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Abstract. Robust stability results for nominally linear hybrid systems are obtained from total sta-
bility theorems for purely continuous-time and discrete-time systems. The class of hybrid systems
dealt with consists of, in general, coupled continuous-time and digital systems subject to state
perturbations whose nominal (i.e., unperturbed) parts are linear and time-varying, in general. The
obtained sufficient conditions on robust stability are dependent on the values of the parameters
defining the over-bounding functions of the uncertainties and the weakness of the coupling between
the analog and digital sub-states provided that the corresponding uncoupled nominal subsystems
are both exponentially stable.
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1. Introduction

Stability of both continuous-time and discrete-time singularly perturbed systems has re-
ceived much attention in the last years (Kafri and Abed, 1996; Kolev, 1993; Shieh et
al., 1986; Oppenheimer and Michel, 1988). Also, stability analysis of discrete-time sin-
gularly perturbed systems with calculations of parameter bounds has been reported in
(Kolev, 1993; Shieh et al., 1986). An assumption used in previous work to carry out the
stability analysis of singularly perturbed systems is relaxed in (Kafri and Abed, 1996)
where an upper-bound on the singular perturbation parameters is included to derive such
an analysis. On the other hand, the so-called hybrid models are a very important tool for
analysis in the modern computers and control technologies since they describe usual situ-
ations where continuous-time and either discrete-time and /or digital systems are coupled
(De la Sen, 1996; Kabamba and Hara, 1993). A usual example, very common in practice,
is the case when a digital controller operates over a continuous-time plant to stabilize it
or to improve its performance. The systems described in (De la Sen, 1996; Kabamba and
Hara, 1993) are more general since the controlled plant can also possess an hybrid nature
since all the continuous-time and digital state- variables can be mutually coupled and to
possess internal delays (De la Sen and Alastruey, 2004; De la Sen, 2004; De la Sen and
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Luo, 2004). Other studies and development concerned with hybrid systems in the contexts
of presence of delays in their dynamics, fundamental properties of dynamic systems and
manufacturing systems have been recently performed in (De la Sen, 2006; Bargelis et al.,
2004; Chaib et al., 2005; Marchenko and Poddubnaya, 2005). In this brief paper, stability
results are obtained for a wide class of such systems whose nominal (i.e., unperturbed)
parts are linear and, in general, time-varying while the state perturbations are allowed to
be, in general, non-linear, time-varying and of a dynamic nature. The results about ro-
bust stability are obtained by firstly deriving sufficient stability conditions related to total
stability for an extended discrete system which describes the overall state trajectory at
sampling instants via the discretization of the continuous-time sub-state. Subsequently,
a result about total stability of the continuous-time sub-state is carried out to ensure the
system’ s stability during the inter-sample intervals. Some links with the results given in
(Kafri and Abed, 1996) about singularly perturbed systems are also given for a special
hybrid system within the given class.

Notation. λmax(M) and det (M) denote, respectively the maximum eigenvalue and
determinant of the square matrix M = (M (ij)). The symbol ⊗ denotes the direct Kro-
necker product of matrices. Particular norms for functions, sequences or matrices are
denoted by the appropriate subscript. In the expressions being valid for any norms, those
subscripts are omitted.

2. Problem Statement

A) Plant Description Σ
Consider the following, in general, time-varying hybrid plant
System Σ:

ẋc(t) = Ac(t)xc(t) + Acd(t)xd[k] + δc(t), (1)

xd[k + 1] = Ad[k]xd[k] + Adc[k]xc[k] + δd[k], (2)

δc(t) = fcc(t, xc(t)) + fcd(t, xd[k]) + gcc(t, xc(t)) + gcd(t, xd[k]), (3)

δd[k] = fdc(k, xc[k]) + fdd(k, xd[k]) + gdc(k, xc[k]) + gdd(k, xd[k]) (4)

for all time t ∈ [kT, (k +1)T ) and discrete time integer index k � 0 for sampling period
T where xc(t) and xd[k] are, respectively, the nc continuous-time (or analog) substate and
nd discrete-time (or digital) substate. The continuous-time and discrete-time variables are
denoted by (t) and [k], respectively. The discretized analog substate at sampling instants
is denoted as a digital signal; i.e., xc(kT ) = xc[k]. The matrix functions Ac(t), Acd(t),
Ad[k] and Adc[k] are of dimensions being compatible with the corresponding vectors in
(1)–(2). δc(t) and δd[k] are disturbances being, in general, nonlinear and time-varying
subject to the following set of constraints on the functions f(.) and g(.).

