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Vilnius Gediminas Technical University
Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
e-mail: rc@fm.vtu.lt

Received: January 2006

Abstract. Three parallel algorithms for solving the 3D problem with nonlocal boundary condition
are considered. The forward and backward Euler finite-difference schemes, and LOD scheme are
typical representatives of three general classes of parallel algorithms used to solve multidimen-
sional parabolic initial-boundary value problems. All algorithms are modified to take into account
additional nonlocal boundary condition. The algorithms are implemented using the parallel array
object tool ParSol, then a parallel algorithm follows semi-automatically from the serial one. Re-
sults of computational experiments are presented and the accuracy and efficiency of the presented
parallel algorithms are tested.
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1. Problem Formulation

Many physical and technological processes are described by mathematical models con-
sisting of elliptic or parabolic problems with non-local boundary conditions. Parabolic
initial-boundary value problems in one dimension were considered firstly by Cannon
(1963) and Kamynin (1964), a generalization of linear problems for two-phase Stefan
problem is studied in Cannon and van der Hoek (1982) (see also papers of Ionkin (1977),
Ionkin (1980), Makarov and Kulyev (1985)). A review of such applications and mathe-
matical results for analysis of one-dimensional problems is presented in the recent survey
paper of Dehghan (2005).

Numerical algorithms for solving linear and nonlinear parabolic problems with non-
local boundary conditions are investigated in Čiegis (1991, 2004), Čiegis et al. (2001,
2002), Ekolin (1991), Fairweather and Lopez–Marcos (1996), see also references given
in these papers.

In this paper we consider parallel numerical algorithms for solving 3D parabolic
problem with the additional integral boundary condition. Let QT = Ω × [0, T ], Ω =
(0; 1)× (0; 1)× (0; 1) be a domain with the boundary ∂Ω. This boundary is split into two
parts ∂Ω = ∂Ω1 ∪ ∂Ω2:

∂Ω2 =
{
X: (x1, x2, 0), 0 � xj � 1, j = 1, 2

}
.
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In QT we consider a parabolic equation

∂u

∂t
=

3∑
α=1

∂

∂xα

(
kα(X, t)

∂u

∂xα

)
− q(X, t)u + f(X, t), (1)

subject to boundary conditions:

u(X, t) = µ1(X, t), X ∈ ∂Ω1 × (0, T ],

u(X, t) = µ0(t)µ2(X), X ∈ ∂Ω2 × (0, T ],

initial condition:

u(x1, x2, x3, 0) = u0(x1, x2, x3), X ∈ Ω ∪ ∂Ω,

and the additional nonlocal condition:

∫ 1

0

∫ 1

0

∫ 1

0

ρ(X, t)u(X, t) dx3 dx2 dx1 = M(t). (2)

Here kα, q, d, ρ, f, u0, M, µj , j = 1, 2 are given continuous functions, and the functions
u(X, t), µ0(t) are unknown. Thus the initial-boundary problem (1)–(2) is over-specified,
and the integral condition is used to identify the boundary condition function µ0(t), i.e.,
we solve an inverse problem. When the information about the boundary value is obtained,
we can use any efficient method to solve a standard three-dimensional parabolic problem.

The existence and uniqueness of the solution of 2D problem is studied by Cannon,
Lin and Matheson (1993). Noye and Dehghan (1999) have investigated the forward Euler
method and a modification of Locally One Dimensional (LOD) scheme. At each splitting
step of the LOD scheme one-dimensional problems were approximated by the forward
Euler method, thus the obtained method was only conditionally stable. A similar LOD
method was used to solve 3D problem in Dehghan (2002). We note that in all these
papers integrals were approximated by high order numerical integration methods.

The analysis of new finite difference schemes is presented in Čiegis (2005a, 2005b).
It is proved that the integrals can be approximated by the trapezoidal rule, if the initial
condition is approximated in consistent way. The accuracy of the backward Euler scheme
is investigated and an algorithm for implementation of this scheme is presented. Sufficient
conditions for the existence of a discrete solution are given. The implicit LOD scheme is
also proposed in Čiegis (2005a, 2005b) and efficient implementation algorithm is given.

