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Abstract. In this work labeling of planar graphs is taken up which involves labeling the p vertices,
the q edges and the f internal faces such that the weights of the faces form an arithmetic progression
with common difference d. If d = 0, then the planar graph is said to have an Inner Magic labeling;
and if d �= 0, then it is Inner Antimagic labeling. Some new kinds of graphs have been developed
which have been derived from Wheels by adding vertices in a certain way and it is proposed to give
new names to these graphs namely Flower-1 and Flower-2. This paper presents the algorithms to
obtain the Inner Magic and Inner Antimagic labeling for Wheels and the Inner Antimagic labeling
for Flower-1 and Flower-2. The results thus found show much regularity in the labelings obtained.
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1. Introduction

An Antimagic labeling is an edge labeling of the graph with the integers 1, 2, . . . , e so that
the weight at each vertex is distinct. The weight of a vertex under an edge labeling is the
sum of all edge labels incident on that vertex. Variations of Antimagic labeling have been
studied by different authors. Hartsfield and Ringel (1989) conjectured that simple, finite
and connected graph other than K2 admits an Antimagic edge labeling and by dualiza-
tion, this gives a conjecture on vertex labeling of a special class of hypergraphs. Sonntag
(2002) discusses existence of Antimagic vertex labeling of classes of hypergraphs like
Cacti, Cycles, Wheels and the existence and nonexistence of the Antimagic vertex label-
ing of Wheels have been discussed in theorems. The method to obtain Antimagic label-
ing for trees has been given in Krishnaa (2004) where the trees can be drawn as bipartite
graph such that there is almost one edge between any two vertices of the two partite sets,
and this labeling has also been analysed for Cycles, Paths and Wheels in Krishnaa et al.
(2004).

Bodendiek and Walther (1993) defined an (a, d) – Antimagic labeling in which the
vertex weights form an arithmetic progression starting from a and having a common
difference d. If we consider a plane graph G drawn such that no edges cross each other
then for G = (V, E, F ), its faces are considered including the unique face of unbounded
area where f is the number of faces. Baca, Lin and Miller (2001) opted that a bijection
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g: V UEUF → {1, 2, . . . , v + e + f) will be called a labeling of type (1,1,1), where
V, E and F are the sets of vertices, edges and faces respectively and the bijection h: F →
{1, 2, . . . , f} is called a face labeling. The weight w(x) of a face x under such a labeling
is the sum of labels of the surrounding vertices, edges and the face label.

A labeling of type (1,1,1) of plane graph is called d-Antimagic if for every number s

the set of s-sided face weights is Ws = {as, as + d, as + 2d, . . . , as + (fs − 1)d} for
some integers as and d, d � 0 where fs is the number of s-sided faces. Different sets
of Ws allowed for different s. If d = 0, then it is Magic. In other words, the problem
of labeling the edges, vertices and faces for a planar graph is such that the sequence
of weights of the faces formed by adding the labels of vertices, edges and face forms
an arithmetic progression with a common difference d. Magic (0-Antimagic) labelings of
type (1,1,1) for Grids and Honeycombs are given in Baca (1992), Baca and Miller (1992).
Ko-Wei-Lih (1983) gives the Magic labelings for Wheels, Prisms and Friendship graphs.

In the present work the Inner Antimagic and Inner Magic labelings have been defined
where the weight of each internal face is found by adding the labels of the surround-
ing vertices, edges and the internal face labels. The unbound face is not considered as
in the structure of the planar graph it is the internal faces which are more of practical
significance particularly so when all the internal faces are bound by the same number
of edges. These weights form an arithmetic progression with a common difference d. If
d �= 0 then the labeling is Inner Antimagic and if d = 0 then the labeling is Inner Magic.
Some new kinds of graphs have been developed which have been derived from Wheels
by adding vertices in a certain way and it is proposed to give new names to these graphs
namely Flower-1 and Flower-2. These labelings have been studied for Wheels, Flower-1
and Flower-2 and much regular patterns have been shown in both kinds of labelings by
all the graphs studied.

