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Abstract. We know the necessity for information security becomes more widespread in these days,
especially for hardware-based implementations such as smart cards chips for wireless applica-
tions and cryptographic accelerators. Fast modular exponentiation algorithms are often considered
of practical significance in public-key cryptosystems. The RSA cryptosystem is one of the most
widely used technologies for achieving information security. The main task of the encryption and
decryption engine of RSA cryptosystem is to compute ME mod N . Because the bit-length of the
numbers M , E, and N would be about 512 to 1024 bits now, the computations for RSA cryp-
tosystem are time-consuming. In this paper, an efficient technique for parallel computation of the
modular exponentiation is proposed and our algorithm can reduce time complexity. We can have
the speedup ratio as 1.06 or even 2.75 if the proposed technique is used. In Savas–Tenca–Koc al-
gorithm, they design a multiplier with an insignificant increase in chip area (about 2.8%) and no
increase in time delay. Our proposed technique is faster than Savas–Tenca–Koc algorithm in time
complexity and improves efficiency for RSA cryptosystem.

Key words: exponentiation, parallel computing, modular arithmetic, complexity analyses, number
theory, information security, cryptography, algorithm design.

1. Introduction

A public-key cryptosystem can be used to encrypt messages sent between two commu-
nicating parties so that an eavesdropper who overhears the encrypted messages will not
be able to decode them in an efficient time. This cryptosystem also enables a party not
to append a forged “digital signature” (Rivest et al., 1978) to the end of an electronic
message. It can be easily checked by anyone and forged by no one and then loses its
validity if any bit of the message is altered. The cryptosystem therefore provides the au-
thentications of both the identity of the receiver and the contents of the message, which
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is sent to the receiver. RSA (Lou et al., 2003; Savas et al., 2000) security was one of the
schemes to drive industry standardization in public-key cryptography, starting in 1991
with its widely adopted Public-Key Cryptography Standards (PKCS).

A simple procedure to compute the ciphertext C = PEmod M (P is a message, E

is a public key and M is the product of two large prime numbers), which is based on the
paper-and-pencil method requires E − 1 modular multiplications. It computes all powers
of P : P → P 2 → P 3 → . . . → PE−1 → PE . The computation of exponentiations
using the paper-and-pencil method is very inefficient. So we propose a fast and efficient
parallel method to speed up the computations of the exponentiation.

Public-key systems (such as the RSA cryptographic scheme) often involve large ele-
ments of some groups fields (such as GF(2n) or elliptic curves) to large powers. A scal-
able and unified multiplier architecture shown in (Savas et al., 2000) for both fields (prime
GF(p) and binary extension GF(2n) field) is proposed. The authors (E. Savas, A.F. Tenca,
and C.K. Koc) had designed a multiplier with an insignificant increase in chip area (about
2.8%) and no increase in time delay. Using our proposed technique, it will be faster than
(Savas et al., 2000) in time complexity and take less space.

The paper is organized as follows. In Section 2 we first briefly describe RSA algo-
rithm. Some modular arithmetic is inducted in Section 3. In Section 4 we illustrate two
kinds of the binary methods. The proposed technique is described in Section 5. In Sec-
tion 6 we put the complexity analyses for the proposed technique and the binary method
and use some figures and tables to depict the time complexity of the two methods in
detail. Finally we come to a conclusion.

2. RSA Public-Key Cryptosystem

The RSA algorithm was invented by (Rivest et al., 1978). We know this algorithm be-
comes more widespread in these days. Here we describe the RSA algorithm as following
(Lam et al., 2001; Knuth, 1998; Koc, 1994):

1. Find P and Q, which are two large prime numbers (e.g., 1024 bits).
2. Choose E, which is greater than 1 and less than [P ∗ Q]. These two numbers “E

and [(P − 1) ∗ (Q − 1)]” are relatively prime. It means the two numbers don’t
have any common divisor except 1 and themselves. E does not have to be a prime
number, but it must be an odd number. [(P − 1) ∗ (Q − 1)] should not be a prime
number because it is an even number.

3. Compute D such that (D∗E−1) is divisible by [(P−1)∗(Q−1)]. Mathematicians
describe this as [D ∗ E] ≡ 1 mod [(P − 1) ∗ (Q − 1)] and they call D is the
multiplicative inverse of E.

