
INFORMATICA, 2006, Vol. 17, No. 3, 325–346 325
 2006 Institute of Mathematics and Informatics, Vilnius

Methodology to Evaluate the Functionality of
Specification Languages

Jelena GASPEROVIC, Albertas CAPLINSKAS
Software Engineering Department, Institute of Mathematics and Informatics
Goštauto 12, LT-01108 Vilnius, Lithuania
e-mail: j.gasperovic@algoritmusistemos.lt , alcapl@ktl.mii.lt

Received: December 2005

Abstract. The paper proposes a methodology for evaluation of specification language functionality
characteristics. It describes background of the proposed methodology, discusses the methodology
in detail, and shortly describes experimental results obtained using the proposed methodology to
evaluate the functionality of Z and UML languages.

Key words: specification languages, internal quality, quality characteristics, quality evaluation.

1. Introduction

It is possible to speak about internal quality and quality in use of a specification language.
Internal quality is a descriptive characteristic that describes the quality of a language in-
dependently from any particular context of its use. Meanwhile, quality in use is evaluative
characteristic of a language obtained by making a judgment based on criteria that deter-
mine the worthiness of a language for a particular project (Caplinskas and Gasperovic,
2005c). However, it is impossible to evaluate the quality in use without knowing char-
acteristics of internal quality. Despite the long history of specification languages, their
quality is almost unstudied. Particularly, it is very little known how to evaluate the func-
tionality of a specification language. Several authors (Jackson, 1999; Wand and Weber,
1989; Wand and Weber, 1995; Opdahl, 1997; Milton et al., 1998; Mylopolous, 1998;
Lindland et al., 1994; Krogstie, 2003) investigated the problem of specification language
quality. However, their results are fragmental and not enough systematic. A sketch of
the systematic specification languages quality theory have been proposed in (Caplinskas
and Gasperovic, 2005a; Caplinskas and Gasperovic, 2005b; Caplinskas and Gasperovic,
2005c). However, the question how to evaluate elementary quality characteristics, includ-
ing the characteristics of the functionality, has also left uninvestigated in these works. For
several reasons, it is a hard problem. Firstly, only several elementary characteristics can
be measured directly. Secondly, internal quality is relative. Elementary characteristics of
a specification language have different weights. Although the internal quality does not de-
pend on any particular context, the global context should be taken into account. It means
that the weights of characteristics (their importance) depend on the properties of the cur-
rent population of Software Systems. Some characteristics are necessary for most of the



326 J. Gasperovic, A. Caplinskas

population, while the others are used very rarely. Thus, when the structure of population
of Software Systems changes, the degree of languages quality changes too. Because it is
impossible to investigate all current population of Software Systems, the weights of char-
acteristics have probabilistic character. Finally, the evaluation results should be assessed
and interpreted in a correct way. All three mentioned issues are complex and intricate.

The main purpose of this paper is to propose a methodology to evaluate the elementary
characteristics of the functionality of a specification language. Although many compo-
nents of the proposed methodology can be applied to evaluate elementary characteristics
of reliability, efficiency, and usability of a specification language, for each of the men-
tioned cases the methodology as a whole should be elaborated and adapted separately.

Shortly, the proposed approach can be described as follows. All theoretically possible
Software Systems are divided into categories of systems that meet principally different
requirements. Then from the current population of Software Systems a sample for each
category of systems should be chosen via purposive judgment sampling. After this using
domain analysis methods for each sample feature model should be developed. Further
these models should be refined and a number of Software Systems requirements speci-
fications should be produced. These specifications are used as evaluation test examples
to evaluate different specification languages. In order to do this, a set of evaluation tests
and test suites should be developed and quality evaluation plan should be prepared. Fi-
nally, the obtained results are interpreted using the proposed procedure and the values of
elementary characteristics are calculated.

The rest of the paper is organised as follows. Section 2 discusses the details of spec-
ification language quality evaluation problem. Section 3 proposes the methodology to
evaluate elementary characteristics of the functionality of a specification language and
describes its components in details. Finally, Section 4 concludes the paper.

2. The Main Specification Languages Quality Evaluation Problems

This paper proposes a methodology to evaluate the characteristics of internal quality of a
specification language. Let us consider shortly the whole specification languages quality
evaluation problem.

According to (ISO/IEC 14598-1:1999, 1999) “quality evaluation is a systematic ex-
amination of the extent to which an entity (part, product, service or organisation) is ca-
pable of meeting specified requirements”. As pointed out in (Caplinskas and Gasperovic,
2005c), quality of a specification language may be evaluated both independently from
any context of use and by making a judgment based on criteria that determine the use-
fulness of a language for a particular project. The first one is called internal quality. It
is the quality of a specification language itself. The second one is called quality in use.
It describes the extent to which a language used by specified users meets their needs to
achieve specified goals in specified context of use. So, internal quality is descriptive and
quality in use is evaluative characteristic of a specification language.

The main quality evaluation scheme is presented in Fig. 1.



Methodology to Evaluate the Functionality of Specification Languages 327

Fig. 1. The main quality evaluation scheme.

Internal quality is described by a set of quality characteristics. Usually a set of char-
acteristics forms some hierarchical taxonomy. It means that, evaluating internal quality,
different groups of related elementary characteristics are aggregated into characteristics
of higher level and this process is repeated until the quality is described at the higher
level by single aggregated characteristic. The theory for evaluation of internal quality
of specification languages is still at the very beginning. Neither exhaustive commonly
accepted set of elementary characteristics nor propositions how to measure and classify
these characteristics have been described in scientific literature. The set of elementary
characteristics to describe internal quality of a specification language and their taxonomy
have been proposed in (Caplinskas and Gasperovic, 2005a).

