
INFORMATICA, 2006, Vol. 17, No. 3, 407–426 407
 2006 Institute of Mathematics and Informatics, Vilnius

An Agent-Based Best Effort Routing Technique for
Load Balancing

Sunilkumar S. MANVI, ∗ Pallapa VENKATARAM
Protocol Engineering and Technology (PET) UNIT
Electrical Communication Engineering Department, Indian Institute of Science
Bangalore-560012, India
e-mail: {sunil@protocol.ece.iisc.ernet.in, pallapa@ece.iisc.ernet.in}

Received: May 2005

Abstract. Several best effort schemes (next-hop routing) are used to transport the data in the In-
ternet. Some of them do not perform flexible route computations to cope up with the network
dynamics. With the recent trends in programmable networks, mobile agent technology seems to
support more flexible, adaptable and distributed mechanism for routing. In this paper, we propose
a Mobile Agent based Routing (MAR) scheme with the objectives similar to Routing Information
Protocol (RIP). A comparative study of both the schemes (MAR and RIP) in terms of communi-
cation overheads, convergence time, network bandwidth utilization and average session delays is
presented. The results demonstrate that the MAR scheme performs better than RIP. MAR has com-
paratively less communication overheads and convergence time and also offers more flexibility and
adaptability as compared to RIP. In addition, this paper also presents a MAR based network load
balancing.

Key words: routing, mobile agents, RIP, load balancing, network convergence.

1. Introduction

Routing of Internet datagram traffic consists of two basic tasks. The first task is to collect
state (local/global) information of the network nodes and keep it up-to date. The second
task is to find a path (shortest/optimal) for every new connection. The performance of a
routing algorithm directly depends on how well the first task is solved.

A best effort service for a connectionless routing in the Internet provides qualitatively
better service and aims to increase network bandwidth utilization, minimize adminis-
trative costs and decrease average session delays. Several best effort traditional routing
algorithms use either Dijkstra (link state routing) or Bellman–Ford (distance vector rout-
ing) algorithm to compute the next-hop for an arrived packet that leads the packet to its
destination (Schwartz and Stern, 1980; Bertsekas and Gallanger, 1992).

The metrics used for computing the paths can be either static or dynamic. Static met-
rics are link propagation delays, link costs and hop-count. The dynamic metrics are queue
lengths, queuing delays and residual bandwidth. Some of the Internet routing protocols

*Presently working at Basaveshwar Engineering College, Bagalkot, India.

408

developed based on these metrics are RIP (Routing Information Protocol), OSPF (Open
Shortest Path First) and IS-IS (Intermediate System-Intermediate System) (RFC; Perl-
man, 1999).

In this paper we propose a mobile agent based best effort routing scheme which em-
ploys routing procedure (next-hop routing) similar to RIP. Mobile agent is a piece of code
containing data and program which moves from node to node by executing a given task,
and destroys itself after the task completion. Several research efforts based on mobile-
agent-like approaches are used to solve network routing problems. In an active network,
the smart messages (programs) use self routing mechanism (Tennenhouse et al.). In the
literature we observe that there are very few works available on agent technology appli-
cations in Internet routing. The work given in (Appleby and Steward) on mobile agent
based routing was vague, and did not have a loop free route computation features which
was later modified to overcome this drawback (Schoonderwoerd et al., 1996).

The works given in (Bonabeau et al., 1998; Lipperts and Kreller, 2000) use ant like
agents for routing in telecommunication networks. The ant metaphor is derived from
swarm intelligence of ants in finding shortest paths to their food from a nest (Bonabeau
and Theraulaz, 2000). The work given in (Caro and Dorigo, 1998) describes two ant-
colony algorithms for best effort routing. Ants adaptively build probabilistic routing ta-
bles based on the information they gather while roaming in a network. The work de-
scribed in (Kramer et al., 1999) uses active networking and mobile agents to perform
dynamic routing in complex wireless networks. Mobile agents are also used for network
topology discovery which facilitates network mapping and route computations (Minar et
al., 1999). The work given in (Gonzales–Valenzuela and Leung, 2002) describes an appli-
cation of mobile agents for routing in MPLS (Multi Protocol Label Switching) networks.
A QoS routing scheme using ant like mobile agents is presented in (Oida and Sekido,
2000).

We observe from the literature that none of works address flexible route computations
by using mobile agents. This paper attempts to address the flexible route computations by
demonstrating the load balanced route computations. In the proposed Mobile Agent based
Routing (MAR) scheme, each node in a network sends routing mobile agents to all its
non-neighbor node destinations to discover the routes (source to destination). The routing
mobile agent tracks a path towards the specified destination through a set of intermediate
nodes by updating the routing information at each of the nodes. To provide a loop free
operation, a routing mobile agent marks the visited nodes and jumps to a node other than
the marked nodes whenever it plans to migrate to a next node. To balance the network
load, routing mobile agents compute the routes based on the existing load and the hop-
count.