4. The encryption function is C ≡ TE mod (P ∗ Q), where C is the ciphertext
(a positive integer) and T is the plaintext (a positive integer). The message being
encrypted, T , must be less than the modulus (P ∗ Q).

5. The decryption function is T ≡ CD mod (P ∗ Q), where C is the ciphertext
(a positive integer) and T is the plaintext (a positive integer).
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The public key pair is (P ∗ Q, E). The product of P ∗ Q is the modulus. E is the
public key and D is the private key, which reveals it to no one.

We can publish our public key freely. There is unknown easy method of calculating
D, P , or Q respectively if the product of P ∗ Q and E are only given. If P and Q are
1024 bits long respectively, it will not even succeed to factor the modulus into P and Q

efficiently and uses the most powerful computers and software technologies in existence
quickly.

3. The Mathematic Preliminaries

Modular arithmetic is not a usual versatile tool discovered by K.F. Gauss (1777–1855) in
1801. Two numbers a and b are said to be equal or congruent modulo N if and only if
N |(a − b), i.e., if and only if their difference is exactly divisible by N .

The set of numbers congruent to a modulo N is denoted [a]N . Since there are exactly
N possible remainders of division by a modulo N , there are exactly N different sets
[a]N . Quite often these N sets are simply identified with the corresponding remainders:
[0]N = 0, [1]N = 1, . . . , and [N − 1]N = N − 1. Remainders are often called residues.
Accordingly, [a]’s is also known as the residue classes (Knuth, 1998; Koc, 1994; Lou and
Wu, 2004; Stalling, 2003).

If the relationship of a ≡ b mod N and c ≡ d mod N are verified, then(a + c) ≡
(b + d) mod N . The same situation is true for the multiplication. Some situations are
introduced in (Seiffert, 2004; Lastovetsky and Reddy, 2004; Karatza, 2004; McIvor et al.,
2004; Chang and Lai, 2005; Liu et al., 2005; Chen, 2005; L and Nedjah, 2005; Hwang et
al., 2005). An algebraic structure puts into the set:

{
[a]N : a = 0, 1, . . . , N − 1

}
.

By the definition, shown above, we can have the following relations:

(i) [a]N + [b]N = [a + b]N ,

(ii) [a]N ∗ [b]N = [a ∗ b]N .

Subtraction is defined in an analogous manner:

(iii) [a]N − [b]N = [a − b]N .

It can be verified that the equipped set {[a]N : a = 0, 1, . . . , N − 1} becomes a ring
with commutative addition and multiplication. Division can’t be always defined.

4. Binary Method

The binary method is also called the square-and-multiply method (Shand and Vuillemin,
1993; Wu et al., 2001; Diffie and Hellman, 1976; Blum and Paar, 2001). This method
includes two different types. One is the right to left binary method and the other is the
left to right binary method. We describe them respectively as follows.
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4.1. The Right to Left Binary Method

Let us considerME and the exponent E can be expressed in binary form (Mao, 2004;
Rosen, 2000; Lou and Chang, 1996). We assume M is a plaintext and the bit-length of
E is k, i.e., E =

∑k−1
j=0 (ej ∗ 2j). We can compute ME by using the following algorithm

to scan the exponent E from the Least Significant Bit (LSB) toward the Most Significant
Bit (MSB) and work as follows.

Algorithm 1 (the right to left binary method):
INPUT:

Exponent: E = (ek−1ek−2 . . . e1e0)2;
Message: M ;

OUTPUT:
Ciphertext: C = ME

BEGIN
C = 1; S = M ;

FOR i = 0 TO k − 1 DO /* scan from LSB to MSB */
BEGIN

IF (ei = 1) C = C ∗ S; /* multiply */
S = S ∗ S; /* square */

END;
END

4.2. The Left to Right Binary Method

Different from Algorithm 1, the left to right binary method computes exponent in ME

staring from the Most Significant Bit (MSB) of the exponent and proceeds to the Least
Significant Bit (LSB) of the exponent (scanning the exponent from left to right), which is
described as following Algorithm 2.