Constraints C:
C1) Ad[k], Adc[k], fdc(k, xc[k]), fdd(k, xd[k]), gdc(k, xc(t)), gdd(k, xd[k]) matrix

and vector sequences of k of bounded entries. The entries of Ac(t), Acd(t), fcc(t, xc(t)),
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fcd(t, xd[k]), gcc(t, xc(t)) and gcd(t, xd[k]) are locally integrable functions of t for each
fixed x in the ball Max (‖xc‖ � r, ‖xd‖ � r) and all integer k � 0 and all t � 0.

C2) fcc(t, 0) = fdc(t, 0) = 0 ∈ Rnc , fdc(k, 0) = fdd(k, 0) = 0 ∈ Rnd , (5)

C3) ‖hcc(t, xc1) − hcc(t, xc2)‖ � βh
cc‖xc1 − xc2‖,

‖hcd(t, xc1) − hcd(t, xc2)‖ � βh
cd‖xc1 − xc2‖, (6)

‖hdc(k, xd1) − hdc(k, xd2)‖ � βh
dc‖xd1 − xd2‖,

‖hdd(k, xd1) − hdd(k, xd2)‖ � βh
dd‖xd1 − xd2‖, (7)

C4) ‖gcc(t, xc1)‖ � βg
ccr, ‖gcd(t, xd1)‖ � βg

cdr, (8)

‖gdc(t, xc1)‖ � βg
dcr, ‖gdd(t, xd1)‖ � βg

ddr, (9)

for all ‖xci‖ � r, ‖xdi‖ � r and all integer k � 0 and all t � 0, with h being any of
the vector real functions or sequences of (3)–(4) and βh

(.) (h = f or h = g) being known
nonnegative real constants. The problem dealt with in this brief is the investigation of the
robust stability of Σ (i.e., that of (1)–(2) with dynamic state disturbances (3)–(4)) subject
to the set of constraints C. For this purpose, the state-trajectory of Σ at sampling instants
is calculated in the following subsection.

B) Extended Discrete System Σd

Direct calculation of the solution of Σ at sampling instants (i.e., t = kT , k being any
nonnegative integer) yields the following discrete extended system:

Σd: x[k + 1] = A[k]x[k] + δ[k], all integer k � 0 (10)

with x[k] = (xT
c [k], xT

d [k])T subject to x[0] = (xT
c [0], xT

d [0])T , with xc[0] = xc(0), and

A[k] =
[

Φc[k] Γc[k]
Adc[k] Ad[k]

]
, Γc[k] =

∫ T

0

Φc((k + 1)T − τ)Acd(kT + τ) dτ, (11)

δ[k] =
(
δ
′T
c (t), δT

d [k]
)

=
( ∫ T

0

δT
c (kT + τ)ΦT

c ((k + 1)T − τ) dτ, δT
d [k]

)T

, (12)

Φc(t) and Γc(t) being defined at sampling instants as Φc[k]=Φc(kT )=Ψc((k+1)T ,kT )
and Γc[k] = Γc(kT ) are the k-th intersample state transition and control matrices of the
continuous subsystem, respectively, (i.e., Ψ̇c(t, 0) = Ac(t)Ψc(t, 0); Ψc(0, 0) = Inc for
all t ∈ [kT, (k + 1)T ) and all integer k � 0.

3. Main Results

The robust stability of Σ subject to the constraints C under the knowledge of the con-
stants β

(.)
(.) is now investigated. The results on robust stability are useful for both local and

global stability in the sense that stability is ensured for initial conditions of (1)–(4) being
constrained to the balls ‖xc(0)‖ � r, ‖xd[0]‖ � r where the radius r is arbitrary but
compatible with the validity of the constraints C on Σ.
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A) Exponential Stability of the Nominal Extended System Σ∗
d

The nominal Σ is defined by zeroing δc(t) and δd[k] in (1)–(2). This results into the
nominal version Σ∗

d of Σd in (10)–(12) satisfying x∗[k + 1] = A[k]x∗[k] with x∗[0] =
(xT

c [0], xT
d [0])T . The following assumption is given:

ASSUMPTION 1. The nominal uncoupled continuous-time and digital subsystems
ẋ∗

c(t) = Ac(t)x∗
c(t) and x∗

d[k + 1] = Ad[k]x∗
d[k] are both exponentially stable, i.e.,

thee exist norm-dependent real constants Kc � 1 and Kd � 1 such that ‖Ψc(t2, t1)‖ �
Kce−ac(t2−t1) and ‖Ψd(k2, k1)‖ � Kda

k2−k1
d for some real constants ac > 0 and

ad ∈ [0, 1) where Ψc(., .) and Ψd[., .] are the state-transition matrices of the un-
coupled continuous-time and digital subsystems in Σ (i.e., Ψ̇c(t, 0) = Ac(t)Ψc(t, 0);
Ψc(0, 0) = Inc with Ψc(k2T, k1T ) =

∏j=k2−1
j=k1

Φ[j] between two sampling instants and

Ψd[k2, k1] =
∏j=k2−1

j=k1
Ad[j] with Ψd[0, 0] = Ind

for all t � 0, any real t2 � t1 � 0 and
any integers k2 � k1 � 0).

The following stability result holds for the nominal extended system (i.e., δ ≡ 0
in (10)).

PROPOSITION 1. Define

ρk = Max

(
Max

1�i�nc

( nc∑
j=1

∫ T

0

∣∣Ψ(ij)
c ((k + 1)T, kT + τ)Acd(τ) dτ

∣∣),

Max
1�i�nd

( nd∑
j=1

∣∣A(ij)
dc [k]

∣∣))
. (13)

Thus, the nominal extended discrete system is exponentially stable if Assumption 1 holds
and ρk < 1 − Max(e−acT , ad) for all integer k � 0.

Proof. Decompose A[k] = A0[k]+Ã[k] in (11) with A0[k] = BlockDiag(Φc[k], Ad[k]),
Φc[k] = Ψc((k + 1)T, kT ) and Ad[k] = Ψd[(k + 1)T, k] being the one sampling period
kth transition matrices. Thus, x∗[k + 1] = A[k]x∗[k] is exponentially stable if there
exist real constants K � 1 (being norm-dependent) and a ∈ [0, 1) such that its state
transition matrix Ψ[k2, k1] =

∏k2−1
j=k1

A[j] satisfies ‖Ψ[k2, k1]‖ � K ak2−k1K = 1 for
the l2-matrix norm given by the maximum modulus within the whole set of eigenvalues.
Also, ρk = ‖Ã[k]‖2, from the definition of ρk and Ã[k] = A[k] − A0[k], lies in the
union ∪nc

i=1Ri of the discs Ri = {z: |z| �
∑nc+nd

j=1 |Ã(ij)[k]|} from Gerschgorin’s circle
theorem (Kincaid and Cheney, 1991). Therefore, ‖A[k]‖2 � Max(e−acT , ad) + ρk �
a < 1 for all integer k � 0 if Assumption 1 and (13) hold. Thus, the nominal extended
system is exponentially stable and the result has been proved.

B) Stability of the Discrete Disturbed Extended System Σd

The following result gives sufficient conditions for stability of the extended discrete
system (10) within a closed ball of the extended state x[.].
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PROPOSITION 2. Assume that Proposition 1 holds under Assumption 1 (i.e., the nominal
extended system (10) is exponentially stable) under the stronger condition ‖A[k]‖2 �
a < 1 − Kd

K
< 1 where the real constants K and a are related to the state transition

matrix of Σd Eq. 10 and defined in the proof of Proposition 1, and

Kd = Kca
−1
c βc + Kdβd, (14)

βh = βf
hc + βf

hd + βg
hc + βg

hd (15)

for h = c, d; and Kd < 1. Thus, the state vector is uniformly bounded according to

‖x[k]‖ �
(
ak + K Kd

1 − ak

1 − a

)
r � r (16)

for all integer k � 0 provided that Max(‖xc[0]‖, ‖xd[0]‖) < r

2K
� r

2 .