We have carried out the simulations of RIP and Mobile agent based routing with
and without load balancing, and compared their performance in terms of convergence
time, communication overheads, computational complexity, average session delays, de-
layed/rejected sessions and the network bandwidth utilization.

The next following section describes a best effort routing in Internet. Section 3 cov-
ers RIP based routing and its analysis. Mobile agent based routing and its analysis are

An Agent-Based Best Effort Routing Technique for Load Balancing 409

discussed in Section 4. A comparative analysis of RIP and MAR is given in Section 5.
Simulation results are discussed in Section 6. Finally, benefits of mobile agents in routing
and conclusions are presented in Sections 7 and 8 respectively.

2. Best Effort Routing

In this section we briefly describe the basic principle of best effort routing. There are two
types of best effort routing: source routing and hop-by-hop routing (David and Chapin,
2002). In source routing (connection oriented routing), source puts the routing informa-
tion in a packet and then sends it towards the destination. The job of the intermediate
nodes in a network is simply to read the routing information from the packet and route
accordingly. In hop-by-hop routing, the source is not expected to have all the routing in-
formation about how to reach the destination, it is sufficient if source knows only about
the next-hop, and that node knows its next-hop, and so on, until the destination is reached
(Chen and Nahrstedt, 1998).

The best effort routing protocols compute the paths based on static or dynamic metrics
at regular time intervals. The dynamic metrics such as available bandwidth and queuing
delays adapt to the network dynamics whereas static metrics such as hop-count and link
costs do not adapt. The intradomain best effort routing protocols like RIP uses hop-count
whereas OSPF uses delay and bandwidth as metrics. In a best effort routing, a node cre-
ates a forwarding table which consists of destination and next-hop node pairs. Whenever
a packet arrives, the node searches for the packets’ destination in the forwarding table and
retrieves the next-hop node information for the corresponding destination, and schedules
the transmission of packet to next-hop node. Traditional best effort routing techniques
such as RIP, OSPF, and IS-IS do not perform dynamic load balancing.

In the next section, we describe the functions of RIP which has been coded for the
comparison of our MAR scheme. RIP has been chosen because of its simplicity and
distributed route computing nature (since MAR is also based on distributed computing).

3. RIP Based Routing

We briefly discuss the working of RIP and analyze its performance in terms of computa-
tional complexity, communication overheads and convergence time.

3.1. RIP

It is a routing information protocol used for intradomain routing in Internet within an
autonomous system. Each router maintains a routing table in which an entry for a desti-
nation consists of following fields: number of hops required to reach the destination, next
router along the route to destination, and an interface that will be used to forward packets
addressed to the destination.

Routers periodically advertise their routing tables to their neighbors. The routers com-
pute the new routes to a destination using the received advertisements (Obradovic, 2000).

410

The value of hops should be between 1 and 16, where 16 indicates infinity, i.e., hops �
16 means unreachable. RIP is appropriate for systems that are less than 16 hops apart.
An RIP packet contains a list of destination-hop pairs and a header. The header is 32
bits long and the destination-hop pair is 144 bits long, i.e., in general, a RIP packet has
32 + 144 ∗ (N − 1) bits for a N node network.

A router receiving the route message, analyzes the message and forwards it to its
neighbors except the router from where it has received. While forwarding the route mes-
sages, it updates its routing table if the existing hop-counts for a destination is greater
than the incremented value of the received hop-count metric. The router advertises hop-
count = 16 on the received interface. RIP uses Asynchronous Distributed Bellman–Ford
algorithm (ADBF). At any given time router is in one of the states: idle, receiving adver-
tisement or sending advertisement. RIP introduces more non-determinism in the order of
updates.

3.2. Analysis of RIP

To analyze RIP consider the following.

• N node (router) network where maximum distance between the two nodes is at
most max, and each node has nb neighbors (average value).

• The number of iterations required to find a route for a source-destination pair at
a node is equal to at most max, where the number of computations required for
choosing a minimum path to a destination in each iteration is at most N − 1.