Algorithm 2 (the left to right binary method):
INPUT:

Exponent: E = (ek−1ek−2 . . . e1e0)2;
Message: M ;

OUTPUT:
Ciphertext: C = ME

BEGIN
C = 1; S = M ;

FOR i = k − 1 DOWNTO 0 DO /* scan from MSB to LSB */
BEGIN

S = S ∗ S; /* square */
IF (ei = 1) C = C ∗ S; /* multiply */

END;
END
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As the above-mentioned two algorithms have the same computations for both multi-
plication and squaring operations, therefore they have the same computational complex-
ity. But there are few differences existing between these two algorithms, to be specially,
the scan patterns of these two algorithms are different and squaring operations are exe-
cuted in different procedures. Both Algorithm 1 and Algorithm 2 have two same states.
The first state is to execute {C ∗ C, C ∗ S} as the bit “1” is scanned and the second state
is to execute {C ∗ C} when the bit “0” is scanned.

Take k-length exponent for example, for the average case, we assume the occurrence
probabilities for both bits “1” and bit “0” are the same. Then, the expectation numbers for
bits “1” and “0” are both k/2. If we set one multiplication is M and one squaring is S,
the numbers of executing the exponent E are needed

k

2
∗ M + k ∗ S. (1)

5. The Proposed Technique

In this section we will depict our proposed technique, which can perform modular ex-
ponentiation efficiently for RSA cryptosystem. First we analyze the following equa-
tions for the proposed technique as following (Gueron and Zuk, 2005; Menezes et al.,
1996; Samoa et al., 2006; Yasuyuki and Kouichi, 2006):

cd
1 mod r ≡ c

dkdk−1dk−2dk−3...d3d2d1
1 mod r ≡ m1 mod r,

cd
2 mod r ≡ c

dkdk−1dk−2dk−3...d3d2d1
2 mod r ≡ m2 mod r,

...

cd
n mod r ≡ cdkdk−1dk−2dk−3...d3d2d1

n mod r ≡ mn mod r.

Before we send the ciphertext C to the receiver, we divide it into the n equal parts
(c1, c2, . . . , cn). If the bit numbers of the nth part are not equal to the bit numbers of the
other parts, it doesn’t affect our result. The receiver deciphers ci into mi for1 � i � k.
Next, we consider

cd
1 mod r ≡ c

dkdk−1dk−2dk−3...d3d2d1
1 mod r ≡ m1 mod r.

We assume that d = (dkdk−1dk−2dk−3 . . . d2d1)2, where dk = 1 and d1, d2, d3, d4,

. . . , dk−1 are either 1 or 0 in the exponent. It means this exponent d has k bits, where k

is any integer. k can be either an odd number or an even number.
Now we describe a general case in the following section. If there are k bits in the

exponent d, the proposed technique is depicted in detail as follows.
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a. k bits dkdk−1 . . . . . . . . . . . . . . . . . . . . . d2d1

b. n parts N . . . i . . . 3 2 1

Each part has � k
n
� bits � k

n
�bits . . . � k

n
�bits . . . � k

n
�bits � k

n
�bits � k

n
�bits

c. multiplication numbers � k
2n

�M . . . � k
2n

�M . . . � k
2n

�M � k
2n

�M � k
2n

�M

d. squaring numbers:

the first part: � k
n
�S,

the second part: 2*� k
n
�S,

the third part: 3*� k
n
�S,

...
...

the ith part i ∗ � k
n
�S,

...
...

the nth part: n ∗ � k
n
�S.

To depict the definition in the item b, k bits in the exponent d are divided into n parts
from the Least Significant Bit (LSB) toward Most Significant Bit (MSB) and each part
has � k

n� bits, i.e., each part has the same bit numbers. If the nth part doesn’t have the
same bit numbers as the bit numbers of the other parts, it doesn’t affect the result.

To depict the definition in item c, because each part has � k
n� bits and the occurrence

probability for bit “1” in each part is 1
2 , the multiplication numbers are � k

2n�M in each
part.

To depict the definition in item d, the differences of squaring numbers among parts
are � k

n�S. If we use the proposed technique, the squaring numbers in each part are only
needed � k

n�S, we will detail to discuss the computational complexity in Section 6.
We can have the following two remarks for our proposed technique.

1. We assume the bits of d1, d2, d3, . . . , d� k
n �−2, d� k

n �−1, and d� k
n � are all 1.