This proposal has been based on the careful conceptual analysis of wide spectrum
of specification languages, including UML, Z, VDL, Troll, and Alloy, as well as on the
analysis of quality characteristics that are used to describe quality of similar artefacts
such as programming languages and conceptual models. The proposed set of elementary
characteristics includes 34 elementary characteristics. The proposed taxonomy is based
on the classification scheme that is similar to the one described by ISO/IEC 9126 standard
(ISO/IEC 9126, 1991). This taxonomy has five levels and provides that the quality of
a specification language can be characterised by its functionality, reliability, usability,
and efficiency. However, in (Caplinskas and Gasperovic, 2005a) these characteristics are



328 J. Gasperovic, A. Caplinskas

decomposed further in the different way than in ISO/IEC 9126.
In (Caplinskas and Gasperovic, 2005b) it has been proposed to express the values

of characteristics of internal quality as probabilities that corresponding feature of a lan-
guage L will be sufficient to specify relevant requirements of any theoretically possible
Software System. It means that internal quality of specification language L is described
as a probability that this language will satisfy the needs of any possible Software System
development project regardless of its purpose, complexity, size and other specifics. Meth-
ods for aggregation of the values of characteristics of internal quality have been proposed
in (Caplinskas and Gasperovic, 2005c).

Using proposed methods the values of elementary characteristics can be aggregated
up to a single value, describing the internal quality of the whole language L.

In (Caplinskas and Gasperovic, 2005a) it has also been proposed how to evaluate the
quality in use of the specification language L on the basis of its internal quality. Quality
in use is evaluated for a given Software System development project P and describes the
degree of appropriateness of the language L for the project P. In order to evaluate quality
in use, the quality goals of the project P must be specified.

So, coming back to Fig. 1, the only missing point is the evaluation of elementary
characteristics of internal quality. This paper is devoted to the issues of evaluation of
elementary characteristics of the functionality of a given specification language L.

3. Evaluation of Elementary Characteristics of the Functionality

3.1. Questions to be Answered

Elementary characteristics of internal quality are the lowest-level characteristics. Thus,
we should evaluate these characteristics in some way. Best of all would be to measure
elementary characteristics, but it is possible for some characteristics only. In general, the
evaluation techniques depend on the kind of characteristics or, in other words, depend on
the aspect of the language (functionality, reliability, efficiency or usability), which these
characteristics should describe.

In this paper we discuss only those techniques that are related to evaluation of char-
acteristics describing the functionality of the language L. However, it is not known how
to measure these characteristics directly.

In the proposed approach values of elementary characteristics describe probabilities
that corresponding feature of a language L will be sufficient to specify relevant require-
ments of any theoretically possible Software System. However, it is impossible to calcu-
late these probabilities directly, because it is impossible to have sufficient statistics about
requirements of all theoretically possible Software Systems or even of the entire current
population of Software Systems. So we propose to combine non-statistical sampling, do-
main engineering, and testing theory methods for this aim. The main idea is to develop a
library of representative examples for each category of Software Systems and to use these
examples as evaluation test examples to test the sufficiency of a specification language L



Methodology to Evaluate the Functionality of Specification Languages 329

for specification of requirements of any systems from the current population of Software
Systems. We propose to use a multi-stage sampling scheme, which provides that all the-
oretically possible Software Systems should be first divided into categories of systems
that meet principally different requirements, then from the population of really existing
systems a sample for each category of Software Systems should be chosen via purposive
judgment sampling. After this using domain analysis methods for each sample feature
model should be developed. Further these models should be used to develop a number
of representative examples (evaluation test examples) to test functionality, reliability, ef-
ficiency and usability of specification languages.

To make this approach practically usable, we must answer several significant ques-
tions:

• In which way to classify Software Systems, that is what taxonomy of software
Systems is better to choose for this aim?

• What information should contain an evaluation test example and how to choose
sample and collect data that is necessary for development of such examples? How
to evaluate relevance, reliability, and validity of the sample? What are the require-
ments for the collected data?

• How to analyse and interpret sampling results?
• In which way to describe and represent evaluation test examples in the library?
• How many evaluation test examples are needed to evaluate internal quality of a

specification language?
• What should be the structure of evaluation test example? How to construct the

suites of evaluation test examples? What kind of testing methodology to apply?
How to evaluate the test coverage?

• In which way to describe quality evaluation results and how to calculate probabili-
ties that corresponding features of a language L will be sufficient to specify relevant
requirements of any theoretically possible system that belongs to currently known
categories of Software Systems?

The remaining part of this section aims to answer these questions.

3.2. Taxonomy of Software Systems

Many different taxonomies of systems have been proposed in the literature. For example,
Information Systems were classified into strategic-level, management-level, knowledge-
level and operational-level systems (O’Brien, 2000). The kind of taxonomy depends on
its intended use. In our case the classification should be done in such a way that each
class of the systems should be characterised by some group of requirements specific for
this class only. Additionally, the subject of our considerations is rather software con-
stituent of Information Systems, because only properties of software should be specified
using a specification language L. Our aim is to evaluate functionality of the language L,
which is defined as the set of language features intended to be used for specification of
requirements (Caplinskas and Gasperovic, 2005b). Taxonomy relevant to our aims has
been proposed by Michael Jackson (Jackson, 1995; Jackson, 2001).



330 J. Gasperovic, A. Caplinskas

Jackson suggests that the main classification criteria of Software Systems should be
the kind of problems solvable by the system. He proposed problem-oriented methodology
– problem frames – that is purposed to characterise systems of different classes. Key con-
cepts of this methodology are world, phenomena, domains, and descriptions. Problems
are all located in the world. World phenomenology includes entities, events, values, states,
truths, and roles. A domain is a distinct part of the world or, in other words, a collection
of related phenomena. Phenomena and their relationships constitute domain properties.
Domains can share phenomena. The only way two domains can interact is by an inter-
face of shared phenomena (Jackson, 2000). System (machine in Jackson terms) is seen
as a separate domain. Generally, there are four kinds of domains: systems (machines in
Jackson terms), causal domains, lexical domains, and biddable domains. Essential prop-
erties of a causal domain are causal relationships. These relationships allow the system
to cause and constrain events and state changes in the domain. The significance of the
lexical domain is in the values and the truths and other relationships among them. The
relationships here are not causal but definitional. Biddable domains represent users and
operators, because their correct behaviour is described in instructions and they are bidden
to follow the instructions.