2. Main Results

In this section, algorithms are being presented which have been developed to obtain the
Inner Antimagic and Inner Magic labelings for Wheels and Inner Antimagic labelings
for the proposed new kinds of graphs namely Flower-1 and Flower-2. The Wheels ex-
hibit definite patterns in the labelings obtained so much so that the same algorithm with
minor modification yields both Inner Magic as well as Inner Antimagic labelings. The
algorithms that follows dubbed as ALGORITHM W describe a method to compute Inner
Magic and Inner Antimagic labeling for Wheels:

ALGORITHM W
/* Inner Magic and Inner Antimagic labelings for Wheels with p vertices, q edges and

f internal faces */
BEGIN

/* label the outer vertices */
1. for ov = 1 to p − 1 /* ov is the outer vertex */
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2. label the outer vertices clockwise with ov /* label the outer vertices clockwise
with 1, 2, . . . , p − 1. */

3. end
4. label the central vertex with p

/* label the inner edges */
5. set edge e connected by vertices labeled p and p − 1
6. for i = 1 to q/2 /* i is the inner edge */
7. start with e and label inner edges anticlockwise with i /* start with e and label the

inner edges anticlockwise with 1, 2, . . . , q/2; q is even in Wheels */
8. end

/* label the outer edges */
9. set the edge e′ which is formed by joining the vertices labeled 1 and 2.
10. for oe = q/2 to q /* oe is the label for outer edge */
11. start from e′, label the outer edges clockwise with oe. /* start with e′ and label

the outer edges clockwise with (q/2 + 1), (q/2 + 2), . . . q. */
12. end
13. for i = 1 to f/ ∗ i is the internal face */
14. sum the vertex and edge labels
15. arrange the sums in ascending order
16. in this order designate the respective internal faces as f1, f2, . . . , ff .
17. end

/* Inner Antimagic labeling*/
/* label the internal faces */

18. for i = 1 to f

19. label the internal face fi with i /* label the internal faces f1, f2, . . . , ff with
1, 2, 3, . . . , f . respectively */

20. end.
21. Add the labels of vertices, edges and internal faces for each face to get Inner

Antimagic labeling.
/* Inner Magic labeling */
/* label the internal faces */

22. in_label= f

23. i = 0
24. while i < f

25. i = i + 1
26. in_label = f − (i − 1)
27. label internal face fi with in_label /*label the internal faces, f1, f2, f3 . . . , ff

with f, f − 1, . . . , 3, 2, 1 respectively */
28. end.
29. Add the labels of vertices, edges and internal faces for each face to get Inner

Magic labeling.

END
Remark that all Wheels differ by 2 in the Inner Antimagic labeling. Moreover the

Inner Magic weight number is the middle number of the sequence of Inner Antimagic
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Inner magic internal face labels:
f1 = 3, f2 = 2, f3 = 1.
Inner Magic weight number = 19.
Inner magic internal face labels:
f1 = 1, f2 = 2, f3 = 3.
Inner Antimagic internal face weights:
17, 19, 21.

Fig. 1. Inner Magic and Inner Antimagic labelings for Wheel W (4, 6).

Inner Magic internal face labels:
f1 = 4, f2 = 3, f3 = 2, f4 = 1.
Inner Magic weight number = 24.
Inner Antimagic internal face labels:
f1 = 1, f2 = 2, f3 = 3, f4 = 4.
Inner Antimagic internal face weights:
21, 23, 25, 27.

Fig. 2. Inner Magic and Inner Antimagic labelings for Wheel W (5, 8).

Inner Magic internal face labels:
f1 = 5, f2 = 4, f3 = 3, f4 = 2, f5 = 1.
Inner Magic weight number = 29.
Inner Antimagic internal face labels: f1 = 1, f2 = 2,
f3 = 3, f4 = 4, f5 = 5.
Inner Antimagic internal face weights: 25, 27, 29, 31, 33.