2. We set d� k
n �d� k

n �−1 . . . d2d1 in the exponent d is the first part, d� 2k
n �d� 2k

n �−1 . . .

d
� k

n
�+2

d
� k

n
�+1

in the exponent d is the second part, . . . , d� ik
n �d� ik

n �−1 . . .

d
� (i−1)k

n
�+2

d
� (i−1)k

n
�+1

in the exponent d is the ith part, . . . , d� (n−1)k
n �d� (n−1)k

n �−1

. . . d
� ((n−1)−1)k

n
�+2

d
� ((n−1)−1)k

n
�+1

in the exponent d is the (n − 1)th part, and

dkdk−1 . . . d
� (n−1)k

n
�+2

d
� (n−1)k

n
�+1

in the exponent d is the nth part.

The modular exponentiation of computation procedures are described in detailed as
following:

Procedure 1:
We input k bits in parallel.

Procedure 2:
We calculate the values of (1)2, (11)2, (111)2, . . ., and (d� k

n �d� k
n �−1 . . . d2d1)2 re-

spectively. The values are 1, 3, 7, 15, . . ., and (20 + 21 + 22 + . . . + 2�
k
n �) in

sequence and restore them individually.
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Procedure 3:
We calculate the exponentiation evaluation of the first part from d1 to d� k

n � in the
exponent d. The exponentiation values in sequence from d1 to d� k

n � are presented

21, 22, 23, . . ., and 2�
k
n �.

Procedure 4:
The MSB in the exponentiation evaluation of the first part is multiplied by the value
stored in the first part. It means the product of 2�

k
n � ∗ (20 + 21 + 22 + . . . + 2�

k
n �)

is (11111. . . 00000 . . .)2 and there are � k
n� consecutive 1 and � k

n� consecutive 0 in
this number respectively.

Procedure 5:
We calculate the exponentiation evaluation of the second part from d� k

n
�+1 to d� 2k

n
�

in the exponent d. Because the exponentiation evaluation of the first part has al-
ready executed in the procedure 3 in advance, we can directly calculate the ex-
ponentiation evaluation of the second part here. The exponentiation values in se-
quence from d� k

n
�+1 to d� 2k

n
� are presented 2�

k
n �+1, 2�

k
n �+2, . . ., and 2�

2k
n �.

Procedure 6:
The MSB in the exponentiation evaluation in the second part is multiplied by the
value stored in the first part. It means the product of 2�

2k
n � ∗ (20 + 21 + 22 + . . . +

2�
k
n �) is (11111. . . 0000000000 . . .)2 and there are � k

n� consecutive 1 and � 2k
n �

consecutive 0 in this number respectively.

Procedure 7:
We calculate the exponentiation evaluation of the third part from d� 2k

n
�+1 to d� 3k

n
�

in the exponent d. The exponentiation values in sequence from d� 2k
n

�+1 to d� 3k
n

�

are presented 2�
2k
n �+1, 2�

2k
n �+2, . . ., and 2�

3k
n �.

Procedure 8:
The MSB in the exponentiation evaluation of the third part is multiplied by the
value stored in the first part. It means the product of 2�

3k
n � ∗ (20 + 21 + 22 + . . . +

2�
k
n �) is (11111. . . 0000000000 . . .)2 and there are � k

n� consecutive 1 and � 3k
n �

consecutive 0 in this number respectively.

Procedure 9:

We calculate the exponentiation evaluation of the fourth part from d� 3k
n

�+1 to d� 4k
n

�

in the exponent d. The exponentiation values in sequence from d� 3k
n

�+1 to d� 4k
n

� are

presented 2�
3k
n �+1, 2�

3k
n �+2, . . ., and 2�

4k
n �.

...

Procedure (2n − 1):
We calculate the exponentiation evaluation of (n − 1)th part from d� [(n−1)−1]k

n
�+1

to d� (n−1)k
n

� in the exponent d. The exponentiation values in sequence from

d� [(n−1)−1]k
n

�+1
to d� (n−1)k

n
� are presented 2�

[(n−1)−1]k
n �+1, 2�

[(n−1)−1]k
n �+2, . . ., and

2�
(n−1)k

n �.
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Procedure (2n):
The MSB in the exponentiation evaluation of the (n−1)th part is multiplied by the

value stored in the first part. It means the product of 2�
(n−1)k

n � ∗ (20 + 21 + 22 +
. . .+2�

k
n �) is (11111. . . 00000 . . .)2 and there are � k

n� consecutive 1 and � (n−1)k
n �

consecutive 0 in this number respectively.