Properties of problem domain describe facts about real world that are entirely be-
yond the control or influence of the system that should be built (Bray, 2002). These are
knowledge that is required to solve the problem and, in parallel to requirements, should
be described using specification language. Problem frames model the problem domain as
a set of inter-related subdomains, where a subdomain is any part of the problem domain
that may be usefully singled out (Bray, 2002). The effects that the system should produce
also should be described using specification language. Jackson terms this description as
requirements. Problem frames model requirements, too. The system interacts with the
real world through the interface of shared phenomena. Typically, shared phenomena are
events and states. Problem frames are represented using special graphical notation. Such
representation is called Problem Diagram (Fig. 2).

Jackson identified seven elementary categories of the systems:

• Transformation systems – where the system must transform input data in a par-
ticular format into output data in a corresponding particular format.

• Control systems – where the system must control the behaviour of some part of
the real world.

• Commanded behaviour systems – where the system must control the behaviour
of some part of the real world in accordance with commands issued by an operator.

Fig. 2. Problem diagram.



Methodology to Evaluate the Functionality of Specification Languages 331

• Workpiece systems – where the system must perform directed operations upon
objects that exist only within the system.

• Connection systems – where the system must maintain correspondence between
subdomains that are not directly connected.

• Information display systems – where the system must maintain a continuous dis-
play of information about an autonomous dynamic real world.

• Information answer systems – where the system must handle requests for infor-
mation about the problem domain.

Whilst Jackson explicitly made no claim that he has identified all the elementary
frames, as far as it is known, to date, only one additional frame – the simulator frame –
has been proposed (Bray and Cox, 2003).

More complex systems can, generally, be described using composite frames com-
posed of two or more interacting, elementary frames. To construct a multi-frame the
system must be seen as composition of conceptual subsystems, each from which can be
described by an elementary frame. Some elementary frames may partly overlap, for ex-
ample, they may share some subdomains of problem domain. Of course, the problem
should be partitioned into elementary subproblems, too. On the other hand, it is possi-
ble to distinguish subtypes of the systems described by elementary frames. For this aim
elementary frames must be enriched using so called variants. A variant typically adds
additional subdomain to the problem domain and supplementary requirements. Jackson
proposes (Jackson, 2001) four kinds of variants: description, operator, connection, and
control variants. Description variant introduces a description lexical domain, a biddable
operator domain is included into operator variant, a connection variant provides a con-
nection domain between the system and the problem domain, with which it interfaces,
and a control variant introduces no new domain, but it changes the control characteristics
of interface phenomena.

3.3. Development of Evaluation Test Examples

In statistics sample is defined as a part or subset of some population taken to be represen-
tative of this population as a whole for some investigative purposes of research (Cochran,
1977). In the context of this paper the term population refers to all systems of the par-
ticular category of Software Systems. However, any real system has features of several
elementary categories of Software Systems. So, we suppose that our population consists
of the systems, in which features of the particular elementary category are mandatory. For
example, many real portals can be classified as content management systems or as “chat-
ting room” or even as workflow management systems. However, any portal first of all is
a content management system and we may consider all portals as a population, which
represents some subcategory of information answer systems.

The technique of selecting a suitable sample is called sampling. There are two basic
kinds of sampling: statistical (probability) and non-statistical (non-probability). Statisti-
cal sampling is also called random sampling. Non-statistical sampling is any sampling
technique, in which the probability of a population element being chosen is unknown.



332 J. Gasperovic, A. Caplinskas

There are two basic kinds of non-probability sampling: accidental sampling and purpo-
sive sampling (Cochran, 1977). Patton defines purposive sampling as a “sampling proce-
dure that selects information rich cases for in-depth study” (Patton, 1990). It means that
during purposive sampling the sample is always intentionally selected according to the
needs of the study. Judgment sampling is a kind of purposive sampling. It is a sampling
technique in which special expertise is used to choose representative population elements.
According to William M. Trochim

“The difference between non-probability and probability sampling is that non-
probability sampling does not involve random selection and probability sampling
does. Does that mean that non-probability samples aren’t representative of the
population? Not necessarily. But it does mean that non-probability samples can-
not depend upon the rationale of probability theory. At least with a probabilistic
sample, we know the odds or probability that we have represented the popula-
tion well. We are able to estimate confidence intervals for the statistic. With non-
probability samples, we may or may not represent the population well, and it will
often be hard for us to know how well we’ve done so. In general, researchers pre-
fer probabilistic or random sampling methods over non-probabilistic ones, and
consider them to be more accurate and rigorous” (Trochim, 2002).
So, evaluation of relative sampling risk is a hard problem for any non-statistical sam-

pling approach, including purposive judgment sampling. However, although the reliabil-
ity of the sample cannot be measured, there are other ways to ensure acceptable reliability.
It can be done requiring that the judgement about which element of population should be
included into sample should be made by an expert in the field and that this judgement
should be made using three basic criteria: representativeness of the element, value of
the element, and its relative sampling risk. According to the first criterion, the system is
representative enough to be chosen, if it conforms to the appropriate problem frame. It
means that the selected system must be information rich or, in other words, all the infor-
mation that is provided by the appropriate problem frame should be necessary in order
to develop this system. The main tool to support evaluation of the representativeness is
sampling questionnaire that should be developed for each category of the systems. Ac-
cording to the second criterion, the system is valuable enough to be chosen, if it still is
up-to-date; if it is popular enough among users, and if its intended application area is
important enough. According to the third criterion, the relative sampling risk to choose
the system is acceptable, if it is expected that the requirements of this system can be in
some way elicited anew more or less completely. Such expectations can be recognised
as justified in case, when the system requirements specification is available, or in case,
when it is possible to contact the system developers, or in case, when the system provides
at least exhaustive helps, demos, the system itself is available, and its non-functional re-
quirements can be derived from some formal or informal standards of its intended use and
its using modes. In addition, data quality requirements for collected questionnaire data
should be stated in such a way that the relative sampling risk would be minimised. Data
quality requirements define the required degree of data validity, reliability, consistency,
accuracy, completeness, and the level of detail. To be more precise, data validity require-
ments define the extent to which questionnaire data should conform real features of the



