThIBE scheme can be

viewed as a general public key cryptosystem. The key pair is (dq, PQ) = (sQ, Q).
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DEFINITION 4.2 (IND-TH-CPA). A non-identity based threshold decryption scheme is
secure against chosen-plaintext attacks (denoted by IND-TH-CPA) if no polynomially
bounded adversary B has a non-negligible advantage in the following game:

Init. B corrupts a fixed subset of t − 1 servers.
KeyGen. B’s challenger runs KeyGen:

• The challenger gives the resulting public parameters to B.
• The challenger gives B the private key shares {di}i∈S of the corrupted decryption

servers. However, the private key shares of the uncorrupted decryption servers are
kept secret from B.

Challenge. B chooses two equal length plaintexts (M0, M1) and gives them to the
challenger. The challenger responds with C∗ = (U, V ) = Encrypt(Mb′ , cp) for a ran-
dom b′ ∈ {0, 1}.

Guess. B outputs a guess b′′ ∈ {0, 1}. B wins if b′′ = b′.

B is called an IND-TH-CPA adversary (Libert, 2003). B’s advantage is defined to be

Adv(B) =
∣
∣2Pr[b′′ = b′] − 1

∣
∣.

Lemma 4.1. If H1, H2, H3, H4 are random oracles. Let A2 be an IND-IDTH-CCA ad-
versary that has an advantage ε against IB-ThKE. Suppose A2 makes qE complete key
extraction queries and at most qH1(qH1 > qE) hash queries to H1. Then there is an
IND-TH-CPA adversary B that has an advantage at least ε′ = ε/e(1 + qE) against the
BasicThIBE.

Proof. B works by interacting with A2 in an IND-IDTH-CCA game as follows:
Init. A2 chooses a fixed set S of t − 1 KEAs it wants to corrupt. Without loss of

generality, assume A2 chooses S = {1, 2, ..., t − 1}.
Setup. Algorithms B starts by receiving the BasicThIBE’s public parameters cp =

{q, l, G1, G2, ê, H2, P, {P (1)
pub, P

(2)
pub, . . . , P

(n)
pub}, Ppub, Q} from his challenger, and gives

A2 the IB-ThKE system parameters {q, l, G1, G2, ê, P, H1, H2, H3, H4, H5, Ppub,

{P1, P2, ..., Pn}}, where

• q, l, G1, G2, ê, P, Ppub are taken from cp;
• H1, H2, H3, H4 are random oracles controlled by B. H5 is a one-way hash func-

tion;
• randomly pick m1, m2, ..., mn ∈ Z

∗
q . Keep mi in secret, return Pi = miP to A2.

Then B issues partial key queries to his challenger. B’s challenger returns {di}i∈S

to B.
H1-queries. A2 can query H1 at any time. Let IDi be the i-th distinct identity asked

by A, B flips a coini(coini ∈ {0, 1}, P r[coini = 0] = δ) and maintains a list L1 of
tuples < coini, IDi, bi, QIDi >, where:

• if coini = 0, then B picks bi at random from Z
∗
q . Output QIDi = H1(IDi) = biP ,

add the tuple < coini = 0, IDi, bi, QIDi > to L1;
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• if coini = 1, then B picks bi at random from Z
∗
q . Output QIDi = H1(IDi) = biQ,

add the tuple < coini = 1, IDi, bi, QIDi > to L1.

H2-queries. A2 can issue H2 queries at any time. B forwards it to B’s challenger and
returns the answer to A2.

H3-queries. When A2 queries H3 at a distinct point (Ui, Vi, Wi), B defines P̄i at that
point by choosing Ti ∈ Z

∗
q uniquely, and maintains an initially empty list L3 of tuples

< Ti, (Ui, Vi, Wi) >. Return P̄i = TiPpub.
H4-queries. When A2 queries H4 at a distinct point (P̄i, Ūi, W̄i), B chooses ei ∈

Z
∗
q uniquely at random as the answer and maintains an initially empty list L4 of tuples

< ei, (P̄i, Ūi, W̄i) >.
KEA’s private key extraction queries. To answer A2’s private key extraction queries

on t − 1 corrupted KEAs, B returns mi(i ∈ S) to A2.
Key extraction queries1. A2 issues a number of key extraction queries on IDi adap-

tively. It’s reasonable to assume that A2 has asked about H1(IDi) before issuing com-
plete decryption key extraction queries on an identity IDi. Let < coini, IDi, bi, QIDi >

be the corresponding tuple on the L1 list.