Procedure (2n + 1):

To sum up, we can obtain the result of
∑n−1

i=1 (2�
ik
n � ∗

∑ k
n
j=0 2j), where k is the

bit-length of the exponent, n means parts coming from Procedure 2, Procedure 4,
Procedure 6, . . ., and Procedure (2n). Then we can get the answer (111. . . 111)2
and there are k consecutive 1 in this number.

6. Complexity Analyses

Now we generalize the above procedures from Procedure 1 to Procedure (2n + 1) and
analyze the complexity of the proposed technique in detail as following:

In Procedure 1, the big O is 1 because the bits in exponent d are put in parallel.
In Procedure 2, this is the most complex condition when we assume consecutive one

from d1 to d� k
n � in the exponent d. In normal condition, there are � k

n� bits on the first part,

and the expectation numbers for bits “1” is 1
2 ∗�

k
n�. So the numbers of multiplication and

squaring from d1, d2, d3, . . . , d� k
n �−2, d� k

n �−1, and d� k
n � in the first part are needed

1
2
∗ M ∗

⌈k

n

⌉
+

⌈k

n

⌉
∗ S. (2)

In Procedure 3, because it needs � k
n�S squarings to get the result for the exponentia-

tion evaluation of the first part, the computational complexity is

⌈k

n

⌉
∗ S. (3)

Before we explain Procedure 4 and Procedure 5, we assume that

k

n
∗ S ≈ M, (4)

where S and M denote one squaring and one multiplication respectively.
If Eq. 4 is true, the following statement can be achieved. When the multiplication of

“the value stored in the first part” and “the MSB in the exponentiation evaluation of the
first part” is completed, the exponentiation evaluation of the second part is also completed
at the same time. It means Procedure 4 and Procedure 5 can be executed at the same time.
Here we can only consider the multiplication between the value stored in the first part and
the MSB in the exponentiation evaluation of the first part. The computational complexity
is needed one multiplication. It can be denoted by 1M .
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In Procedure (2n + 1), because the time of executing addition is much smaller than
the time of executing multiplication, we skip the computational complexity of addition.

For above assumption, we know Procedure 6 and Procedure 7 can be achieved at the
same time. Similarly, Procedure 8, Procedure 9 . . ., and Procedure (2n − 1), Procedure
(2n) can be achieved at the same time. We can only consider one multiplication every
two procedures, then it is merely needed:

(n − 2) ∗ M. (5)

To sum up Eqs. 2, 3, and 5, we can get:

M ∗
⌈ k

2n

⌉
+ 2 ∗

⌈k

n

⌉
∗ S + (n − 2) ∗ M, (6)

for the proposed technique.

M ∗
( k

2n
+ 1

)
+ 2 ∗

(k

n
+ 1

)
∗ S + (n − 2) ∗ M. (7)

The “+1” inside the first item and the second item in Eq. 7 means the maximum
numbers which we can obtain for the first item and the second item in Eq. 6.

Let k
n ∗ S in Eq. 4 is substituted for M in Eq. 7, we derive

k2 ∗ S

2n2
+

k ∗ S

n
+

2k ∗ S

n
+ 2S + k ∗ S − 2k ∗ S

n
, (8)

then we simplify Eq. 8 and get Eq. 9.

k2 ∗ S

2n2
+

k ∗ S

n
+ 2S + k ∗ S, (9)

where n � 1 and k > 0.
That means if the number n is greater than one, it will take less time. Assuming the

proportion between number of multiplication and the number of squaring is n
lk , we can

get:

k

n
∗ S ∗ l = M. (10)

Let k∗S∗l
n in Eq. 10 is substituted for M in Eq. 7. We derive:

l ∗ k2 ∗ S

2n2
+

3k ∗ S

n
+ (1 − 2

n
)l ∗ k ∗ S + 2S. (11)

If we let k∗S
n in Eq. 4 is substituted for M in Eq. 1, we derive:

k

2
∗ M + k ∗ S =

k

2
∗

(k ∗ S

n

)
+ k ∗ S =

k2 ∗ S

2n
+ k ∗ S. (12)
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If we let k∗S∗l
n in Eq. 10 is substituted for M in Eq. 1, we derive:

k

2
∗ M + k ∗ S =

k

2

(k

n
∗ S ∗ l

)
+ k ∗ S =

k2 ∗ S ∗ l

2n
+ k ∗ S. (13)

In other words, using the binary method, if l is equal to one and Eq. 4 is assumed,
we can obtain Eq. 12. If l is not equal to one, we can obtain Eq. 13. Similarly, using our
proposed technique, if l is equal to one and the equation k

n ∗ S ≈ M is assumed, we can
obtain Eq. 9. If l is not equal to one, we can obtain Eq. 11.