Fig. 3. Inner Magic and Inner Antimagic labelings for Wheel W (6, 10).

labels arranged in ascending order for a particular Wheel. For example, the Inner Magic
weight number for the Wheel (4,8) is 19 where the Inner Antimagic labels are 17, 19,
21. For the Wheel (7,12), which has the Inner Antimagic labels of 29, 31, 33, 35, 39, the
Inner Magic weight number is 34.
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Inner Magic internal face labels: f1 = 6, f2 = 5,
f3 = 4, f4 = 3, f5 = 2, f6 = 1.
Inner Magic weight number = 34.
Inner Antimagic internal face labels: f1 = 1, f2 = 2,
f3 = 3, f4 = 4, f5 = 5, f6 = 6.
Inner Antimagic internal face weights: 29, 31, 33, 35,
37, 39.

Fig. 4. Inner Magic and Inner Antimagic labelings for Wheel W (7, 12).

Inner Magic internal face labels: f1 = 7, f2 = 6,
f3 = 5, f4 = 4, f5 = 3, f6 = 2, f7 = 1.
Inner Magic weight number = 39.
Inner Antimagic internal face labels: f1 = 1,
f2 = 2, f3 = 3, f4 = 4, f5 = 5, f6 = 6,
f7 = 7.
Inner Antimagic internal face weights: 33, 35, 37,
39, 41, 43, 45.

Fig. 5. Inner Magic and Inner Antimagic labelings for Wheel W (8, 14).

The next larger Wheel with one more vertex has 5 more for the Inner Magic weight
number (i.e., the Inner Magic weight numbers of the Wheels in themselves also form an
arithmetic progression of 19, 24, 29, 34 . . . with a common difference of 5). Moreover, the
same scheme of vertex and edge labels give Inner Magic and Inner Antimagic labelings
where only the face labels need to be reversed. It is to be noted that the sums of vertex
and edge labels form a sequence of consecutive integers which makes it result in both
Inner Magic and Inner Antimagic labelings just by reversing order of the face labels.

Let us define Flower-1 as a planar graph with one central vertex and rest all being
outer vertices and all the internal faces are bound by four edges. All the internal faces
in a Wheel are bound by three edges. By adding one vertex to each face of the Wheel,
Flower-1 is obtained. The following algorithms ALGORITHM F1-A (for odd no. of in-
ternal faces) and ALGORITHM F1-B (for even no. of internal faces) present the methods
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to label the vertices, edges and internal faces so as to obtain two distinct sets of Inner
Antimagic labelings for Flower-1 with p vertices, q edges, f internal faces.

ALGORITHM F1–A
/* Algorithm for two distinct sets of Inner Antimagic labeling for Flower-1 with odd

number of internal faces; p vertices, q edges, f internal faces */
BEGIN

/* label outer vertices */
1. for ov = 1 to x /* ov is the number of outer alternate vertex and x is the no. of

alternate outer vertices */
2. label outer alternate vertex clockwise with ov /* label outer alternate vertices

clockwise with 1, 2, . . . , x */

3. end
4. label the central vertex with x + 1
5. set the vertex as v′ which is just right of the vertex labeled 1
6. for v = (x + 2) to p /* v is label of remaining alternate outer vertices */
7. start from v′ and label remaining alternate outer vertices clockwise with v

/* label remaining alternate outer vertices clockwise with (x + 2), (x + 3), . . . , p
*/

8. end
/* label inner edges */

9. set the edge e which is formed by joining vertices labeled (x + 1) and x.
10. for i = 1 to y /* y is the number of inner edges */
11. start from e and label the consecutive inner edges anticlockwise with i

/* start from e and label the consecutive inner edges anticlockwise with 1, 2, . . . , y

*/
12. end

/* label outer edges */
13. set e′ as the edge formed by joining the vertices labeled with 1 and x + 2.
14. for e = (y + 1) to q /* e is the outer edge */
15. start from e′ and label consecutive outer edges clockwise with e

/* start from e′ and label consecutive outer edges clockwise with
(y + 1), (y + 2), . . . , q */

16. end
17. for i = 1 to f /* i is the internal face */
18. sum the vertex and edge labels
19. arrange the sums in ascending order
20. in this order designate the respective internal faces as f1, f2, . . . , ff .
21. end