With rapid development of high-performance computers with massive parallel pro-
cessors, parallel numerical algorithms play an important role in large-scale scientific and
engineering computations. Three groups of methods are widely used for solving multidi-
mensional parabolic initial-boundary value problems.

1. The explicit algorithms are well suited for developing efficient data-parallel algo-
rithms. However explicit algorithms are only conditionally stable and the stability
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condition τ � Ch2 should be imposed on the time-step size, thus integration of the
problem is done with a very small time-step.

2. The fully implicit approximations are unconditionally stable, but they require solv-
ing systems of linear equations with very large sparse matrix. Such systems are
solved by iterative methods and the efficiency of parallel algorithms depend on the
efficiency of parallel versions of these iterative algorithms.

3. In splitting methods the multidimensional problem is reduced to a sequence of
one dimensional implicit difference systems with three-diagonal matrix. Special
parallel versions of the serial factorization algorithm are used to implement LOD
algorithms on multiprocessor computers. A reduction of communication costs is
the second main problem in developing efficient parallel splitting algorithms for
parallel computers with distributed memory.

In this paper we consider three parallel algorithms for solving three dimensional prob-
lem (1)–(2) with the nonlocal boundary condition. The rest of the paper is organized as
follows. In Section 2, we formulate the forward Euler finite-difference scheme. We inves-
tigate the efficiency of the developed parallel algorithm and present results of the scala-
bility analysis. The parallel forward Euler algorithm is implemented by using the parallel
array object tool ParSol. Then a parallel algorithm follows semi-automatically from the
serial one. Results of computational experiments are presented to test the accuracy and
the efficiency of the parallel algorithm. In Section 3 the parallel backward Euler finite-
difference scheme is proposed. The obtained systems of linear equations are solved by the
preconditioned Conjugate Gradient method. ParSol tool is used to implement a parallel
algorithm. The complexity analysis of the scalability analysis is presented. In Section 4
the parallel LOD scheme is proposed. The efficiency of the algorithm is investigated and
results of numerical experiments are discussed.

2. The Forward Euler Method

In this section we investigate the efficiency of the parallel forward Euler method. In QT

we define a uniform grid Qhτ = ωh × ωτ :

ωh =
{
(x1i, x2j , x3k): xα,i = ih, h =

1
J

, 0 < i < J
}
,

ωτ =
{
tn: tn = nτ, n = 1, 2, . . . , N, Nτ = T

}
.

Let γh be a boundary of ωh, we split it into two parts γh = γ1h ∪ γ2h. Let Un
ijk =

U(x1i, x2j , x3k, tn) be a discrete approximation to the exact solution of differential prob-
lem (1)–(2).
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2.1. Formulation of the Algorithm

The forward Euler approximation of equation (1) and boundary conditions is defined by




Un+1 − Un

τ =
3∑

α=1
AαUn + fn, X ∈ ωh,

Un+1 = µ1(X, tn+1), X ∈ γ1h,

Un+1 = µn+1
0 µ2(X, tn+1), X ∈ γ2h.

(3)

Here we use the following difference operators:

AαU =
(
aαUx̄α

)
xα

− 1
3
q(X, tn)U, α = 1, 2, 3,

an
α,ijk = kα

(
x1i −

h

2
δ1α, x2j −

h

2
δ2α, x3k − h

2
δ3α

)
,

Ux1 =
Ui+1,jk − Uijk

h
, Ux̄2 =

Uijk − Ui,j−1,k

h
.

Integral condition (2) is approximated by the trapezoidal rule

ShUn+1 = M(tn+1), (4)

where

ShV =
J∑

i,j,k=0

cicjckρn+1
ijk Vijkh3,

c0 =
1
2
, cl = 1, l = 1, . . . , J − 1, cJ =

1
2
.