• Complete private key extraction queries.

– If coini = 0, B outputs the decryption key of IDi as dIDi = biPpub.
– Else if coini = 1, B terminates the game and outputs “Abort”.

• Validity key and the corrupted KEA’s private key share queries.

– If coini = 0, B randomly chooses a polynomial of degree t − 1 over
G

∗
2: fIDi(x) = bi +

∑t−1
j=1 ajx

j . Then compute S
(k)
IDi

= fIDi(k)Ppub +

mkPpub, V
(k)
IDi

= ê(fIDi(k)Ppub, P ) for k = 1, 2, . . . , n. Return V
(k)
IDi

and

S
(j)
IDi

(j ∈ S) to A2. Then add < IDi, {S(j)
IDi

}(j=t,t+1,...,n) > to the list Lks.

– Else if coini = 1, B returns S
(j)
IDi

= bidj + mjPpub for j ∈ S, V
(k)
IDi

=

ê(biQ, P
(k)
pub) for k = 1, 2, ..., n.

It’s easy to prove that S
(j)
IDi

, V
(k)
IDi

(j ∈ S and k ∈ {1, 2, ..., n}) can pass the
validity test of key shares. (When coini = 1, we make use of the fact that
{dl}l∈S , {P (k)

pub}(k=1,2,...,n) can pass the validity test of B).
• Update KEA’s public key. Suppose the request is to replace the public key for

Γj(j ∈ S) with P ′
j = r′jP after passing < P ′

j , ∆j > to B (It should be a valid
pair, i.e. ê(P ′

j , Ppub) = ê(∆j , P )). B accepts A2’s request and computes the par-
tial keys upon IDi as

– if coini = 0, S
(j)
IDi

= fIDi(j)Ppub + ∆j ,

– if coini = 1, S
(j)
IDi

= bidj + ∆j .

The public verification keys V
(j)
IDi

keeps invariably.

Decryption queries1. Given a ciphertext Ci = (Vi, Ui, Ūi, ei, fi) that is encrypted
under IDj and Mi, B can simulate the decryption oracle and the uncorrupted KEAs via
L3, L4 and Lks. It responds to decryption queries as follows.

• First, B computes Wi = fiP − eiUi and searches the L3 list for a tuple
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< Ti, (Ui, Vi, Wi) > containing (Ui, Vi, Wi). If it is nonexistent, B returns
“InvalidCiphertext”.

• Else B searches L4 for a tuple < ei, (P̄i, Ūi, W̄i) >, where P̄i = TiPpub, W̄i =
fiP̄i − eiŪi. If B fails, return “InvalidCiphertext”.

• Else, Mi and δl
IDj ,Ci

(l = t, t + 1, ..., n) can be computed as follows:

– if coinj = 0, when A2 queries B at Ci, B performs the following:

∗ since ê(dIDj , Ui)= ê(bjPpub,Ui), output Mi =Vi ⊕H2(ê(bjPpub, Ui));
∗ with S

(l)
IDj

and kl
IDj

= ê(S(l)
IDj

− mlPpub, Ui), B can readily run Proof-

Log to output the decryption share δl
IDj ,Ci

= {l, kl
IDj

, hl, λl}.

– if coinj = 1, although B cannot get ri from Ui = riP , he can assume
Ūi = riP̄i and simulate the decryption of Ci as:

∗ since ê(dIDj , Ui) = ê(bjsQ, riP ) = ê(bjQ, ri(TiPpub))
1

Ti , output
Mi = Vi ⊕ H2(ê(bjQ, 1

Ti
Ūi));

∗ with d1, d2, ..., dt−1, kl
IDj

can be computed as kl
IDj

= ê(S(l)
IDj

−

mlPpub, Ui) = ê(LS′

l0 Q, Ūi)
bj
Ti ·

∏t−1
k=1 ê(LS′

lk dj , Ui)bj . Where LS′

lm =∏
j∈S′,j �=m

l−j
m−j (mod q) is the Lagrange coefficient with respect to

S′ = {0} ∪ S, for m = 0, 1, ..., t − 1. Run Proof-Log, and return
δl
IDj ,Ci

= {l, kl
IDj

, hl, λl}.