/* First set of Inner Antimagic labeling */
/* label the internal faces */

22. for i = 1 to f
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23. label the internal face fi with i /* label the internal faces f1, f2, . . . , ff with
1, 2, 3, . . . , f . respectively */

24. end.
25. Add the labels of vertices, edges and internal faces for each face to get first set

of Inner Antimagic labeling.
/* Second set of Inner Antimagic labeling */
/* label the internal faces */

26. in_label = f

27. i = 0
28. while i < f

29. i = i + 1
30. in_label = f − (i − 1)
31. label internal face fi with in_label /* label the internal faces, f1, f2, f3, . . . , ff

with f, f − 1, . . . , 3, 2, 1 respectively */
32. end.
33. Add the labels of vertices, edges and internal faces for each face to get second

set of Inner Antimagic labeling.

END

ALGORITHM F1–B
/* Two distinct sets of Inner Antimagic labelings for Flower-1 with even number of

internal faces; p vertices, q edges, f internal faces */
BEGIN

/* label outer vertices */
1. for ov = 1 to x /* ov is the outer vertex and x is the no. of alternate outer vertices

*/
2. label alternate outer vertices clockwise with ov and label alternate outer vertices

clockwise with 1, 2, . . . , x

3. end
4. set the vertex v which is immediate right to the vertex labeled 1
5. for ov = (x + 1) to z /* z is the number of remaining alternate vertices */
6. start with v and label remaining alternate outer vertices clockwise with ov

/* start with v and label remaining alternate outer vertices clockwise with
(x + 1), (x + 2), . . . , z */

7. end
8. this labeling ends at the central vertex with label p.

/* label inner edges */
9. set the edge e which is formed by joining the central vertex labeled by p and

vertex labeled x

10. for i = 1 to f /* i is the inner edge */
11. start with e and label inner edges anticlockwise with i

/* start with e and label the inner edges anticlockwise with 1, 2, . . . , f */
12. end
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/* label outer edges */
13. set the edge e′ which is formed by joining the vertices labeled with 1 and (x + 1)
14. for oe = (f + 1) to q /* oe is the outer edge */
15. start from e′ and label consecutive outer edges clockwise with oe

/* start from e′ and label consecutive outer edges clockwise with
f + 1, f + 2, . . . , q */

16. end
17. for i = 1 to f /* i is the internal face */
18. sum the vertex and edge labels
19. arrange the sums in ascending order
20. in this order designate the respective internal faces as f1, f2, . . . , ff .
21. end

/* First set of Inner Antimagic labeling */
/* label the internal faces */

22. for i = 1 to f

23. label the internal face fi with i /* label the internal faces f1, f2, . . . , ff with
1, 2, 3, . . . , f . respectively */

24. end.
25. Add the labels of vertices, edges and internal faces for each face to get first set

of Inner Antimagic labeling.
/* Second set of Inner Antimagic labeling */
/* label the internal faces */

26. in_label = f

27. i = 0
28. while i < f

29. i = i + 1
30. in_label = f − (i − 1)
31. label internal face fi with in_label /* label the internal faces, f1, f2, f3, . . . , ff

with f, f − 1, . . . , 3, 2, 1 respectively */
32. end.
33. Add the labels of vertices, edges and internal faces for each face to get second

set of Inner Antimagic labeling.

END
Now, let us define Flower-2 as a planar graph with one central vertex and rest all being

outer vertices and all the internal faces are bound by five edges. All the internal faces in
a Wheel are bound by three edges. By adding two verteices to each face of the Wheel,
Flower-2 is obtained. The following algorithm gives the method to obtain two distinct
Inner Antimagic labelings for Flower-2 with p vertices, q edges, f internal faces:

ALGORITHM F2
/*Two distinct sets of Inner Antimagic labelings for Flower-2 with p vertices, q edges

and f internal faces */

1. Start at an outer vertex which has three edges incident on it. Label it with 1 and
and then label every such consecutive outer vertex clockwise with 2, 3, . . . , x
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Inner Antimagic internal face weights Inner Antimagic internal face weights
and internal face labels are as follows: and internal face labels are as follows:
(1) 27, 33, 39; f1 = 1, f2 = 2, f3 = 3 (1) 36, 42, 48, 54; f1 = 1, f2 = 2, f3 = 3, f4 = 4.
(2) 29, 33, 37; f1 = 3, f2 = 2, f3 = 1 (2) 39, 43,47, 51: f1 = 4, f2 = 3, f3 = 2, f4 = 1.