Let us define functions Ũ , B:

Ũijk =

{
Uijk, 0 < k � J,

0, k = 0,
Bijk =

{
0, 0 < k � J,

µ2(x1i, x2j), k = 0.

Then we find µn+1
0 by using the discrete nonlocal condition (4):

µn+1
0 =

M(tn+1) − ShŨn+1

ShB
. (5)

The unique solution of discrete problem (3)–(5) exists under the condition

ShB �= 0.
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An important part of the formulation of the discrete method deals with the approxi-
mation of the initial condition. We propose to change the simplest approximation of the
initial condition

U0 = u0(X), X ∈ ωh ∪ γh

by the following one, which exactly satisfies the discrete nonlocal condition:

U0 =
M(t0)u0(X)

Shu0
, X ∈ ωh ∪ γh. (6)

Then the truncation error of the discrete initial condition is given by

|U0 − u0(X)| = O(h2),

but this error is not propagated in time due to stability of the forward Euler method
with respect to initial condition. It is important to note that this new discretization of the
initial condition is mass conservative. Therefore the accuracy of the approximation of the
boundary condition µn is increased to the second order.

It is easy to prove that the forward Euler scheme is stable only if τ � Ch2, thus
integration is done with very small time step for small h. Results of computational exper-
iments are presented in Čiegis (2005a, 2005b).

2.2. Parallel Algorithm

The power of modern personal computers is increasing constantly, but not enough to ful-
fill all scientific and engineering computational demands. This situation is typical, when
we solve three dimensional problems. In such cases, parallel computing can be the best
solution.

The serial forward Euler algorithm can be modified to the parallel algorithm by using
data parallel decomposition (see Kumar et al. (1994)). Let us assume that we have p

processors, which are connected by three dimensional mesh, i.e., p = p1 × p2 × p3.
The grid ωh (a data set) is decomposed into a number of 3D subgrids by using a block
distribution scheme. Then each subgrid ωhp has

(J + 1)
p1

× (J + 1)
p2

× (J + 1)
p3

=
(J + 1)3

p

computational points of the grid ωh and it is assigned to one processor. All processors
simultaneously perform the same code but with different data sets. Each processor is
responsible for all computations of the local part of vector U .

Since the sub-domains are connected at their boundaries, processors dealing with
neighbouring sub-domains have to exchange boundary information with each other at
every time-step. More exactly, the update of vector Un+1 at grid points which lie beside
cutting planes (i.e., boundary nodes of the local part of the vector U ) needs a special
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attention, since information from the neighbouring processors is required to compute
new values of Un+1. Note, that these nodes are inner nodes in the global grid ωh. Such
information is obtained by exchanging data with neighbour processors in the specified
topology of processors and the amount of data depends also on the grid stencil, which is
used to discretize the PDE model. A star-stencil of seven points is used in (3), therefore
local subgrids are enlarged by two ghost points in each dimension of the subgrid.

The communication step is implemented before updating vector Un+1 and only
neighbouring processors need to communicate with each other. Data exchange steps are
synchronization points in the code and they divide the computation into phases. When all
required data is saved in the local memory, the new values of Un+1 are computed locally
and in parallel on each processor.

The computation of both integrals Sh and ShB requires global communication of all
processors: first processors compute discrete sums of local parts of vectors and then these
local results are summed up. Different algorithms can be used to implement the global
reduction step. We note that in MPI there exists a special function MPI_ALLREDUCE,
which computes a sum and distributes it to all processors. It is assumed that MPI library
is optimized for each type of super-computer, taking into account specific details of the
computer network.

Thus the parallel implementation of the forward Euler method is identical to its se-
rial implementation. We will show that implementation of the parallel LOD algorithm is
different from the serial one.