Challenge. Adversary A2 issues two equal length plaintexts (M0, M1) and an identity
IDch which it decided to be challenged on. B responds as follows:

• If coinch = 0 then B terminates the game and reports “Abort”.
• If coinch = 1 then B forwards (M0, M1) to its challenger. When it receives the
BasicThIBE ciphertext C ′ = (U ′, V ′), B simply chooses e∗, f∗, l∗ ∈ Z

∗
q and

sets V ∗ = V ′, U∗ = b−1
ch U ′, P̄ ∗ = l∗P, Ū∗ = l∗U∗, W ∗ = f∗P − e∗U∗, W̄ ∗ =

f∗P̄ ∗ − e∗Ū∗. Then B backpatches and defines the challenge ciphertext C∗ =
(V ∗, U∗, Ū∗, e∗, f∗). Where C∗ is the IB-ThKE encryption of Mb′ for a random
b′ ∈ {0, 1} under the public key IDch as required, and b−1

ch is the inverse of bch

mod q.

Key extraction queries2. Adversary A2 makes more queries. B responds in the same
way as in key extraction queries1, except the complete decryption key of IDch.

Decryption queries2. A2 issues more decryption queries, B runs in the same way it
did in decryption queries1. The only restriction here is that the target ciphertext C∗ is not
allowed to be queried.

Guess. Eventually, A2 outputs a guess b′′ ∈ {0, 1}. B outputs b′′ as its guess for b′.

Analysis.

• Suppose B is given a ciphertext C �= C∗, where C =< (V, U, Ū , e, f), W, W̄ >. If
C can pass the ciphertext validity verification, and <V, U, W>�=<V ∗, U∗, W ∗>.
Then A2 must has queried H3 at the point < U, V, W >. So B has P̄ =
H3(U, V, W ) = tPpub and B can exactly decrypt C as described above.
Else if C can pass the ciphertext validity test while < V, U, W >=< V ∗, U∗, W ∗>

and < Ū, e, f >�=< Ū∗, e∗, f∗ >, then P̄ = P̄ ∗, U = rP and Ū = r′P̄ with
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r �= r′ (if r′ = r, then t = t′ and C = C∗). Set W = tP and W̄ = t′P̄ . Because
B accepts C, we have f = t + er = t′ + er′. So, since r − r′ �= 0 and H4

is a random oracle controlled by B, this happens with probability at most 1
q . It’s

negligible when q is large enough.
Note that if we additionally check whether ê(P, Ū) = ê(P̄ , U) in the ciphertext
validity verification, making use of the decision Diffie–Hellman problem is poly-
nomially solvable in < G1, G2, ê >, then the latter case can be prevented readily.
However, we conceal it for the efficiency of validity test. As shown above, it does
not reduce the security of our scheme.

• If B does not abort during the game, then A2’s view is identical to its view in the
real attack. Because B’s responses to all hash queries are uniformly and indepen-
dently distributed as in the real attack, and all responses to A2’s request can pass
validity test unless B aborts in the game. Furthermore, ê(dQ, U ′) = ê(dIDch

, U∗).
Thus, by the definition of A2, we have |2Pr(b′′ = b′) − 1| = Adv(A2) = ε.
Let H denote the event that B does not abort in the game, then the advantage
of B is ε′ > ε · Pr[H]. We name the event that A2 made a complete private
key extraction queries on IDi with coini = 1 at some points as E1, and the
event that A2 chose IDch with coinch = 0 as E2. If Pr[coin = 0] = δ,
then Pr[H] = Pr[¬E1

∧
¬E2] = δqE (1− δ). This value is maximized when

δopt = 1 − 1/(qE + 1) (Boneh, 2001). Using δopt, Pr[H] is at least 1/e(1 + qE).
This shows that B’s advantage is at least ε′ = ε/e(1 + qE). This finishes the proof.

Lemma 4.2. Let H2 be a public one way hash functions from G2 to {0, 1}n, and let
B be an IND-TH-CPA adversary that has the advantage ε′ against the BasicThIBE.
Suppose B makes qH2 hash queries to H2. Then there is an algorithm C that solves the
decision BDH problem with the advantage at least ε′′ = ε′/2.

Proof. Algorithm C is given a random instance (P, aP, bP, cP, D) of the decision BDH
problem where a, b, c are random in Z∗

q . To determine whether D = ê(P, P )abc or not, C
runs B as follows:

Init. The adversary B chooses a set S of t − 1 decryption servers it wants to corrupt.
Without loss of generality, assume B chooses S = {1, 2, ..., t − 1}.