• The size of a routing message (in bits) is given as:

srip = 32 + 144 ∗ (N − 1). (1)

• A node sends routing messages to its nb neighbors for at most max times (since
a node in a worst case receives routing messages from all the nodes that are less
than or equal to max hops away). To get the stable routes for all source-destination
pairs a node performs this operation at least twice. Thus each node sends at most
2 ∗nb ∗max routing messages to its neighbors. Thus the total number of messages
(nrip) sent across a network are:

nrip = N ∗ (2 ∗ nb ∗ max). (2)

• The expected inter-generation time of routing messages among the nodes is
E(δrip

ig). Thus, the time at which a last node generates routing messages (∆rip)
with respect to a first node is:

∆rip = E(δrip
ig) ∗ (N − 1). (3)

• Each generated routing message passes through at most max +1 nodes. The ex-
pected processing delay at each node is E(δrip

nd). Thus the total processing delay
(pdrip) of a routing message is:

pdrip = (max+1) ∗ E(δrip
nd). (4)

An Agent-Based Best Effort Routing Technique for Load Balancing 411

• Let δld be the propagation delay on a link. Thus link propagation delays experi-
enced by a routing message (ldrip) is:

ldrip = δld ∗ max . (5)

• At each node, a routing message waits in a queue until the completion of service
of at most nb routing messages, hence the total queuing delays (qdrip) will be:

qdrip = max ∗nb ∗ E(δrip
nd). (6)

Now we give the analysis of RIP in terms of computational complexity, communica-
tion overheads and the route convergence time.

Computational Complexity
It is defined as the number of worst case computations required to compute the short-
est/optimal routes from a source to all destinations. The computational complexity of RIP
is O(N2 ∗ max), since a node runs the algorithm for N times, in each time it computes
routes for N nodes, and needs max alternatives to get converged routes.

Communication Overheads
It is defined as the bandwidth consumed by the routing messages to find the short-
est/optimal routes. The routing overheads are computed as a product of number of gen-
erated routing messages and the size of a routing message. Communication overheads in
RIP (corip in bits) is given as (by using Eqs. 1 and 2):

corip = srip ∗ nrip. (7)

Route Convergence Time
It is defined as the time required to compute a set of stable paths in the network. The con-
vergence time (ctrip) of the network is computed as the sum of the following parameters:
the relative time at which the last routing message is generated; processing, propagation
and queuing delays of the last routing message to reach a node at most max hops away
from it (by using Eqs. 3–6).

ctrip = ∆rip + pdrip + ldrip + qdrip. (8)

4. Mobile Agent Based Routing

We have developed a mobile agent based routing (MAR) scheme with the similar objec-
tives of RIP, and it also performs network load balancing as well. In this section, we first
introduce the mobile agents, later we discuss the designed mobile agent based routing
technique and its analysis.

412

4.1. Mobile Agents

Agents are the autonomous programs activated on an agent platform of a host. The agents
use their own knowledge base to achieve the specified goals without disturbing the ac-
tivities of the host. They have two special properties: mandatory and orthogonal, which
make them different from the standard programs. Mandatory properties are: autonomy,
reactive, proactive and temporally continuous. The orthogonal properties are: commu-
nicative, mobile, learning and believable (Cetus team, 2002; Manvi and Venkataram,
2004).

Mobile agent is an itinerant agent which contains program, data, execution state infor-
mation, migrates from one host to another host in a heterogeneous network, and executes
at a remote host until it completes the given task (Chess et al., 1995). By nature mobile
agents are flexible modular entities which can be created, deployed and deleted in real
time. The mobile code should be platform independent, so that, it can execute at any re-
mote host in a heterogeneous network environment. Inter-agent communication can be
achieved either by message passing, RPC (Remote Procedure Call) or blackboard archi-
tecture (Wong et al., 1999).

A mobile agent platform comprises of agents, agent server, interpreter and transport
mechanisms. Agent server is responsible for receiving mobile agents and sending it for
execution by local interpreter. Agents can be written in Java, Tcl, Perl and XML lan-
guages. Agent interpreter depends on the type of agent script/language used. An agent
platform offers following services: creation of static and mobile agents, transport for mo-
bile agents, security, communication messaging, and persistence. Some of the Java based
agent platforms are: Aglets, Grasshopper, Concordia, Voyager and Odyssey (Chess et al.,
1995).

Agent based schemes offer several advantages as compared to traditional approaches:
overcomes latency; reduces network traffic; work in heterogeneous environment; encap-
sulates protocols; flexibility; adaptability to network traffic characteristics and failures;
software reusability and maintainability; and facilitates creation of customized dynamic
software architectures (Lange and Oshima, 1999; Perdikeas et al., 1999). However, sev-
eral overheads are associated with the agent based schemes: creation of a standard agent
platform; security to hosts from mobile agents and vice versa.

4.2. Design Aspects of MAR Based Routing

• Every node in a network maintains the routing table entries similar to RIP.
• To simplify the communication among the mobile agents routing table is main-

tained based on the principles of blackboard architecture.
• We assume the availability of a mobile agent platform at all the routers (nodes) in

a network. However in case of non-availability of an agent platform, agents gather
and update routing information by using traditional mechanisms.