Parallel numerical objects. The major difficulty in using parallel computers deals with
the fact, that writing a parallel program (or parallelizing existing sequential codes), re-
quires the knowledge of special methods and tools, which is not trivial to be mastered.
Special tools are developed to simplify the parallelization of algorithms, e.g. Diffpack
tool (see Langtangen and Tveito (2003)) and PETSc toolkit (see Balay et al. (2005)). We
have developed a tool ParSol of parallel numerical arrays, which can be used for semi-
automatic parallelization of data parallel algorithms, that are implemented in C++. Such
algorithms are usually constructed for solving PDEs and systems of PDEs on logically
regular rectangular grids. ParSol is a library of parallel array objects, a functionality of
which is similar to Distributed Arrays in PETSc. We list the following main features of
ParSol (see Čiegis et al. (2005)):

a) created for C++ programming language,
b) based on HPF ideology,
c) the library heavily uses such C++ features as OOP and template,
d) MPI 1.1 standard is used to implement parallelization,
e) ParSol is an open source library.
Comparing to native C++ arrays, ParSol arrays have a number of advantages for pro-

gramming mathematical algorithms, such as virtual indexing, built-in array operations,
automated management of dynamically allocated memory, periodic boundary conditions.
ParSol arrays simulate numerical objects of linear algebra and many useful basic vector
operations are supported within the ParSol library, e.g. parallel computation of various
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norms, the inner product of two vectors, scaling of vectors. They are implemented as
methods of parallel arrays.

Performance analysis. We will estimate the complexity of the forward Euler algorithm
by counting basic operations (updates of Un+1

ijk at one grid point by formula (3)). It fol-
lows from the forward Euler algorithm that at each time step we should compute:

1. New values of vector Un+1, which are updated by formula (3). The complexity of
this step is J3.

2. One three-dimensional discrete approximation of integral (4). The complexity of
this step is cJ3.

3. One two-dimensional integral Sh(B), and the updated boundary condition with a
known function µn+1

0 . The complexity of this step is bJ2.
As a result, the total complexity of the serial forward Euler algorithm can be expressed
as

W = (1 + c)J3 + bJ2 = (1 + c)J3 + O(J2). (7)

The complexity of one parallel update of a local part of vector Un+1 is given by

T1,p(J) =
J3

p
.

At the beginning of new time step each processor exchanges with its six neighbours
vector elements corresponding to boundary points of the local subdomain. A total amount
of data, exchanged between two processors, is equal to J2/p2/3 elements. This can be
done in

T2,p(J) = α + β
J2

p2/3

time, by using the odd–even data exchange algorithm. Here α is the message startup time
and β is the time required to send one element of data.

Parallel computation of integrals Sh(Ũn+1), Sh(B) requires global communication
among all processors during summation of local parts of integrals. The complexity of
such reduce operation depends strongly on the architecture of the parallel computer (see
Hockney (1991)). We will estimate the time required to reduce local values of integrals
between p processors by

B(p) = R(p)(αb + βb), (8)

where R(p) depends on the algorithm used to implement the MPI_ALLREDUCE ope-
ration and the architecture of the computer. For the simplest reduce algorithm, when
every processor sends its result to the master processor, who finishes computation of the
integral and broadcasts the global sum to all processors, R(p) = p. Thus the complexity
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of one parallel computation of both integrals and update of the vector at boundary points
z = 0 is given by

T3,p(J) = 2R(p)(αb + βb) + c
J3

p
+ b

J2

p2/3
.

Summing up all obtained estimates we compute the complexity of the parallel forward
Euler algorithm

Tp(J) = (1 + c)
J3

p
+ 6

(
α +

(
β +

b

6

) J2

p2/3

)
+ 2R(p)(αb + βb). (9)

According to the definition of the isoefficiency function, we must find the rate at which
the problem size W needs to grow with p for a fixed efficiency of the algorithm. Let
H(p, W ) = pTp−W be the total overhead of a parallel algorithm. Then the isoefficiency
function W = g(p, E) is defined by the implicit equation (see Kumar at al. (1994)):

W =
E

1 − E
H(p, W ). (10)

For simplicity of notation we take E = 0.5.
The total overhead of the parallel forward Euler algorithm is given by

H(p, W ) = 6αp +
(
(6β + b)p1/3 − b

)
J2 + 2pR(p)(αb + βb)

= 6αp +
(6β + b)p1/3 − b

(1 + c)2/3
W 2/3 + 2pR(p)(αb + βb).