Proof. First, note from direct calculus from (6)–(9) that the disturbance signal δ[k] in
(10) satisfies

‖δ[k]‖ � ‖δ′c[k]‖ + ‖δd[k]‖ � Kdr (17)

provided that Max(‖xc[k]‖, ‖xd[k]‖) < r/2 for all integer k � 0 since K > 1 and

a < 1−Kd

K
imply a+Kd < 1. Consider the set of sequences {y[k], k � 0} equipped with

the �∞ norm for sequences ‖y‖∞ = Max0�k�∞(‖y[k]‖). Thus, the operator Td defined
by (Td y)[k] = A[k]y[k] + δ[k] is a contraction on the closed subset Rd of bounded nd-
vector sequences {y[k], k � 0: ‖y‖∞ � r}. By the contraction mapping theorem (Hale,
1980; Kincaid and Cheney, 1991) there is a unique solution y[k + 1] = (Td y)[k] (fixed
point) with sequences in Rd, and

‖x[k]‖ =
∥∥∥∥Ψ[k, 0]x[0] +

k−1∑
i=0

Ψ[k, i + 1]δ[i]
∥∥∥∥ � K ak‖x[k]‖ + K Kd r

k−1∑
i=0

ai (18)

which leads directly to (16) since a < 1 − Kd K < 1 implies

k−1∑
i=0

ai =
1 − ak

1 − a
; ak + K Kd

1 − ak

1 − a
� 1 + ak − a � 1. (19)

C) Stability of the Continuous-Time Substate Inbetween Sampling Instants
Now, the solution to (1) subject to (2)–(3) is analyzed by taking into account that

‖x[k]‖ � r provided that Proposition 2 holds. A total stability argument is used as main
tool for the proof of stability of the continuous-time subsystem.

PROPOSITION 3. Assume that Proposition 2 holds, Sup0�t<∞(‖Acd(t)‖) � acd,

‖xc(0)‖ � r
2Kc

and KcKc

ac
< 1, where

Kc = Kf
c + Kg

c ; Kf
c = βf

cc + βf
cd; Kg

c = acd + βf
cc + βg

cd. (20)
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Thus, there is a unique solution xc(t) to (1) such that for all t � 0:

‖xc(t)‖ � Kce−(ac−KcKf
c )t‖x0‖ +

KcK
g
c

ac − KcK
f
c

r(1 − e−(ac−KcKf
c )t) � r. (21)

Proof. One gets directly from (1),

xc(t) = Ψc(t, 0)xc(0) +
∫ t

0

Ψc(t − τ)δ0
c (τ) dτ (22)

with xc(0) = xc[0] and δ0
c (t) = Acd(t)xd[k] + δc(t). Under the set of constraints

C, ‖δ0
c (t)‖ � Kcr for all t � 0 subject to (20). Using similar arguments as in

the proof of Proposition 2, consider the Banach space Bc = C[0,∞) of continu-
ous, bounded nc-vector sequences defined on [0,∞) and equipped with the L∞-norm
‖y‖∞ = Sup0�t�∞(|y(t)|). The operator Tc is defined via

(Tc y)(t) = Ψc(t, 0)x0 +
∫ t

0

Ψc(t, τ)δ0
c (τ) dτ (23)

is a contraction of the closed subset Rc = {y ∈ εBc: ‖y‖∞ � r} of Bc, because for
‖yi‖∞ � r (i = 1, 2), one gets from (20)and (23)

|(Tcy)(t)| � Kc

{
e−act‖xc(0)‖ +

Kc

ac
(1 − e−act)r

}
� r

⇒ ‖Tcy1 − Tcy2‖ � Kca
−1
c ‖y1 − y2‖ � ‖y1 − y2‖ (24)

for ‖xc(0)‖ = ‖xc[0]‖ � r
2Kc

� r

2K
� r since ‖xd[k]‖ � r

2K
� r for all k � 0 from

Proposition 2. By the contraction mapping theorem, (Hale, 1980; Kincaid and Cheney,
1991), there exists a unique solution of (23) in Rc, the fixed point of Tc . Thus, one gets
from (23) that

‖x(t)‖ � Kc

{
e−act‖x0‖+Kf

c

∫ t

0

e−ac(t−τ)‖xc(τ)‖ dτ+Kg
c r

∫ t

0

e−ac(t−τ) dτ

}
(25)

which leads to (21) from Bellman–Gronwall Lemma (Hale, 1980).