• The manager agent at the source generates a route finding mobile agent to find the
routes to the specified destinations.

• By considering the link load, route finding agent identifies the load balanced routes.

An Agent-Based Best Effort Routing Technique for Load Balancing 413

• The manager agent at every node synchronizes the routing table updating.

We describe the notations used in MAR scheme by considering the N node network.
Hop-count bound: It defines the maximum hops that an agent can travel which is equal

to max.
Agent visit-node information (M [.]): It is a part of data segment of an agent in which

the addresses of the visited nodes are stored.
Neighbor set (nbI): A neighbor set of a node I comprises of its neighboring nodes in

the network, where Iε{1, 2, .., N}.
Length of neighbor set (LNBI): It defines the number of elements in the neighbor set

of a node I .
Destination set (DI): A destination set of a node I comprises of all non-neighboring

nodes in the network, where Iε{1, 2, .., N}. And DI = {dI,1, dI,2,, dI,LDI}, where
LDI=length of the destination set.

Length of destination set (LDI): It defines the number of elements in the destination
set of a node I which is equal to (N − 1) − LNBI .

Link load (lkload[x][y]): It defines the total load on a link x-y, where x ∈ {1, ..N},
and y ∈ {1, ..N}.

Link capacity (C[x][y]): It is defined as the maximum capacity of a link x-y.

4.3. Route Finding in MAR Scheme

The route finding mobile agent constitutes two segments: data and procedures. The data
segment stores the visit-node information and hop-count estimate. The agent procedures
are used to perform the following operations: loop free agent movement, updating the
routing tables, selection of a next-hop, and agent disposal. These procedures are located
in an agent platform at a node.

The route finding mobile agent is triggered by the source node to find a best path
to a specified destination in the destination set. While tracing a route, the agent updates
the routing information at the visited nodes starting from the given source to establish a
loop free path. After the finding the required route the agent is disposed. The measure
hop-count bound avoids the agent traversing the long paths. The pseudo-code for mobile
agent based routing algorithm is described in Algorithm MAR.

Algorithm MAR: Route finding by using mobile agents
{Nomenclature: S = source node, dS,j = jth destination in destination set DS , LDS = number
of destinations of a source S, M [] =agent visit-node information, neb =neighbor}
Begin
1. For all S = 1 to N do
Begin
2. For all j = 1 to LDS do
Begin
3. Create a route finding mobile agent at node S;
4. Pick up a destination dS,j from DS ;
5. Initialize the data in mobile agent: max; visited-count, c = 1; hop-count estimate, h = 0;
destination = dS,j ; visit-node information M [1, .., max] = 0; and M [c] = S;

414

Fig. 1. Mobile agent based route establishment.

6. Mobile agent picks a neighbor neb from the neighbor set of M [c] node with equal probability,
such that the selected neighbor is not in array M ;
7. If a distinct neighbor is found then migrate to neb otherwise goto Step 3.
8. Increment c and h (c = c + 1, h = h + 1). And update the array M with node address neb, i.e.,
M [c] = neb;
9. For all c − 1 visited nodes M [1] to M [c − 1], update the paths at M [c] node:

• th = h;
• For vn = 1 to c − 1 do

If existing hop-count for M(vn) is greater than th then, update the path, i.e., set next-hop
= M [c − 1] and hop-count = th;
th = th − 1;

10. If M(c) == dS,j or h == max, then agent is disposed, otherwise goto Step 6;
Endfor j;
Endfor S;
11. Stop.
End.

In general, if an agent visits νk nodes, it establishes the routes to all the νk nodes
from the source and updates the routing tables at all these nodes. In case, a route is not
found for a specific destination, it is cheaper to find a route from its neighbors through
simple message exchange mechanisms (justification to this is given in simulation results)
rather than again deploying the mobile agents .

We explain the routing establishment process by considering i as a source node and m

as a destination node in a network (see Fig. 1). We show in Fig. 1, a route finding mobile

An Agent-Based Best Effort Routing Technique for Load Balancing 415

agent initiated at node i traverses through nodes j, k, l to reach node m by using MAR
scheme.

1. The agent travels through nodes j, k, and l to reach the destination node m.
2. On the way to node m, it establishes the routes at (assumes existing hop-counts

are greater than the hop-count estimates brought by the agent) :

• destination k for the source node i and sets the next-hop as j to reach node i

• destination l for the source node i and visited nodes j and sets the next-hop
as k to reach nodes i and j.

• destination m for the source node i and the visited nodes i, j and k and sets
the next-hops as l to reach nodes i, j and k.