Since it is impossible to get the isoefficiency function in a closed form as a function of
p, we will analyze the influence of each individual term. The component that requires the
problem size to grow at the fastest rate determines the overall asymptotic isoefficiency
function. After simple computations we get the following three isoefficiency functions

W = O(p), W = O(p), W = O
(
pR(p)

)
.

Thus the the overall asymptotic isoefficiency function is defined by the overheads of
the global reduction operation. Let us assume that processors are connected by three-
dimensional mesh p1/3 × p1/3 × p1/3. Then the global reduce and broadcast operations
can be implemented with R(p) = p1/3. Thus the problem size W has to grow as O(p4/3)
to maintain a certain efficiency. For a hypercube mesh we have smaller costs of the global
reduction operation R(p) = log p, then isoefficiency function is close to linear W =
O(p log p).

We note, that in the case of a moderate number of processors p = O(J), the costs
of global reduction operation can be ignored and the isoefficiency function W = O(p)
linearly depends on p.
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2.3. Results of Computational Experiments

In this section we present some results of computational experiments. Computations were
performed on IBM SP5 computer at CINECA, Bologna.

We have solved problem (1)–(2) with the following coefficients and the exact solution:

kα(X, t) = 1 + (x2
1 + x2

2 + x2
3)t, q(X, t) = (x1 + x2 + x3)t2,

M(t) = et(A3 + B3), A = 2(e0.5 − 1), B = 2(2 − e0.5),

ρ(X, t) = 1 + x1x2x3, u(X, t) = exp
(
0.5(x1 + x2 + x3) + t

)
.

In order to scale the computation time for different space steps h = 1/(J − 1), a solution
was computed in time intervals [0, T (J)], where

T (40) = 0.2, T (80) = 0.02, T (120) = 0.004, T (160) = 0.001.

In Table 1 we present the values of experimental speedup Sp(J) = T1(J)
Tp(J) and efficiency

Ep(J) = Sp(J)
p coefficients for scaled sizes of the discrete problem.

It follows from results, presented in Table 1, that the parallel forward Euler algorithm
scales well, and experimental results confirm the theoretical prediction that isoefficiency
function of the parallel algorithm is close to linear one. We note that a parallel imple-
mentation of the forward Euler algorithm was obtained by using the parallelization tool
ParSol.

Table 1

The speedup and efficiency coefficients for the forward Euler method. CPU time of the sequential algorithm (in
s): T1(40) = 76.9, T1(80) = 173.4, T1(120) = 258, T1(160) = 274.9

p Sp,40 Ep,40 Sp,80 Ep,80 Sp,120 Ep,120 Sp,160 Ep,160

2 1.954 0.977 1.979 0.989 1.985 0.993 2.000 1.000

4 3.873 0.968 3.944 0.986 3.944 0.986 4.013 1.003

8 7.135 0.892 7.744 0.968 7.875 0.984 7.922 0.990

16 12.76 0.797 15.07 0.942 15.53 0.971 15.76 0.985

32 22.34 0.698 29.04 0.907 30.51 0.953 31.10 0.972
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3. The Backward Euler Method

The backward Euler approximation of (1)–(2) is defined by




Un+1−Un

τ =
3∑

α=1
AαUn+1 + fn+1, X ∈ ωh,

Un+1 = µ1(X, tn+1), X ∈ γ1h,

Un+1 = µn+1
0 µ2(X, tn+1), X ∈ γ2h,

ShUn+1 = M(tn+1).