Fig. 6. Flower-1 (7,9). Fig. 7. Flower-1 (9,12).

Inner Antimagic internal face weights & Inner Antimagic internal face weights &
internal face labels are as follows: internal face labels are as follows:
(1) 39, 45, 51, 57, 63 (1) 50, 56, 62, 68, 74, 80.

f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5, f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5, f6 = 6.
(2) 43, 47, 51, 55, 59 (2) 55, 59, 63, 67, 71, 75.

f1 = 5, f2 = 4, f3 = 3, f4 = 2, f5 = 1, f1 = 6, f2 = 5, f3 = 4, f4 = 3, f5 = 2, f6 = 1.

Fig. 8. Flower-1 (11, 15). Fig. 9. Flower-1 (13,18).

where x is no. of such vertices with three edges incident on it and label the central
vertex with x + 1.

2. set the vertex as v which is immediately left to the vertex labeled 1.
/* label outer vertices */

3. for ov = x + 2 to p /* ov is the remaining outer vertices */
4. start at v and moving anticlockwise label the remaining outer vertices

consecutively with ov
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/* start at v and moving anticlockwise label the remaining outer vertices
consecutively with x + 2, x + 3, . . . , p */

5. end
/* label inner edges */

6. set e as the inner edge formed by joining vertices labeled by x and x + 1.
7. for i = 1 to y /* i is the inner edge and y is the number of inner edges */
8. start from e and label inner edges anticlockwise consecutively with i

/* start from e and label inner edges anticlockwise consecutively with
1, 2, 3, . . . , y */

9. end
/* label the outer edges */

10. set e′ the outer edge formed by joining the vertices labeled by 1 and p.
11. for oe = y + 1 to q

12. start from e′ and moving clockwise, label the outer edges consecutively with oe

/* start from e′ and moving clockwise, label the outer edges consecutively with
y + 1, y + 2, . . . , q */

13. end
14. for i = 1 to f /* i is the internal face */
15. sum the vertex and edge labels
16. arrange the sums in ascending order
17. in this order designate the respective internal faces as f1, f2, . . . , ff .
18. end

/* First set of Inner Antimagic labeling */
/* label the internal faces */

19. for i = 1 to f

20. label the internal face fi with i /* label the internal faces f1, f2, . . . , ff with
1, 2, 3, . . . , f . respectively */

21. end.
22. Add the labels of vertices, edges and internal faces for each face to get first set

of Inner Antimagic labeling.
/* Second set of Inner Antimagic labeling */
/* label the internal faces */

23. in_label = f

24. i = 0
25. while i < f

26. i = i + 1
27. in_label = f − (i − 1)
28. label internal face fi with in_label /* label the internal faces, f1, f2, f3, . . . , ff

with f, f − 1, . . . , 3, 2, 1 respectively */
29. end.
30. Add the labels of vertices, edges and internal faces for each face to get second

set of Inner Antimagic labeling.

END
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Inner Antimagic internal face weights and internal face labels are as follows:

(1) 47, 53, 59; f1 = 1, f2 = 2, f3 = 3(2)49, 53, 57; f1 = 3, f2 = 2, f3 = 1.

Fig. 10. Flower-2 (10,12).

Inner Antimagic internal face weights and internal face labels are as follows:
(1) 59, 65, 71, 77; f1 = 1, f2 = 2, f3 = 3, f4 = 4.

(2) 62, 66, 70, 74; f1 = 4, f2 = 3, f3 = 2, f4 = 1.

Fig. 11. Flower-2 (13,16).