Methodology to Evaluate the Functionality of Specification Languages 333

system and its other properties, data reliability requirements define the degree to which
questionnaire data should be free of errors, data consistency requirements define terms
and classifications that should be used answering to questionnaire questions, data accu-
racy requirements define the degree to which the questionnaire data correctly describe
the system, and data completeness requirements define the degree to which question-
naire data should be exhaustive. Before starting data analysis, the expert should obtain
sufficient, competent, and relevant evidence that questionnaire data meet requirements.
However, even for statistical sampling there is no effective statistical model for bringing
together all these characteristics of quality into a single indicator. Additionally, except
for very simple cases, there is no general statistical model for determining whether one
particular set of quality characteristics provides higher overall quality than another. Thus,
the only practical way to check that questionnaire data meets quality requirements is to
apply manual data editing procedures. Another expert than the one who has collected data
should edit data. He should detect unanswered questions, inaccurate answers, unrecorded
answers and other violations of quality requirements.

Despite the difficulties in evaluation of the relative sampling risk, there are two rea-
sons to prefer purposive judgement sampling against statistical sampling. Firstly, it is
impossible to define sampling frame, because, in general case, the size of the popula-
tion is unknown. Of course, for any category of Software Systems the population is large
and finite, but it is impossible to say, even approximately, how large it is. Secondly, it is
practically impossible by random sampling to take into account the value of the chosen
system, which is very important for our purposes.

For analysis and interpretation of sampling results we propose to use feature-oriented
domain analysis methods. Feature-oriented domain analysis usually is defined as

“the process of identifying, collecting, organising, and representing the rele-
vant information in a domain, based upon the study of existing systems and their
development histories, knowledge captured from domain experts, underlying the-
ory, and emerging technology within a domain” (Kang et al., 1990).
The aim of domain analysis is to discover features of each system chosen for the

sample and to produce feature-oriented model, which describes features of a generic sys-
tem for examined category of Software Systems. Because almost all real systems are
described using several problem frames, this generic system reflects the properties of
several categories of Software Systems, too. However, only some features are mandatory
for all sampled systems and it is legitimately to suppose that the generic system may be
used as a basis to design evaluation test example for the category of Software Systems
that is characterised by these features. Of course, this test is not necessarily exhaustive
and additional tests likely will be necessary. On the other hand, this test may be used for
additional testing of categories, which are characterised by some optional features.

There are several feature-oriented domain analysis techniques. The essence of each
technique is increasing understanding of the analysed systems by capturing the informa-
tion in formal models. In our approach, the Feature-Oriented Domain Analysis (FODA)
technique (Kang et al., 1990) is used. The feature-oriented model, developed using this
technique, describes common and variable properties of all sampled systems and the de-
pendences between these properties.



334 J. Gasperovic, A. Caplinskas

Thus, we propose the following methodology for the development of evaluation test
examples for specification language:

1. Framing. Some category of Software Systems should be chosen and candidates
for sampling should be identified, using criteria of representativeness, worthiness,
and relative sampling risk.

2. Development of vocabulary. The different systems chosen for the sample may use
different terminology and even be conceptualised in different ways. Thus, some
conceptualisation should be chosen for the analysis, the basic terms used to model
this system should be defined, and their equivalents in sampled systems should be
listed. This vocabulary should describe concepts of chosen ontology and relations
between these concepts. It is developed in a step-by-step manner, when analysis of
the sampled systems progresses.

3. Development of questionnaire. The sampling questionnaire and data require-
ments should be developed. Both, questionnaire and data requirements, should be
formulated in terms of vocabulary. Outside expert should validate completeness
and correctness of the questionnaire and data requirements.

4. Data collection. Each sampled system should be analysed and all questions pro-
vided by the questionnaire should be answered. Decomposition should be used to
support analysis. Each analysed multi-frame system should be decomposed into
elementary frames and each elementary frame should be analysed autonomously.

5. Data edition. Inaccurate answers, unrecorded answers and other violations of qual-
ity requirements should be detected and corrected. Data edition should be done by
some outside expert.

6. Modelling. Feature model should be developed for each sampled system. Mod-
elling proceeds in bottom-up manner starting from the elementary frames.

7. Synthesis. Feature models of all sampled systems should be combined in order to
produce the feature model of the generic system that is meant to be representative
for the chosen category of Software Systems. The following rules should be applied
to define features of the generic system:

• Features, which are identical for all sampled systems, are defined as manda-
tory for the generic system.

• Features, which differ for different subsets of sampled systems, however, can
be generalised to one mandatory feature of the generic system, are defined as
alternative subfeatures of this feature.

• All other features of sampled systems are defined as optional for the generic
system.

8. Requirements elicitation. Functional and non-functional requirements for the
generic system should be derived from the feature model and documented (see Sub-
section 3.4). The requirements specification of the generic system should include
requirements for all features provided by the feature model. Optional and alterna-
tive requirements should be annotated correspondingly. The main tool to support
requirements derivation is refinement of features and parameterisation. Each fea-
ture should be refined into corresponding group of functional and non-functional



Methodology to Evaluate the Functionality of Specification Languages 335

Fig. 3. Feature table.

requirements. The instances of entities mentioned in requirements should be re-
placed by corresponding variables. Composition rules (Fig. 3) should be included
into the requirements specification.