(11)

The solution Un+1 is expressed in the following form

Un+1 = V n+1 + γn+1Wn+1,

where V n+1 is a solution of the discrete boundary value problem




V n+1−Un

τ =
3∑

α=1
AαV n+1 + fn+1, X ∈ ωh,

V n+1 = µ1(X, tn+1), X ∈ γ1h,

V n+1 = µn
0µ2(X, tn+1), X ∈ γ2h.

(12)

Function Wn+1 is a solution of the following problem




Wn+1/τ =
3∑

α=1
AαWn+1, X ∈ ωh,

Wn+1 = 0, X ∈ γ1h,

Wn+1 = µ2(X, tn+1), X ∈ γ2h.

(13)

Then we find γn+1 by using the discrete nonlocal condition:

γn+1 =
M(tn+1) − ShV n+1

ShWn+1
.

A solution of the backward Euler scheme exists if the following condition

ShWn+1 �= 0

is satisfied. This requirement is much weaker than the one obtained for the forward Euler
method.

The systems of linear equations (12) and (13) are solved by the CG iterative algorithm.
We note, that if operators Aα and functions µ2(X), ρ(X) do not depend on t, then it is
sufficient to solve problem (13) only once.
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The serial explicit CG algorithm for solving a system AX = F can be formulated as
follows:

procedure The serial CG algorithm
begin

(1) X0, n = 0, R0 = AX0 − F, P 0 = R0

(2) while
(
(Rn, Rn) > ε(R0, R0)

)
(3) Gn = APn ,

(4) τn+1 = (Rn,Rn)
(Gn,P n) ,

(5) Xn+1 = Xn − τn+1P
n,

(6) Rn+1 = Rn − τn+1G
n,

(7) βn = (Rn+1,Rn+1)
(Rn,Rn) ,

(8) Pn+1 = Rn+1 + βnPn,

(9) n := n + 1.

(10) end while
end

Now we will estimate the complexity of the backward Euler algorithm. At each time
step we compute:

1. Coefficients of matrix A for solving systems of linear equations (12) and (13). The
complexity of this step is J3.

2. Solutions of two systems of linear equations AX = F , defined by discrete prob-
lems (12) and (13). It is well-known that for large time steps τ the number of
iterations of the CG method is bounded by O(J). For τ = O(J−1) the number of
iterations is close to constant. In our analysis we assume that this number is equal
to

√
J . The complexity of one iteration is gJ3.

3. Two three-dimensional discrete approximations of integrals Sh(V n+1) and Sh(Wn+1).
The complexity of this step is 2cJ3.

4. The updated boundary condition with a known function µn+1
0 . The complexity of

this step is bJ2.

As a result, the total complexity of the serial forward Euler algorithm can be expressed
as

W = gJ3.5 + (1 + c)J3 + bJ2.

3.1. Parallel Algorithm

In addition to the analysis presented for the parallel forward Euler method we must con-
sider the complexity of parallel implementation of the CG method.

1. At steps (5), (6) and (8) of the CG algorithm saxpy type operation is computed.
Only local data is used by each processor and no communication among processors
is required. The complexity of this part of computations is given by

T1p = g1
J3

p
.
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2. During matrix-vector multiplication at step (3) processors exchange ghost elements
of vector Pn, corresponding to its local boundary grid points. The complexity of
this step is given by

T2p = g2
J3

p
+ 6

(
α + β

J2

p2/3

)
.

3. Parallel computation of the inner product of two vectors at steps (4) and (7) of the
CG method requires global communication among all processors during summa-
tion of local parts of the product. The complexity of this step is given by

T3p = g3
J3

p
+ 2R(p)(αb + βb).

For more results on implementation and analysis of parallel CG methods, see Čiegis
(2005c), Duff and van der Vorst (1999) and references given in these papers.

Summing up all obtained estimates we compute the complexity of the parallel back-
ward Euler algorithm

Tp(J) = J1/2
[
g
J3

p
+ 2R(p)(αb + βb) + 6

(
α + β

J2

p2/3

)]

+ (1 + c)
J3

p
+ 6

(
α +

(
β +

b

6

) J2

p2/3

)
+ 2R(p)(αb + βb).