3. Conclusions

In the present work, the Inner Antimagic and Inner Magic labelings for planar graphs
have been defined which are obtained by labeling the vertices, edges and internal faces
such that the weights of the internal faces form an arithmetic progression with a common
difference d. If d = 0 then the labeling is Inner Magic labeling otherwise it is Inner An-
timagic labeling. No reference of this kind of labeling is found in the available literature.
These labelings have particular significance since in the structure of the planar graph it
is the internal faces which are more of practical significance and specially when all the
internal faces are bound by the same number of edges and hence in these labelings, the
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Inner Antimagic internal face weights and internal face labels are as follows:
(1) 71, 77, 83, 89, 95; f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5.

(2) 75, 79, 83, 87, 91; f1 = 5, f2 = 4, f3 = 3, f4 = 2, f5 = 1.

Fig. 12. Flower-2 (16, 20).

Inner Antimagic internal face weights and internal face labels are as follows:
(1) 83, 89, 95, 101, 107, 113; f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5, f6 = 6.

(2) 88, 92, 96, 100, 104, 108; f1 = 6, f2 = 5, f3 = 4, f4 = 3, f5 = 2, f6 = 1.

Fig. 13. Flower-2 (19, 24).

unbound outer face is not considered.
The Inner Magic and Inner Antimagic labelings have been exhibited by Wheels and

the Inner Antimagic labeling has been exhibited by Flower-1 and Flower-2 which are
new kinds of planar graphs derived from Wheels by adding more vertices in a particular
fashion.

The most significant finding is that even the common differences obtained for Inner
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Antimagic labeling has the same value in a particular class of the graph for all the graphs
studied. In the Inner Antimagic labelings obtained, all the Flower-1 graphs show the
common difference of 4, Flower-2 graphs exhibit the common difference of 4 and 6 and
all the Wheels display the common difference of 2. Moreover, two sets of Inner Antimagic
labelings are obtained for the Flower-1 and Flower-2 graphs with the same scheme to
label the vertex and edge labels and only reversing order of the internal face labels.

Some more special features have been displayed by Wheels which are as follows:

1. The Inner Magic weight number is the middle number of the Inner Antimagic
labels arranged in ascending order for a particular Wheel. For example, the Inner
Magic weight number for the Wheel W(4,8) is 19 where the Inner Antimagic labels
are 17, 19, 21. For the Wheel W(7,12), which has the Inner Antimagic labels of 29,
31, 33, 35, 39, the Inner Magic weight number is 34.

2. The next larger Wheel with one more vertex has 5 more for the Inner Magic weight
number, i.e., the Inner Magic weight numbers of the Wheels in themselves also
form an arithmetic progression of 19, 24, 29, 34, 39, . . . with a common difference
of 5.

3. The same scheme of vertex and edge labels give Inner Magic and Inner Antimagic
labelings where only the face labels need to be reversed.

These algorithms can be used in applications where graphs serve as models and in ap-
plications such as communications network, circuit design etc. In many computer science
applications also these algorithms could be used.
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Vidinio magiško ir vidinio antimagiško ženklinimo algoritmai
kai kuriems plokštiesiems grafams

Šiame darbe nagrinėjamas plokšči ↪uj ↪u graf ↪u ženklinimas, apimantis p viršūni ↪u, q briaun ↪u ir f
vidini ↪u cikl ↪u taip, kad cikl ↪u svoriai suformuot ↪u aritmetin ↪e progresij ↪a su bendru skirtumu d. Jei
d = 0, tai sakoma, kad plokščiasis grafas turi Vidin↪i Magišk ↪a (Inner Magic) ženklinim ↪a, jei d �= 0,
tai Vidin↪i Antimagišk ↪a (Inner Antimagic) ženklinim ↪a. Yra sudaryti nauji graf ↪u tipai, išvesti iš Rat ↪u
(Wheels) pridedant tam tikru būdu viršūnes, ir yra siūloma šiuos grafus vadinti Gėlė-1 (Flower-1)
ir Gėlė-2 (Flower-2). Šiame straipsnyje pristatomi Vidinio Magiško ir Vidinio Antimagiško žen-
klinimo Ratams ir Vidinio Antimagiško ženklinimo Gėlei-1 ir Gėlei-2 algoritmai. Rezultatai rodo
gaut ↪u ženklinim ↪u reguliarum ↪a.