REMARK 1 (combined interpretation of Propositions 1–3). Assumption 1 and Proposi-
tions 1–3 yield the following robust stability conditions for the system Σ by using l2 vec-
tor and matrix norms, i.e., Kc = Kd = 1, provided that ‖xc[0]‖ � r

2 and ‖xd[0]‖ � r
2 :

ρ∗ + ρ + βca
−1
c + βd < 1, Kca

−1
c < 1, (26)

ρ∗ = Max
0�k�∞

(e−acT , ad), ρ = Max
0�k�∞

(ρk) (27)

with βc and βd being real constants defined in (15) related to the set of constraints C, ρk

and Kc defined in (12) and (20). In particular: (a) ρ∗ < 1 guarantees the exponential
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stability of the uncoupled nominal continuous-time and digital subsystems (i.e., δc ≡ 0,
δd ≡ 0). (b) ρ∗ + ρ < 1 guarantees that the exponential stability is not destroyed in the
nominal extended system Σ∗

d by the existence of linear couplings between the continuous-
time and digital substates. (c) The first inequality in (26) guarantees that the state distur-
bances in Σ are sufficiently small in terms of the real constants defining their overbound-
ing functions while satisfying C so that the extended discrete system Σd maintains the
stability of its nominal description Σ∗

d. If, furthermore, the second constraint of (26) holds
then the signal boundedness is kept in-between sampling instants according to (21) and
the overall hybrid system Σ is robustly stable.

D) Links With Singular Perturbation Theory
In some particular descriptions within the class Σ, the perturbation theory can be

combined with the above analysis. Assume, for instance that the linear dynamics of Σ
is subject to variations defined by a small parameter ε, Adc and Add are time-invariant
and Ac(t) = εAc for all t � 0 and Acd(t) = ρ(ε)eεAct with ρ(ε) � ρ < ∞ for all
ε ∈ [0, ε∗). Thus, a direct series expansion around εT of the state transition matrix of the
continuous subsystem yields

Ψc((k + 1)T, kT ) = eεAcT

= Inc + εAcT + ∆(ε, T, Ac)
∫ (k+1)T

kT

Ψc((k + 1)T )Acd(τ) dτ

=
(
Inc + εAcT + ∆(ε, Ac, T )

) ∫ (k+1)T

kT

e−εAcτAcd(τ) dτ

=
(
εAc + ρ(ε)

[
Inc + ∆(ε, T, Ac)

])
T.

Note that ‖∆(ε, T, Ac)‖2 � 1 + εAcT + εT |λmax(Ac)| = δ(ε) � δ < ∞ for all
ε ∈ [0, ε∗) and ρ(ε)T [Inc + ∆(ε, T, Ac)] � ρT (1 + δ) < ∞ for all ε ∈ [0, ε∗). Thus,

A(ε) = A∗(ε) + ∆A(ε),

A∗(ε) =
[

Inc + εAcT εAcT

Adc Ad

]
,

∆A(ε) =
[

∆(ε, T, Ac) ρ(ε)T (Inc + ∆(ε, T, Ac))
0 0

]
is time-invariant in (10). Thus, the discrete system Σd of (10) satisfies equivalently,

z[k + 1] = Â∗(ε)z[k] +
(
δ[k] + ∆A(ε)z[k]

)
(28)

by defining (see (Kafri and Abed, 1996))

Â∗(ε) = Î + Â21 + Â22 + ε(Â11 + Â12) for ε ∈ [0, ε∗) (29)
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through the extended n = nc + nd-matrices

Â11 =
[

TAc 0
0 0

]
, Â12 =

[
0 TAc

0 0

]
, Î =

[
Inc 0
0 0

]
, (30)

Â21 =
[

0 0
Adc 0

]
, Â22 =

[
0 0
0 Ad

]
. (31)

Note that Schur’ s stability of Â∗(ε) is equivalent to exponential stability of the unforced
time-invariant system Σ∗

d: z∗[k + 1] = Â∗(ε)z∗[k] since Â∗(ε) has its eigenvalues in
|z| < 1 for all ε ∈ [0, ε∗). Thus, the subsequent result follows directly from Proposition 2
by using a previous result in (Kafri and Abed, 1996):

PROPOSITION 4. Define ν(ε) := ν(Â(ε)) = det(Â(ε)⊗Â(ε)− Î⊗ Î) where ⊗ denotes
the direct Kronecker product of matrices which is a matrix of dimension (n+m)2×(n+
m)2. Thus, the following items hold:

(i) If ν(ε) has no positive zeros, then either Â(ε) is Schur stable for all ε > 0 or it is
not Schur stable for any ε > 0.

(ii) If ν(ε) has positive zeros, let ε be the smallest such zero. If Â(ε1) is Schur stable for
any ε1 ∈ (0, ε) then ε∗ = ε. Otherwise, Â(ε) is not Schur stable for all sufficiently
small and positive values of ε.