Comparing Tp(J) with the complexity function of the forward Euler algorithm we get
that asymptotic isoefficiency function of the backward Euler algorithm is the same as
for the forward Euler algorithm. But since g < 1, the relative costs of local and global
communications are larger for the backward Euler method. This conclusion is especially
important for clusters of workstations, since their processors are connected with much
slower network.

3.2. Results of Computational Experiments

In this section some results of computational experiments are presented. We compute a
solution of the test problem from Section 2. In Table 2 the values of the speedup and effi-
ciency coefficients are presented, when the problem is solved in time intervals [0, T (J)]:

T (40) = 0.5, T (80) = 0.05, T (120) = 0.01, T (160) = 0.005.

We see that a superlinear speedup of the parallel algorithm is obtained, when more
processors are used. This effect is due to special properties of cash memory usage in SP5
processors. We had run a simple test, where matrix operations A := A+B, C := C −D

were performed many times. The dimension of matrix is taken to be 160 × 160 × 160.
The following results were obtained:

T1 = 35.3, T2 = 15.3, T4 = 7.18, T8 = 2.83, T16 = 1.29, T32 = 0.65.
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Table 2

The speedup and efficiency coefficients for the backward Euler method. CPU time of the sequential algorithm
(in s): T1(40) = 70.6, T1(80) = 133.1, T1(120) = 133.2, T1(160) = 249.2

p Sp,40 Ep,40 Sp,80 Ep,80 Sp,120 Ep,120 Sp,160 Ep,160

2 1.982 0.991 2.290 1.145 1.984 0.992 2.077 1.038

4 3.831 0.958 4.653 1.163 4.278 1.057 4.155 1.039

8 6.143 0.768 8.461 1.058 9.109 1.139 8.523 1.065

16 10.28 0.642 16.21 1.013 17.94 1.121 19.03 1.189

32 15.70 0.491 30.51 0.953 34.75 1.086 38.16 1.193

4. Locally One Dimensional Method

In this section we propose unconditionally stable LOD scheme, which approximates 3D
parabolic problem and the integral condition:




Un+j/3−Un+(j−1)/3

τ = AjU
n+1/3 + δ1jf

n+1, j = 1, 2, 3, X ∈ ωh,

U
n+1/3
ijk = (I − τA2)(I − τA3)µn+1

1 , X ∈ γ1h(x1 = 0) ∪ γ1h(x1 = 1),

U
n+2/3
ijk = (I − τA3)µn+1

1 , X ∈ γ1h(x2 = 0) ∪ γ1h(x2 = 1),

Un+1
ijk = µn+1

1 , X ∈ γ1h, Un+1
ijk = µn+1

0 µ2, X ∈ γ2h,

ShUn+1 = M(tn+1).

Boundary conditions are approximated consistently with the approximation of the differ-
ential equations as described in Samarskii (2001).

The LOD scheme is implemented as follows. The first two subproblems for j = 1, 2
are standard: we solve (J − 1)2 systems of linear equations, the matrix of each system is
tridiagonal. Total costs of these two steps are O(J3) floating point operations.

The serial implementation algorithm of the third step was proposed in Čiegis (2005a,
2005b), see also Čiegis (2006), where this algorithm is investigated in detail. The com-
plexity of LOD algorithm is equal to O(J3).

4.1. Parallel Algorithm

In the parallel algorithm the implementation of the third step of the LOD scheme is mod-
ified to the following one:

Un+1 = V n+1 + γn+1Wn+1,
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where V n+1 is a solution of the discrete boundary value problem




V n+1−Un+2/3

τ = A3V
n+1, X ∈ ωh,

V n+1 = µ1(X, tn+1), X ∈ γ1h,

V n+1 = µn
0µ2(X, tn+1), X ∈ γ2h.

(14)

Function Wn+1 is a solution of the auxiliary problem




Wn+1/τ = A3W
n+1, X ∈ ωh,

Wn+1 = 0, X ∈ γ1h,

Wn+1 = µ2(X, tn+1), X ∈ γ2h.