Before we observe the variations among different k bits between binary method and
proposed technique, we define the speedup ratio of our method as

equation(13)
equation(13) − equation(11)

. (14)

We compare the different part n and the speedup ratios between binary method and pro-
posed technique when l = 1 and k = 256, 512, 1024, and 2048 bits respectively in
Table 1.

We discuss l when it is 10 or 0.1 respectively between different parts n and the
speedup ratio are shown in Table 2 and 3 respectively. Other associated multiplication
numbers are shown from Figs. 1 to 8.

We observe the curves from Fig. 1 to Fig. 8 and the speedup ratios from Table 1 to
Table 3. No matter how l is an integer or a fraction, the curves we proposed are always
below the line using binary method. Comparing the binary multiplication with the tech-
nique proposed in (Chang and Lai, 2005), when the bit-length of the exponent is 1024
bits, the speedup ratio of the Chang–Lai algorithm is 1.08 and the speedup ratio of our
proposed algorithm is 1.10. If k is much larger, where k is the bit-length of the exponent,
the speedup ratio of the proposed algorithm can achieve 2.75. We can therefore efficiently
reduce the overall time complexity.

Table 1

Compare the squaring numbers and the speedup ratios between binary method and proposed technique when
l = 1 and k = 256, 512, 1024, 2048 bits respectively

The speedup ratios

256 512 1024 2048
Parts

n = 2 2.06 2.03 2.02 2.01

n = 4 1.39 1.36 1.35 1.34

n = 8 1.23 1.18 1.16 1.15

n = 16 1.21 1.14 1.10 1.08

n = 32 1.30 1.17 1.10 1.07
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Table 2

Compare the squaring numbers and the speedup ratios between binary method and proposed technique when
l = 10 and k = 256, 512, 1024, 2048 bits respectively

The speedup ratios

256 512 1024 2048
Parts

n = 2 2.01 2.00 2.00 2.00

n = 4 1.36 1.35 1.34 1.34

n = 8 1.21 1.18 1.16 1.15

n = 16 1.21 1.13 1.10 1.08

n = 32 1.35 1.17 1.10 1.06

Table 3

Compare the squaring numbers and the speedup ratios between binary method and proposed technique when
l = 0.1 and k = 256, 512, 1024, 2048 bits

The speedup ratios

256 512 1024 2048
Parts

n = 2 2.75 2.34 2.16 2.08

n = 4 1.62 1.48 1.41 1.37

n = 8 1.34 1.26 1.20 1.17

n = 16 1.23 1.17 1.13 1.10

n = 32 1.17 1.14 1.10 1.07

7. Example

Here we put an example to depict the process of proposed technique. We assume
there are nineteen consecutive one in the exponent d. For simplicity, we call them
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, and a19 from
Least Significant Bit (LSB) to Most Significant Bit (MSB). We divide the exponent d

into four parts from LSB to MSB. In other words, there are five consecutive one in the
first, second, and third parts respectively and there are four consecutive one in the fourth
part.

The detail procedures are shown as follows.

Procedure 1:

We put nineteen consecutive one in parallel.

Procedure 2:

We calculate the values of (1)2, (11)2, (111)2, (1111)2, and (11111)2 respectively.
The values are 1, 3, 7, 15, and 31 in sequence and restore them respectively.
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Procedure 3:

We calculate the exponentiation evaluation of the first part from a1 to a5 in the
exponent d. The exponentiation values in sequence from a1 to a5 are presented
21, 22, 23, 24, and 25 respectively.

Fig. 1. The relationship between squaring numbers and k bits when l = 1, n = 4.

Fig. 2. The relationship between squaring numbers and k bits when l = 1, n = 8.
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Fig. 3. The relationship between squaring numbers and k bits when l = 1, n = 16.