We propose a tabular notation, feature tables (Fig. 3), which should be used to de-
scribe feature models. The main reason to use tabular representation is that it is hard
to understand and to analyse large feature models represented using the original FODA
graphical notation. In addition, the tabular notation allows collecting together all infor-
mation about the feature that in the original FODA approach is distributed among feature
diagrams, feature definitions and rationale of features.

Feature table (Fig. 3) represents FODA feature hierarchy. In this table feature’s ID is a
unique identifier of the feature, which reflects all previous levels of the feature hierarchy.
The column “Type” describes the type of the feature. Common properties are addressed
as mandatory or as alternative features and variable features are addressed as optional
features. Composition rules define the semantics existing between features. They cannot
be expressed in the feature diagram. There are two types of composition rules: mutual
dependency (Requires) and mutual exclusion (Mutually exclusive with). All optional and
alternative features that cannot be combined with the feature described in this row are
listed after “Mutually exclusive with:” statement. All optional and alternative features
that must be necessarily combined with this feature are listed after “Requires:” statement
(Kang et al., 1990).

Fig. 5 describes in the tabular form the fragment of the portal feature diagram pre-
sented in Fig. 4.

Fig. 4. Fragment of portal feature diagram.



336 J. Gasperovic, A. Caplinskas

Fig. 5. Fragment of portal feature table.



Methodology to Evaluate the Functionality of Specification Languages 337

3.4. Refinement of the Feature Model

To be used as an evaluation test example, the feature model should be represented in
the form of requirements specification. First of all requirements should be derived from
the feature model. We propose to use feature refinement technique for this aim. The fea-
ture refinement is a step-by-step process that involves taking the terminal features from
a feature model and expanding it into software requirements, which may be expanded
further into more detail requirements. In other words, it is an iterative process in which
more details are considered with each pass through the requirements specification. During
this process, the requirements specification consists of two parts: existing text (everything
written up to this point) and intended text (everything that is to be written in the following
iterations). The structure of the existing part depends on the chosen standard. We suppose
in this paper that requirements are structured on the basis of ISO 9126 standard (ISO/IEC
9126, 1991). It means that refined requirements may be added to several structural parts
of the specification at once.

The interface between the two parts is called backlog interface. It consists of all terms,
which have already been used in the existing part, but which have not been defined yet.
There are two kinds of definitions of a term: structural and functional. For example, if
the term Web site has been mentioned in already written requirements, this term should
be defined in a structural way, describing the required structure of this page, and in a
functional way, describing the operations, which should be provided by the system for
processing Web pages and for manipulation with them. Some terms require only struc-
tural definitions, some terms only functional definitions, and some should be defined in a
structural as well as a functional way. All definitions should be in strong accordance with
the sampling vocabulary, all should be expressed in the form of requirements, and all
may include some constraints (non-functional requirements). In terms of Jackson (Jack-
son, 1995; Jackson, 2001), structural definitions, constraints and even some functional
definitions are not real requirements, because they describe interfaces or domain proper-
ties, but not the effects that the system should produce. Similar as in the object-oriented
decomposition (Rajlich and. Silva, 1988), the terms in backlog interface address objects,
functions, flows and constraining properties (e.g., “interface should be convenient for the
user”). Thus, the backlog interface contains all functions, objects, events, roles, flows and
properties mentioned in the existing part of the requirements specification.

A refinement iteration step consists of the following activities:

• Select a cluster of related terms from the current backlog interface. Definition of
these terms will constitute a group of functional requirements and, possibly, related
groups of reliability, performance, usability or other non-functional requirements,
which will be added to the existing part of the requirements specification.

• Define all terms in the cluster and add derived in such a way requirements to the
corresponding part of the existing requirements specification.

• Update the backlog interface, i.e., delete all terms defined in the step, and add all
new terms, which have appeared in the step.

The refinement process proceeds until all terms are defined completely without con-
sidering any design decisions. Because the requirements specification describes a generic



338 J. Gasperovic, A. Caplinskas

system, apart mandatory requirements, it should include requirements for all optional
and alternative features provided by the feature model. The requirements also may be
prioritised. In this paper we suppose that the MoSCoW list (Clegg et al., 1994) is used to
annotate requirements priorities.

The requirements are presented in a tabular form (Fig. 6). The reason to use tables
is the necessity to store the example in the library of representative examples and to
use tool support to manipulate with examples. For each requirement the table contains
a unique identifier that reflects all previous levels of the requirements hierarchy, kind of
requirement (F for functional requirements, R for reliability requirements, U for usabil-
ity requirements, E for efficiency requirements, M for maintainability requirements, and
P for portability requirements), statement of the requirement, requirement type (M for
mandatory, O for optional, A for alternative), and requirement priority (M for must have
this, S for should have this, C for could have this, and W for won’t have now, but would
like to have in the future). Each requirement statement should be as precise and unam-
biguous as possible, in an ideal case expressible in the first-order language of predicate
calculus.

Fig. 7 describes example of portal requirements representation in tabular form. Be-
cause requirement statements describe a generic system, all concrete values should be re-
placed by parameters. For some technical reasons we also use acronyms of entity names.
In the Fig. 7, parameters are written in bold and acronyms in italic.

3.5. Evaluation Procedure

A quality evaluation test consists of a test identifier, test example, test execution con-
ditions, and expected results, which describe what the test allows to check. It is rec-
ommended that identifier include information about internal quality characteristic (e.g.,
functionality) under testing, the category of systems, which has been used to produce
the test example (e.g., IAS for information answer systems), and about the specification
language (e.g., UML) under testing. Test example is a representative set of functional
and non-functional requirements that should be specified using specification language L
under testing. Test execution conditions define what specification language is tested (e.g.,
Z, UML, Alloy, etc.), what tools should be used to produce specification, in which way
requirements should be represented using the language L (each requirement should be
modelled separately, groups of related requirements should be modelled, entire require-
ments specification should be represented as a coherent model, etc.), how requirements
should be modelled (only directly, usage of language flexibility mechanisms, except the

Fig. 6. Requirements table.