3. Agent disposes itself after updating the routes at node m.

4.4. MAR with Load Balancing

A load balancing mechanism helps to increase the network efficiency and allows bet-
ter throughput for the applications. In this work, we have experimented with MAR for
dynamic load balancing of a network. We extend the MAR method to perform the load
balancing (MARWL) in a network in a distributed fashion. Mobile agents gather the in-
formation besides the hop-count the existing load at every link which they traverse which
will be used for establishing load balanced routes for a given source. The pseudocode
given below describes the changes to be made in Step 8 and 10 of Algorithm MAR for
load balancing:

Step 8:
Increment c;
Update the array M with node address neb: M [c] = neb;
x = M [c − 1]; y = M [c];
If(lkload[x][y] � (C[x][y]/4.0)) then h = h + 1;
If(lkload[x][y] > (C[x)][y]/4.0) and lkload[x][y] � (C[x][y]/2.0)) then h = h + 2;
If(lkload[x][y] > (C[x][y]/2.0) and lkload[x][y] � (C[x][y]/3.0)) then h = h + 3;
If(lkload[x][y] > (C[x][y]/3.0) and lkload[x][y] � C[x][y]) then h = h + 4;
If (lkload[x][y] > C[x][y]) then h = h + 5;

Step 10:
If M(c) == dS,j or (c − 1) == max, then agent is disposed, otherwise goto Step 6.

MARWL translates the link load into the additional hop-counts to discourage the in-
clusion of heavy loaded links onto the path. The hop-count estimates may also be gener-
ated by using logarithmic or exponential relations ships between the maximum capacity
of a link and the link load (in case of network load behavior following either of the rela-
tionships: logarithmic or exponential).

4.5. Analysis of MAR

In the analysis of MAR we consider the size of the agent, number of agents, time taken
for the processing, etc., to compute the agent based overheads.

416

• For a node in N node network there will be N − 1 agents visit to establish path to
a single source, i.e., for all N − 1 sources (N − 1) ∗ (N − 1) agents visit at each
node.

• Each agent establishes route for at most max nodes.
• The data part consists of network addresses (32 bits), network family (5 bits) and

max (4 bits, since maximum hop considered is 15) the maximum hop-count value.
Thus the maximum bits required to store data part of an agent is 37 ∗ max bits.

• The procedures used in route finding agent are comproute and snexth. The compro-
ute performs loop free agent migration, computes the routes and updates the routing
table whereas snexth selects a next-hop for migration. Hence total number of bits
required for calling these procedures and storing hop-count value is approximately
150 bits. Thus the agent size (in bits) is:

smar = 37 ∗ max+150. (9)

• The number of agents generated by each node in a network is N − nb − 1, where
nb is number of neighbors. Thus the total number of agents generated in a network
are:

nmar = (N − nb − 1) ∗ N. (10)

We also refer nmar as an agent population.
• Average number of hops traveled by an agent is: avg = (min + max)/2, where

min = 2 (minimum hops). Thus the average number of hops traveled by the agent
population in the network is given as (by using Eq. 10):

nhmar = nmar ∗ avg. (11)

• Each agent passes through avg + 1 nodes on an average before getting destroyed.
At every node, it executes and migrates to a next-hop. Let the expected inter-
generation time of agents among the nodes as E(δmar

ig) time units. Thus the time
at which the last node starts generating agents with respect to the first node is:

∆mar = E(δmar
ig) ∗ (N − 1). (12)

• Let the expected agent execution time at each node is E(δmar
nd) time units. Thus

the total execution delays experienced by an agent on the traversed path is given
as:

pdmar = (avg + 1) ∗ E(δmar
nd). (13)

• Let δld be the propagation delay on a link. Thus the total time spent by an agent on
the links of the traversed path is:

ldmar = δld ∗ avg. (14)

An Agent-Based Best Effort Routing Technique for Load Balancing 417

• The queuing delays for an at a node are nb ∗ E(δmar
nd) time units. Thus the total

queuing delays over the traversed path is given as:

qdmar = avg ∗ nb ∗ E(δmar
nd). (15)

• In case, if a node does not have all the routes, it gets the routes from its neighbors,
hence the delay in getting this information through message exchange from the
neighbor is:

nbdmar = 2 ∗ (E(δmar
nd) + δld). (16)

Computational Complexity
It is defined as the number of agent computations required to compute the short-
est/optimal routes from a source to all destinations. The worst case computational com-
plexity of MAR is O(N2 ∗ max), since N2 agents visit a node and each agent updates
the route for max nodes.