Fig. 4. The relationship between squaring numbers and k bits when l = 1, n = 32.

Procedure 4:
The MSB in the exponentiation evaluation of the first part is multiplied by the value
stored in the first part. 25 ∗ 31 = 992, i.e., this is the result of

(1111100000)2. (15)

Procedure 5:
We calculate the exponentiation evaluation of the second part from a6 to a10 in
the exponent d. Because the exponentiation evaluation of the first part is executed
in advance, we can directly calculate the exponentiation evaluation of the second
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Fig. 5. The relationship between squaring numbers and k bits when l = 10, n = 4.

Fig. 6. The relationship between squaring numbers and k bits when l = 0.1, n = 4.

part here. The exponentiation values in sequence from a6 to a10 are presented
26, 27, 28, 29, and 210 respectively.

Procedure 6:
The MSB in the exponentiation evaluation of the second part is multiplied by the
value stored in the first part. 210 ∗ 31 = 31744, i.e., this is the result of

(111110000000000)2. (16)

Procedure 7:
We calculate the exponentiation evaluation of the third part from a11 to a15 in the
exponent d. The exponentiation values in sequence from a11 to a15 are presented
211, 212, 213, 214, and 215 respectively.
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Fig. 7. The relationship between squaring numbers and k bits when l = 10, n = 8.

Fig. 8. The relationship between squaring numbers and k bits when l = 0.1, n = 8.

Procedure 8:

The MSB in the exponentiation evaluation of the third part is multiplied by the
value (1111)2, which is pre-stored in Procedure 2. 215 ∗ 15 = 491520, i.e., this is
the result of

(1111000000000000000)2. (17)

Procedure 9:

We add the results of (11111)2 pre-stored in Procedure 2, Eqs. 15, 16, and 17 to
get the answer: (1111111111111111111)2 = (524287)10.
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8. Conclusions

Generally RSA is a very well tool for electronically signed business contracts, electronic
checks, electronic purchase orders, and other electronic communications that must be au-
thenticated. In computation of the modular exponentiation ME mod N is a fundamental
and important arithmetic operation in many scientific investigations, especially in the area
of cryptography. In this paper, we discuss the cost of exponentiation evaluation by means
of multiplication numbers and squaring numbers. The technique we proposed is always
better than the binary method. We can decrease the numbers (including the multiplica-
tion numbers and the squaring numbers) to speed up the exponentiation evaluation. The
speedup ratio can be 1.06 even 2.75.

Most importantly, the computers are much cheaper today than before. We can there-
fore easily integrate several PCs utilizing parallel softwares like PVMPI, PVM, and MPI
to accomplish this job. Take a look at the popular WWW (World Wide Webs), we can uti-
lize computers to integrate huge computation power. If we adopt the parallel-processing
and hardware-designing techniques properly, we can therefore further reduce the com-
putational complexity of exponentiation evaluation effectively. Our proposed technique
can not only implement the computation of exponentiation to accelerate the speed of
RSA cryptosystem, but also much faster than Savas–Tenca–Koc algorithm (Savas et al.,
2000) in time complexity. No matter is in the domain of cryptology and the other domains
such as satellite image processing, weather prediction, medicine development, gene ex-
ploration, and many mysterious questions, there is still more improvement for us to be
expected.
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Greitas lygiagretus laipsni ↪u skaičiavimo algoritmas RSA viešo rakto
kriptosistemoms

Chia-Long WU, Der-Chyuan LOU, Jui-Chang LAI, Te-Jen CHANG

Mes žinome, kad informacijos saugumo poreikis šiomis dienomis plinta, ypač techninės ↪irangos
realizacijoms, kaip proting ↪u korteli ↪u mikroschemos arba kodavimo greitintuvai. RSA kriptosistema
yra viena iš plačiausiai naudojam ↪u technologij ↪u informacijos saugumui. Pagrindinė RSA krip-
tosistemos kodavimo ir dekodavimo užduotis yra skaičiuoti modulinius laipsnius. Šiame straip-
snyje efektyvus lygiagretus modulini ↪u laipsni ↪u skaičiavimo būdas yra pasiūlytas ir parodyta, kad
pasiūlytas algoritmas yra greitesnis negu Savas–Tenca–Koc algoritmas.