Methodology to Evaluate the Functionality of Specification Languages 339

Fig. 7. Portal requirements table.

extensibility mechanisms, is allowed, etc.). Expected results describe elementary char-
acteristics of internal quality under testing. The list of characteristics is derived from
requirements specification using the following rules:

• if some requirement addresses an ontological primitive (e.g., concept) defined by
sampling vocabulary (e.g., user account), then the characteristics “ontological suf-
ficiency” and “ontological adequacy” should be added to the list;

• if some requirement addresses an epistemological primitive (e.g., specialisation of
concept) defined by sampling questionnaire (e.g., “For every registered user an ac-
count should be provided.”), then the characteristics “epistemological sufficiency”
and “epistemological adequacy” should be added to the list;

• the characteristic “expressibility” should be always added to the list, because by
definitionany requirement is a statement about the system under the consideration
(e.g., “For every registered user an account should be provided.”);

• if some requirements are described not explicitly and should be derived from other
requirements (e.g., “Every registered user should inherit the access rights from
default user and the ability to change inherited rights should be provided.”), then
the characteristic “reasoning power” should be added to the list;

• if some requirement describes composition of different ontological categories (e.g.,
object state and task), defined by sampling vocabulary (e.g., “Registered user
should be able to unsubscribe to newsletter he has subscribed to before.”), then
the characteristic “composability” should be added to the list;



340 J. Gasperovic, A. Caplinskas

• if some requirement includes some qualified expression (e.g., “The ability to find
all news on the specified subject that were published during specified time interval
should be provided.”), then the characteristic “selective power” should be added to
the list;

• if requirements describe system at different levels of granularity (i.e., requirement
specification has hierarchical structure and requirements are refined step-by-step),
then the characteristic “generalitive power” should be added to the list;

• if some requirement addresses a domain-specific ontological primitive defined by
sampling vocabulary that cannot be mapped directly to the type system of the
specification language under testing ( e.g., “All users should have unique e-mail
addresses.”), then the characteristics “extensibility” and “adaptability” should be
added to the list;

• if some requirement addresses a domain-independent ontological primitive defined
by sampling vocabulary defined by sampling questionnaire (e.g., class), then the
characteristic “universality” should be added to the list.

Fig. 8 presents an example of the expected results of the test T-F-IAS-UML-01, which
is developed to evaluate the ability of UML to describe information answer systems.
Such tests may be used to evaluate the internal quality of a specification language for the
current population of a particular category of Software Systems. To evaluate the internal
quality for the whole current population of Software Systems, an appropriate test suite
should be designed.

A test suite is a collection of tests developed to test some top-level group of the char-
acteristics of internal quality (functionality, reliability, efficiency, and usability) for the

Fig. 8. An example of expected results of the test.



Methodology to Evaluate the Functionality of Specification Languages 341

Fig. 9. An example of the coverage of elementary characteristics by the suite of evaluation tests.

particular specification language using the same testing infrastructure. It consists of eval-
uation tests from which each is developed to test the different category of systems. In
order to minimise prior arrangement efforts, the suite should be developed for particular
collection of tools required supporting the testing (i.e., for a particular testing infrastruc-
ture).

It is recommended that test suite identifier include information about internal quality
characteristic (e.g., functionality) under testing, about the specification language (e.g.,
UML) under testing, and about for testing used tool (e.g., MagicDraw UML).

Fig. 9 presents an example of the coverage of elementary characteristics of the
functionality of a specification language by the suite of evaluation tests TS-F-UML-
MagicDraw, which is designed to test the functionality of UML using the CASE tool
MagicDrawTM1. In this example the numbers of requirements used to test the charac-
teristics of functionality is calculated summarising requirements used for this aim in the
tests of the suite. If the suite does not cover some characteristics, the sampling frames for
each category of systems should be carefully examined. If some frames have been defined
incorrectly, they should be extended to include additional systems. In the case, when all
frames have been defined correctly, the uncovered characteristics should be eliminated
from the further evaluation process, because they are insignificant for the current pop-
ulation of Software Systems. Although, at least in the ideal case, tools used to produce
specifications to test some specification language cannot affect the evaluation results, it is
reasonable to point out the tool for the suite explicitly, because appropriate testing infras-
tructure should be prepared. The test suites developed for a particular tool should cover
all four top-level characteristics of the evaluated language and all should be included in
the evaluation plan of this language. To avoid measurement errors, which can occur as
a result of using a particular tool, it is recommended that the evaluation plan provide at
least three groups of suites developed for different tools.

Apart the set of the evaluation test suites, the evaluation plan should provide time and
financial constraints, evaluators and other necessary information. The coverage of tests
by quality evaluation test suites for characteristics of internal quality should be described

1MagicDraw is the trademark of No Magic, Inc.



342 J. Gasperovic, A. Caplinskas

Fig. 10. An example of the coverage of tests by quality evaluation test suites.

by diagram (Fig. 10) that is produced summarising expected results of all evaluation test
suites provided by the plan.

3.6. Interpretation of Evaluation Results

Each elementary characteristic of functionality characterises corresponding feature of a
language. In our approach, the values of these characteristics describe probabilities that
the corresponding features allow to specify any theoretically possible system that belongs
to the current population of Software Systems. Thus, in order to define these probabili-
ties, the specification language evaluation results should be interpreted in an appropriate
way. Let us denote the feature of the language L described by characteristic ξ by L(ξ),
the probability that L(ξ) will become necessary specifying the current population of Soft-
ware Systems by q(ξ), and the probability that L(ξ) will be sufficient for this aim by p(ξ).
Then the value of the characteristic ξ is calculated as a production of probabilities q(ξ)
and p(ξ).

For the characteristics of reliability, efficiency and usability q(ξ) = 1. For the charac-
teristics of functionality the value of q(ξ) should be defined in two steps: firstly, the value
of q(ξ) should be defined for each test and after that the value of q(ξ) should be calculated
for the whole suite taking into account all evaluation tests included in this suite.