(iii) The extended discrete system Σd(ε) is stable for all ε ∈ [0, ε∗) satisfying
Max(‖xc[0], xd[0]‖) � r

2K
and ‖A∗(ε)‖2 + Kd + Max0�ε�ε∗(‖∆A(ε)‖2) < 1

with Kd defined in (14).

4. Simulated Example

The following third-order system, whose state-space description lie within the class of
hybrid plants (1), is considered:

ÿ(t) + a1ẏ(t) + a2y(t) + a3y[k] + 4y[k − 1]

= b0u(t) + b1u̇(t) + b2u[k] + 3u[k − 1] + 0.3(z[k] + δ(t)),

z[k + 1] = 0.2z[k] + 1.1u[k] + 1.3y[k], δ̇(t) = −7δ(t) + 8.5u(t)

for all t ∈ [kT, (k + 1)T ) and any integer k � 0. The signal u(t) is a stabilizing output-
feedback control signal generated from an hybrid controller as follows:

u(t) =
G1(D, q)
L(D, q)

u(t) +
G2(D, q)
L(D, q)

y(t),

G1(D, q) = D2q2 − q2D + D2q + 1.25q2 − Dq + 0.25q

− 1.44187D2 + 0.206426D − 2.54251,

G2(D, q) = 1.12792(D2q2 − 0.269774q2D + 1.10629),

L(D, q) = (D − 0.5)2(q + 0.5)2,
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Fig. 1. Output versus time plot.

where q is the discrete one-step advance operator and D is the time-derivative operator.
After substituting the control law in the plant description, the resulting closed-loop sys-
tem is of the general form given while driven only by the disturbance δ(t). The signal
δ(t) = δc(t) is a perturbation which satisfies the general assumptions – constraints C of
the theory of total stability. There are six parameters to be estimated by the estimation
schemes are a1 = −1, a2 = 2, a3 = 3, b0 = 1, b1 = b2 = 2 and b3 = 3. The sampling
period is T = 0.4. Finally, the reference model is a third-order highly damped one of
discrete regulation. The plant output is shown in Fig. 1.

Note that both the extended discrete system and the continuous one are stable since
the output is bounded for all time. Remark 1, which is a combined interpretation of Propo-
sitions 1–3, holds with all the signals in the loop being uniformly bounded for all time,
i.e., “at” and “in-between” sampling instants. If the disturbance δ(t) is zeroed then the
closed-loop system is globally asymptotically stable.

5. Concluding Remarks

The robust stability of a class of linear and time-varying hybrid systems has been in-
vestigated. The obtained sufficient conditions on robust stability are obtained by ensur-
ing the total stability of the overall discretized system (whose state includes the digi-
tal sub-state plus the sampled continuous-time sub-state) at sampling instants and that
of the continuous-time sub-state in-between sampling instants. The obtained sufficient
conditions on total stability require the exponential stability of the uncoupled nominal
continuous-time and digital subsystems, the sufficient weakness of the couplings between
the linear parts of both sub-states and the sufficient smallness of the over-bounding func-
tions of the state perturbations. Some links with previous work have been established for
a special case of hybrid description through a combination of the obtained results with
Schur’s-type stability criteria for singularly perturbed systems.
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Apie total ↪u vienos hibridini ↪u sistem ↪u klasės stabilum ↪a

Manuel De la SEN

Taikant totalinio stabilumo teoremas, sukurtas tolydžiojo bei diskrečiojo laiko sistemoms, gauti
patvariojo stabilumo rezultatai nominaliai tiesinėms hibridinėms sistemoms. Išnagrinėta hibri-
dini ↪u sistem ↪u klasė, susidedanti iš tolydžiojo laiko ir skaitmenini ↪u sistem ↪u junginio su perturbaci-
jomis, kuri ↪u nominalios (t.y. neperturbuotos) dalys, bendru atveju, esti tiesinės bei besikeičiančios
laiko atžvilgiu. Gautos pakankamos patvariojo stabilumo s ↪alygos priklauso nuo parametr ↪u verči ↪u,
apibrėžianči ↪u neapibrėžtum ↪u funkcijas bei analoginės ir skaitmeninės posistemi ↪u junginio taikymo
pagr↪istum ↪a, numatant iš anksto, kad atitinkamos nesujungtos nominalios posistemės esti eksponen-
tiškai stabilios.