KeyGen. Algorithm C starts by giving B the BasicThIBE system parameters
{q, G1, G2, ê, n, P, PPub, {P (i)

pub}(i=1,2,...,n), Q, H2}. Here

• q, G1, G2, ê, n, P are taken from BasicThIBE’s public parameters,
• Ppub = cP , Q = bP ,

• P
(i)
pub (i = 1, 2, ..., n): pick random values c1, c2, ..., ct−1 ∈ Z

∗
q , find the ap-

propriate LS′

ij coefficients. Then C computes P
(i)
pub = LS′

i0 Ppub +
t−1∑

j=1

LS′

ij cjP

(i = t, t + 1, ..., n), and P
(j)
pub = cjP (j = 1, 2, ..., t − 1). Where S′ = {0} ∪ S

and LS′

ij denotes a Lagrange coefficient with respect to the set S′.
• H2 is a one-way hash function.
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Private key shares extraction queries. B issues partial key share extraction query on
Q. In order to provide t − 1 valid secret key shares upon Q, C returns dj = cjQ(j ∈ S).

Challenge. B outputs two equal length plaintexts (M0, M1). C chooses a random
bit b′ ∈ {0, 1} and a random R ∈ {0, 1}l. Set H2(D) = R, return C ′ = (U, V ) =
(aP, Mb′ ⊕ R) as the challenge ciphertext.

Guess. B outputs a guess b′′ ∈ {0, 1}. If b′′ = b′, then C outputs 1 meaning D =
ê(P, P )abc. Otherwise, return 0 meaning D �= ê(P, P )abc.

Analysis. If D = ê(P, P )abc, then B’s view is identical to its view in the real game,
and Pr[b′′ = b′] = 1

2 ± ε′

2 by the definition of B. Else if D �= ê(P, P )abc then D

is uniform and independent in G1, and the challenge ciphertext C ′ is independent of
b′, that is Pr[b′′ = b′] = 1

2 . Therefore, we have |Pr[B(P, aP, bP, cP, ê(P, P )abc) =
1] − Pr[B(P, aP, bP, cP, D) = 1]| = |(1

2 ± ε′

2 ) − 1
2 | = ε′/2.

Thus, putting all the bounds that have been obtained above, it shows that an IND-
IDTH-CCA attacker on the IB-ThKE scheme with the advantage ε can be used as a sub-
routine to construct a decision BDH-attacker for a given instance of the decision BDH
problem with an advantage at least ε′′=ε/2e(1+qE). This finishes the proof of Theorem.

5. Further Discussion

The IB-ThKE can readily be converted into a fully secure identity-based threshold de-
cryption scheme. There are only type2 adversaries in the threshold decryption scheme,
so its security reduction is similar to IB-ThKE. In such a scheme, the ciphertexts are
publicly checkable, without pairing computation.

Another application of IB-ThKE is a dynamic threshold key escrow scheme (Sun,
1994). Intuitively, each KEA only needs to keep his private key si in secret, while the
partial secret keys S

(i)
ID can be transmitted through public channels, without betraying

any information of the complete decryption key. Then the KMC can update the master
key s, or add/remove any KEA without changing KEAs’ private information. That is,
the KEAs and KMC may communicate via broadcast channels after the key generation
process has taken place, and the secret channel is demanded only when a KEA wants to
update his private key. Obviously, this scheme is very practical.

6. Conclusions

In this paper, we propose a threshold key escrow scheme that can resist against active at-
tack, and we show its security against adaptive chosen ciphertext secure in the appropriate
model, assuming that the decision Bilinear Diffie–Hellman problem is hard. At last, we
illustrate the applications of IB-ThKE.
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Adaptyviai parinkta šifruoto teksto slapto slenkstinio rakto s ↪alyginio
indėlio schema

Yu LONG, Kefei CHEN, Shengli LIU

Straipsnyje siūloma šifruoto teksto slapto slenkstinio rakto s ↪alyginio indėlio schema. Ji
toleruoja pasyv ↪u priešinink ↪a, siekiant↪i prieiti prie vidini ↪u duomen ↪u, esant pažeistiems agentams, ir
aktyv ↪u priešinink ↪a, kuris gali pažeisti server↪i, kad jis nukrypt ↪u nuo protokolo. Formalus saugumo

↪irodymas pateiktas randomizuotam oraklo modeliui, skaitant, kad bitiesinė Diffie–Hellmano prob-
lema yra skaičiuojamuoju požiūriu sunki.