Methodology to Evaluate the Functionality of Specification Languages 343

The value of q(ξ) for a particular test should be defined taking into account test cov-
erage and the types of requirements used to test the characteristic ξ. Any characteristic ξ

is tested using a group Gξ of N(ξ) requirements. If for some evaluation test Gξ is empty,
then q(ξ) = 0, because it means that ξ was not required to specify any requirement. In
other cases the type of requirement used to test ξ should be examined:

• If at least one mandatory requirement or at least one group of alternative require-
ments belongs to the group Gξ , then q(ξ) = 1.

• If the group Gξ consists only of optional requirements, then, taking into account
the whole feature model, probability qi(ξ) for each requirement ri belonging to the
Gξ should be calculated, and after this q(ξ) is defined as follows:

q(ξ) = 1 −
nξ∏

i=1

(
1 − qi(ξ)

)
. (1)

In order to define probability qi(ξ) for the ri, it is necessary to start from the initial
node of the feature model and proceed down the feature model up to the terminal feature
that generates ri. If this path is unique, then in each optional node the probability of this
node should be calculated as the ratio of the number of systems, which provide corre-
sponding optional feature, to the total number of sampled systems, and the probability
for the ri should be calculated multiplying all intermediate probabilities. If some inter-
mediate node can be reached via several paths, then the probabilities should be calculated
for each path (including the node itself), and the probability for this node should be cal-
culated in the same way as in formula (1). After this, it is necessary to take this node
as the initial node and to proceed down further. So, in this way the probabilities for all
terminal features are calculated. Requirements generated by these features inherit their
probabilities.

To calculate the value of q(ξ) for the whole suite taking into account all evaluation
tests included in this suite the formula analogous to the formula (1) should be used once
again.

The probability p(ξ) is defined examining testing results. It is defined as a ratio of the
number N+(ξ) of requirements, which belong to the group Gξ and has been successfully
expressed in the language L, to the total number of requirements N(ξ) in this group, i.e.:

p(ξ) = N+(ξ)/N(ξ). (2)

3.7. Experimental Results

The proposed methodology has been approved evaluating functional characteristics of
internal quality for Z (Spivey, 1992; Woodcock, 1996) and UML 2.0 (OMG, 2005) lan-
guages. The Web portal has been chosen as a representative example for this aim, because
it is a multi-frame system that can be described using two different information answer
frames (for content management and for search) and two different connection frames
(for chatting and workflow management). As a testing infrastructure MagicDraw UML



344 J. Gasperovic, A. Caplinskas

11.5 (No Magic, 2006) and Z/EVES 2.1 (Saaltink, 1999) have been used. The experi-
ment demonstrates that, although the ontological and epistemological adequacies of the
Z language are very low, it has high enough semantic sufficiency. The flexibility of the
Z language is very low, but it is partly compensated by its relatively high completeness.
On the other hand, although UML 2.0 has high enough ontological and epistemological
adequacies its expressive adequacy is not very high, because of the relatively low selec-
tive power. The composability of UML 2.0 and its reasoning power also are lower than
of the Z language. UML 2.0 has higher extensibility than of the Z language. On the other
hand, Z language is more expressible and allows expressing more classes of formulas
than UML 2.0.

3.8. Conclusions

The main conclusion of the paper is that there exists no simple way to evaluate function-
ality characteristics of internal quality of specification languages. It is a hard and compli-
cated task, which requires relatively high time and labour overheads. Many and long-time
efforts are needed to do sampling, develop test suites, test language and interpret obtained
results. Besides, some difficulties of theoretical character should be overcome. The the-
ory of problem frames is relatively new and still not sufficiently elaborated. There are
no any well-grounded methods for framing and sampling particular category of systems.
Too little is known how to eliminate the impact of human factor to results of evalua-
tion procedure. On the other hand, the carried out experiment demonstrates that even
evaluation of particular aspects of a particular specification language allows preparing
of valuable recommendations how to use the language in more appropriate way as well
as how to improve it. In addition, the systematic evaluation of internal quality not only
allows identification of shortcomings and strengths of the current specification languages
and evaluation of their quality in use, but also clarifies deep internal structure of each
evaluated language as well as of specification languages in general and provides valuable
experience that could be used during construction of new specification languages. We be-
lieve that a long-time research program for evaluation of specification languages quality
is purposeful and that such program will significantly contribute to the entire theory of
specification, and even programming languages.

References

Bray, I.K. (2002). An Introduction to Requirements Engineering. Addison-Wesley.
Bray, I.K., and K. Cox (2003). The Simulator; another, elementary problem frame? In Pre-Proceedings of the

9th International Workshop on Requirements Engineering – Foundation For Software Quality, In Conjunc-
tion with CAiSE’03. Klagenfurt/Velden, Austria. pp. 101–104. Available at: http://crinfo.univ-
paris1.fr/REFSQ/03/papers/REFSQ03-PreProceedings.pdf

Caplinskas, A., and J. Gasperovic (2005a). An approach to evaluate quality in use of IS specification language.
In J. Barzdins and A. Caplinskas (Eds.), Frontiers in Artificial Intelligence and Applications, vol. 118. IOS
Press, Amsterdam. pp. 152–166.

Caplinskas, A., and J. Gasperovic (2005b). Functionality of information systems specification language: con-
cept, evaluation methodology, and evaluation problems. In O. Vasilecas et al. (Eds.), Information Systems
Development. Advances in Theory, Practice and Education. Kluwer Plenum Publishers. pp. 341–351.