Communication Overheads
It is defined as the bandwidth required by the routing mobile agents to find the short-
est/optimal routes. The overheads are computed as a product of number of generated
agents, an agent size, and the number of hops traveled by an agent. Thus the communi-
cation overheads in MAR is given as (by using Eqs. 9 and 11):

comar = smar ∗ nhmar. (17)

Route Convergence Time
It is defined as the time required to compute all the stable paths in a network. Thus the
convergence time of MAR of a network is computed as the sum of the following param-
eters: the relative time at which the last node generates agents; processing, propagation
and queuing delays experienced by the last generated agent. It is computed by using the
Eqs. 12–16.

ctmar = ∆mar + pdmar + ldmar + qdmar + nbdmar. (18)

5. Comparative Analysis

We consider three network configurations Net1, Net2 and Net3 to compute the commu-
nication overheads and convergence time in both RIP and MAR. The parameters of each
network are: for Net1, N = 15, nb = 3, max = 6 and avg = 4; for Net2, N = 25,
nb = 3, max = 8 and avg = 5; for Net3, N = 40, neb = 5, max = 10 and avg = 6.
Communication overheads for RIP and MAR are computed using Eqs. 7 and 17 respec-
tively. We observe that MAR has lesser communication overheads as compared to RIP
for all the network configurations (see Fig. 2).

418

Convergence time for RIP and MAR are computed using Eqs. 8 and 18 respectively.
In the analysis we assume expected inter-generation time and expected computation time
for both RIP and MAR are same: E(δrip

ig) = E(δmar
ig) = 0.03 seconds and E(δrip

nd) =
E(δmar

nd) = 0.045 seconds. Let the link propagation delay be δld = 0.1 seconds. We
observe that MAR converges slightly better than RIP for all the network configurations
(see Fig. 3). Some times routes may not converge faster because of random walks of
agents: in such a case, we may experience rise in convergence time.

We observed that number of worst case computations required to compute the paths
from a source to all destinations in both RIP and MAR are same (O(N2∗max)). However
the best case computational complexity will be much lesser in case of MAR, i.e., O(N ∗
max) (a node executes an agent sent to it from all the nodes to get paths to all destinations)
whereas in case of RIP, it is O(N2).

6. Simulation

We have simulated RIP and MAR (with and without load balancing) by using several
network topologies (16 to 100 nodes). Both the algorithms were executed at regular in-
tervals to compute the routes. In this section, we discuss the network traffic model used
to test the proposed scheme, simulation procedure and the results.

Network configuration RIP MAR

Net 1 1.088 Mbits 0.245 Mbits
Net 2 4.14 Mbits 1.16 Mbits
Net 3 22.59 Mbits 4.2 Mbits

Fig. 2. Communication overheads in Net1, Net2 and Net3 configurations for RIP and MAR.

Fig. 3. Convergence time in Net1, Net2 and Net3 configurations.

An Agent-Based Best Effort Routing Technique for Load Balancing 419

6.1. Network Traffic Model

A network is modeled as connection of N nodes with each link capacity C. The link prop-
agation delay is ld. The traffic in the network is generated by Ns contributing sources
at any instant of time. The arrival rate λ, indicates the number of actual contributing
sources among the Ns sources (for example, if λ = 0.5 and Ns = 200, actual con-
tributing sources at any instant of time are 100 (0.5*200)). The source-destination node
pairs are chosen randomly to generate the traffic. Bandwidth requirement of a source is
randomly distributed within the range [x, y] Mbps. The existing load on each link of a
network is uniformly distributed within the range [w, z] Mbps on some selected paths.

6.2. Simulation Procedure

The inputs to the simulation are as follows. N is considered as 16, 25 and 100 for different
case studies; C = 100 Mbps; ld = 0.1 sec; consider Ns = 300, 1000, 2000 for different
cases; x = 1, y = 18, w = 20, and z = 120. The maximum hop-count is 6, 8 and
10 for 16, 25 and 100 node topologies respectively. The average number of neighbors
are 3, 3 and 8 for 16, 25 and 100 node topologies respectively. Inter-generation of RIP
routing messages from nodes is uniformly distributed within the range, [0.01, 0.05] sec.
The computation time of a RIP routing message at a node is uniformly distributed within
the range [0.01, 0.08] seconds. The inter-generation time of agents between nodes are
uniformly distributed within the range [0.01, 0.05] sec. The computation time of an agent
at a node is uniformly distributed within the range [0.01, 0.08] sec (agent size is less than
the RIP routing message, refer Eqs. 1 and 9). Simulation procedure is as follows.

Begin
1. Generate a partial connected network topology;
2. Apply the routing algorithms both RIP and MAR;
3. Compute the performance of the routing schemes;
4. Generate the required routes under the background load and load balancing

method;
5. Compute the network performance under balanced load conditions with

background and foreground load.
End.

The performance of RIP and MAR is evaluated in terms of following parameters:
• Percentage of rejected or delayed sessions: It is defined as the ratio of sessions

which are unable to route immediately to the number of sessions requesting for immediate
transmission (a session is considered to be rejected/delayed on its arrival at a node, if a
node is unable to immediately route due to limitations of link capacity).