(15)

Then we find γn+1 by using the discrete nonlocal condition:

γn+1 =
M(tn+1) − ShV n+1

ShWn+1
.

Thus during implementation of the parallel LOD algorithm we solve 4(J − 1)2 sys-
tems of linear equations with the tridiagonal matrix.

The complexity of solving one tridiagonal system of J equations by the serial factor-
ization algorithm is equal to 8J arithmetical operations.

For two processors the Gaussian elimination process is started simultaneously at the
first and last equations and it goes in opposite directions. Processors exchange two fac-
torization coefficients at the end of the first stage of the factorization algorithm. The total
complexity of this modified algorithm is equal to 8J arithmetical operations. For the case
when a system is splitted between p > 2 processors, we use the Wang parallel factoriza-
tion algorithm given in Kumar et al. (1994). It solves the tridiagonal system by using 17J

arithmetical operations. The main idea is to reduce the given system to a new tridiagonal
system of p equations, where each processor has only one equation. Such small system
is solved by using the serial factorization algorithm. The total costs of the parallel Wang
algorithm can be estimated as

Tp(J) =
17J

p
+ 8p + R(p)(α + β).

It follows from the scalability analysis that the optimal number of processors is p =
O(

√
J) (here p is the number of processors used in one dimension of the 3D cube).

4.2. Results of Computational Experiments

We computed a solution of the test problem from Section 2 in time intervals [0, T (J)]:

T (40) = 0.4, T (80) = 0.04, T (120) = 0.005, T (160) = 0.001.

The results are presented in Table 3.
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Table 3

The speedup and efficiency coefficients for the LOD method. CPU time of the sequential algorithm (in s):
T1(40) = 64.8, T1(80) = 105.2, T1(120) = 94.98, T1(160) = 131.0

p Sp,40 Ep,40 Sp,80 Ep,80 Sp,120 Ep,120 Sp,160 Ep,160

2 1.979 0.990 2.001 1.000 2.115 1.058 1.955 0.978

4 3.880 0.970 4.062 1.016 4.236 1.059 4.662 1.166

8 7.043 0.880 7.684 0.961 8.284 1.036 9.388 1.173

16 11.54 0.721 14.30 0.894 15.23 0.952 18.10 1.131

32 18.72 0.585 26.73 0.835 29.67 0.927 34.77 1.087 [-2pt]
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Čiegis, R. (2004). Finite-difference schemes for nonlinear parabolic problem with nonlocal boundary con-
ditions. In: M. Ahues, C. Constanda, A. Largillier (Eds.) Integral Methods in Science and Engineering:
Analytic and Numerical Techniques. Birkhauser, Boston. pp. 47–52.
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Trimačio parabolinio uždavinio su nelokali ↪aja kraštine s ↪alyga
lygiagretieji skaitiniai sprendimo algoritmai
Raimondas ČIEGIS

Papildoma nelokali s ↪alyga yra naudojama kraštinės s ↪alygos koeficiento radimui, todėl už-
davinys priklauso atvirkštini ↪u matematikos uždavini ↪u klasei. Nagrinėjame tris duotojo uždavinio
sprendimo algoritmus – išreikštin↪i ir neišreikštin↪i Eulerio, bei lokaliai vienmat↪i algoritmus. Visi al-
goritmai pritaikyti uždavinio su nelokalia kraštine s ↪alyga sprendimui. Lygiagrečiuosius algoritmus
realizuojame naudodami ParSol lygiagreči ↪uj ↪u masyv ↪u bibliotek ↪a, leidžianči ↪a beveik automatiškai
gauti lygiagreči ↪a programos versij ↪a, kai nuoseklusis algoritmas realizuotas remiantis šiais masy-
vais. Pateikta algoritm ↪u efektyvumo analizė, teoriniai rezultatai iliustruojami skaičiavimo eksperi-
mento rezultatais.