Methodology to Evaluate the Functionality of Specification Languages 345

Caplinskas, A., and J. Gasperovic (2005c). Technique to aggregate the characteristics of in-
ternal quality of an IS specification language. Informatica, 16(4), 519–540. Available at:
http://www.vtex.lt/Informatica/Contents.htm

Clegg, D., and B. Richard (1994). Case Method Fast-Track. A RAD Approach. Addison Wesley.
Cochran, G. (1977). Sampling Techniques. 3rd ed. John Wiley and Sons.
ISO/IEC 14598-1:1999 (1999). Information Technology – Software Product Evaluation – Part 1: General

Overview. First edition, 1999-04-15.
ISO/IEC 9126 (1991). Information Technology – Software Product Evaluation – Quality Characteristics and

Guidelines for their Use. First edition, 1991-12-15, reference number ISO/IEC 9126: 1991(E).
Jackson, D. (1999). Comparison of Object Modelling Notations: Alloy, UML and Z. MIT Lab for Computer

Science. Available at: http://geyer.lcs.mit.edu/∼dnj/pubs/alloy∼comparison.pdf
Jackson, M. (1995). Software Requirements and Specifications. Addison-Wesley.
Jackson, M. (2001). Problem Frames. Addison-Wesley.
Jackson, M. (2000). Problem analysis and structure. In Proceedings of NATO Summer School, Marktoberdorf.
Kang, K., S. Cohen, J. Hess, W. Novak and S. Peterson (1990). Feature-Oriented Domain Analysis (FODA)

Feasibility Study. Technical Report. CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

Krogstie, J. (2003). Evaluating UML using a generic quality framework. In: L. Favre (Ed.), UML and the
Unified Process. Idea Group Publishing, Hershey, PA, USA. pp. 1–22.

Lindland, O.I., G. Sindre and A. Sølvberg (1994). Understanding quality in conceptual modelling. IEEE Soft-
ware, 11(2), 42–49.

Milton, S., E. Kazmierczak and C. Keen (1998). Comparing data modelling frameworks using Chisholm’s on-
tology. In J.A. Bartoli (Ed.), Proceedings of the 4th European Conference on Information Systems, ECIS’98.
Aix-en-Provence, France, Euro-Arab Management School. pp. 260–272.

Mylopoulos, J. (1998). Characterizing information modeling techniques. In P. Bernus, K. Mertins, G. Schmidt
(Eds.), Handbook on Architectures of Information Systems. Springer, Berlin. pp. 17–57.

No Magic, Inc. (2006). MagicDrawTMUML 11.5 User manual. Available at:
http://www.magicdraw.com/main.php?ts=navig&NMSESSID=500a881a8816599a882
24a0248272c6a&cmd_show=1&menu=download_manual&NMSESSID=500a881a8816599a
88224a0248272c6a

O’Brien, J.A. (2000). Introduction to Information Systems: Essentials for the Internetworked Enterprise, 9th
ed. Irwin/McGraw-Hill, New York.

OMG (2005). Unified Modeling Language: Superstructure Version 2.0. Document formal/05-07-04, Object
Management Group. Avalaible at: www.omg.org/docs/formal/05-07-04.pdf

Opdahl, AL. (1997). Applying semantic quality criteria to multi-perspective problem analysis methods. In
E. Dubois, AL. Opdahl AL, K. Pohl (Eds.), Proceedings of the Third International Workshop on Require-
ments Engineering: Foundations of Software Quality – REFSQ’97. Barcelona, Catalonia, Spain. pp. 49–66.

Patton, M.Q. (1990). Qualitative Evaluation and Research Methods, 2nd ed. Sage Publications, Newbury Park,
CA.

Rajlich, V., and J. Silva (1988). Two object oriented decomposition methods. In Proceedings of the 5th Wash-
ington Ada Symposium on Ada. Tyson’s Corner, Virginia, USA. pp. 171–176.

Saaltink, M. (1999). The Z/EVES 2.0 User’s Guide. TR-99-5493-06a. ORA Canada. Available
at: http://nexp.cs.pdx.edu/bart/omse/omse522-winter2002/nfp/sw/z-eves/99-
5493-06a-users.pdf

Spivey, J.M. (1992). The Z Specification Language, 2nd. ed. Prentice-Hall.
Trochim, W.M.K. (2002). Research Methods Knowledge Base. Cornell University. Available at:

http://www.socialresearchmethods.net/kb/
Wand, Y., and R. Weber (1989). An ontological evaluation of systems analysis and design methods. In

ED. Falkenberg and P. Lindgreen (Eds.), Information Systems Concepts: An In-Depth Analysis. IOS Press,
North-Holland, Amsterdam. pp. 79–107.

Wand, Y., and R. Weber (1995). On the deep structure of information systems. Information Systems Journal, 5,
203–223.

Woodcock, J., and J. Davies (1996). Using Z: Specification, Refinement, and Proof. Prentice-Hall.



346 J. Gasperovic, A. Caplinskas

J. Gasperovič is a doctoral student at the Institute of Mathematics and Informatics. Her
research area encompasses formal, semi-formal and lightweight formal specification lan-
guages and their application in software engineering and information systems enginee-
ring.

A. Čaplinskas is a principal researcher at the Institute of Mathematics and Informa-
tics. The area of his scientific interest includes software engineering, information system
engineering, legislative engineering, and knowledge-based systems.

Specifikavimo kalb ↪u funkcionalumo vertinimo metodika

Jelena GASPEROVIČ, Albertas ČAPLINSKAS

Straipsnyje nagrinėjamas specifikavimo kalb ↪u funkcionalumo vertinimo uždavinys. Apžvelgtos pa-
grindinės specifikavimo kalb ↪u kokybės vertinimo problemos, pabrėžiant specifikavimo kalb ↪u ele-
mentari ↪uj ↪u kokybės charakteristik ↪u vertinimo problem ↪a. Šiai problemai spr ↪esti pasiūlyta ir detaliai
aprašyta specifikavimo kalb ↪u funkcionalumo charakteristik ↪u vertinimo metodika. Trumpai aptarti
rezultatai, gauti panaudojus pasiūlyt ↪aj ↪a metodik ↪a Z ir UML kalb ↪u funkcionalumui vertinti.