• Network bandwidth utilization: It is defined as the bandwidth utilized in all the links
of a network.

• Average session delay: It is defined as the ratio of sum of the time required by all the
sessions to transmit the information with required bandwidth to the number of sessions
on the network.

420

6.3. Results

RIP generated 370 and 900 routing messages for 16 and 25 node topology respectively.
MAR generated an agent link population (sum of number of hops traveled by each gener-
ated agent) of 717 and 2840 for 16 and 25 node topology respectively. The generated rout-
ing tables of both RIP and MAR were noticed to check for similarity of generated routes:
RIP computed 100% shortest routes whereas MAR computed 95% shortest routes, and
rest of the routes were either one or two hops longer than RIP routes. Communication
overheads are less in MAR as compared to RIP and convergence time for MAR is better
than RIP (see Fig. 4).

MAR performs almost similar to RIP in terms of session rejections, average ses-
sion delays and network bandwidth utilization (see Figs. 5–10). We notice that MARWL
shows increase in network bandwidth utilization and reduces the session rejections and
delays as compared to both RIP and MAR.

Figs. 11–13 show the results of simulation of MARWL for 100 node topology. We no-
tice that bandwidth utilization, rejected/delayed sessions and the session delays increase
with increase in arrival rates and the number of sources. The communication overheads
and the convergence time computed for this topology are 250.25 Mbits and 4.25 seconds,
respectively. All the results indicate that mobile agent based routing performs better than
RIP by providing more flexible and adaptable services.

Convergence time Communication overheads
Topology RIP MAR RIP MAR

16 nodes 2.23 sec 1.92 sec 799.20 kbits 266.72 kbits
25 nodes 3.35 sec 2.98 sec 3.46 Mbits 1266.64 kbits

Fig. 4. Convergence time and Communication overheads for RIP and MAR (16 and 25 node topologies).

Fig. 5. Network bandwidth utilization .Vs. Arrival rate (16 node topology).

An Agent-Based Best Effort Routing Technique for Load Balancing 421

Fig. 6. Sessions delayed/rejected .Vs. Arrival rate (16 node topology).

Fig. 7. Average session delays Vs. Arrival rate (16 node topology).

Fig. 8. Network bandwidth utilization .Vs. Arrival rate (25 node topology).

422

Fig. 9. Sessions delayed/rejected .Vs. Arrival rate (25 node topology).

Fig. 10. Average session delays .Vs. Arrival rate (25 node topology).

Fig. 11. Network bandwidth utilization .Vs. Arrival rate (100 node topology).

An Agent-Based Best Effort Routing Technique for Load Balancing 423

Fig. 12. Sessions delayed/rejected .Vs. Arrival rate (100 node topology).

Fig. 13. Average session delays .Vs. Arrival rate (100 node topology).

7. Benefits of Agents in Routing

We experience that agent based routing scheme offers flexibility, scalability, efficiency,
adaptability, software reusability and maintainability. Even though it is difficult to quan-
tify these features, we explain below how they are demonstrated in the proposed routing
scheme.

Flexibility: The agents allow learning capabilities to be incorporated in a natural way
to find the routes. Asynchronous and intelligent route computations leads to smart net-
works. For example, the scheme facilitates change in routing metrics by encoding within
the agent. Hence, at any time of day, we can have next-hop routing based on either hop-
count, delay, bandwidth or mixed metrics depending on the network operating conditions
and type of significant traffic (either delay sensitive or throughput sensitive).

Scalability: The proposed scheme restricts the agent movement till 15 nodes. The
method is scalable to any size of the network and also can be implementable in the net-
works which have several clusters of different sizes without any modifications.

424

Efficiency: The scheme with load balancing showed significant improvements in the
bandwidth utilization of a network as well as reduced the rejections and session delays.

Adaptability: The agents adapt to a network environment by creating load balanced
routes. Agents can also be programmed to balance the load in a network by dynamically
changing the routes based on the congestion level of the links, i.e., divert some of the
traffic of randomly selected source-destination pairs by computing new patchup route for
the congested link.

Reusabillity: The routing agents can be reused to perform multiple path computations
with slight modifications in the agent code. Multiple paths computation are done based
on different hop-counts, delays, and link loads, which facilitate routing of applications
with different service requirements. This will also help in balancing the load across a
network and reduce average packet delays and optimizes throughput. Multiple paths fa-
cilitate routing under link and node failures.

Maintainability: We can easily debug the agent components and also replace the old
agent components with a new ones. For example, if we develop a new scheme of route
finding based on current/future network situations, we can replace the route finding agent
component.

Encapsulation of a protocol: Agents encapsulate the protocol in itself thereby avoids
complex signaling mechanisms and the need to introduce the new protocols in the layer
after going through a long process of standardization. Agents can be programmed to
perform aggregate tasks of all other routing protocols.

Agent oriented programming facilitates the component based software engineering
(CBSE) which is in great demand today (Griss and Pour, 1999; Jennings, 2001). Agent
components can be independently developed by different developers, which can be se-
lected and customized by a software architecture designer to create a dynamic software
architecture. In future there will be enormous number of agents (agents are next genera-
tion components) which have to coordinate with each other to provide better multimedia
information searching, retrieval and communication services.

8. Conclusions

We proposed an agent based routing scheme which uses routing mobile agents to gen-
erate the routing tables at every network node for best effort routing. An analysis and
simulation of proposed scheme and RIP are carried out, and their performances are com-
pared. The results demonstrated that the agents reduce the routing traffic, convergence
time and perform better than RIP. We also showed how agents can be used to compute
the load balanced paths to efficiently utilize the network bandwidth in case of uneven
distribution of network load. Agent based routing architectures provide robust, flexible
and distributed mechanisms to adapt to the network dynamics.

The work can be extended to hetergenous networks comprising of wireless and wired
networks. Several set of agents can be generated that perform route computations sepa-
rately in both wired and wireless ad-hoc networks. Mobile agent’s asynchronous nature

An Agent-Based Best Effort Routing Technique for Load Balancing 425

can be exploited in mobile ad-hoc networks. The agent can be programmed to take into
account the reliability, mobility and security factors for finding the load balanced and
energy constrained paths in mobile nodes of ad-hoc networks.

References

Appleby. S and Steward. S, “Mobile software agents for control in telecommunication networks”, British Tele-
com Technology Journal, vol. 12, pp. 104–113, 1994.

Bertsekas, D., R. Gallanger (1992). Data Networks. Prentice Hall, New York.
Bonabeau, E., F. Henaux, S. Gurin, D. Snyers, P. Kuntz, G. Thraulaz (1998). Routing in telecommunication

networks with smart ant-like agents. Proc. 2nd Intl. Workshop on Agents in Telecommunications Applications
(IATA).

Bonabeau, E., and G. Theraulaz (2000). Swarm smarts. Scientific American, 55–61.
Caro, G.D., and M. Dorigo (1998). Two ant colony algorithms for best-effort routing in datagram networks.

In Proc. 10th IASTED International Conference on Parallel and Distributed Computing and Systems
(PDCS’98). pp. 541–546.

Cetus team (2002). Distributed Objects and Components: Mobile Agent
http://www.cetus-links.org/oo_mobile_agents.html

Chen, S., and K. Nahrstedt (1998). An overview of quality of service routing for next generation high speed
networks: problems and solutions. IEEE Network Mag., 64–79.

Chess, D., Benjamin, C. Harrison, D. Ievine, Colin, Paris (1995). Itinerant agents in mobile computing. IEEE
Personal Communication, 35–49.

Chess, D., C. Harrison, A. Kershenbaum (1995). Mobile Agents: are They a Good Idea? IBM Research Divi-
sion, T.J. Watson Research Center, Yorktown Heights, New York.

David, M.P, and A. Lyman Chapin (2002). Introduction to Routing
http://www.corecom.com/html/OSNconnexions.html

Gonzales–Valenzuela, S., and V.C.M. Leung (2002). QoS routing for MPLS networks employing mobile agents.
IEEE Network Mag..

Griss, M.L., and G. Pour (1999). Accelerating development with agent components. IEEE Computer Mag.,
34(5), 37–43.

Jennings, N.R. (2001). An agent-based approach for building complex software systems. Communications of
ACM, 44, 35–41.

Kramer, k.H., N. Minar, P. Maes (1999). Tutorial: mobile software agents for dynamic routing. Mobile Com-
puting and Communications Review, 3(2), 12–16.

Lange, D.B., and M. Oshima (1999). Seven good reasons for mobile agents. Communications of ACM, 42,
88–89.

Lipperts S., and B. Kreller (2000). Mobile agents in telecommunications – A simulative approach to load
balancing. Proc. ISAS.

Manvi, S.S., and P. Venkataram (2004). Applications of agent technology in communications: a review. Com-
puter Communications, 15(3), 1493–1508.

Minar, N., K.H. Kramer, P. Maes (1999). Cooperating mobile agents for mapping networks. In Proc. First
Hungarian National Conference on Agent Based Computation.

Obradovic, D. (2000). Formal Analysis of Convergence of Routing Protocols. Phd Thesis, University of Penn-
sylvania.

Oida, K., and M. Sekido (2000). ARS: an efficient agent-based routing system for QoS guarantees. Computer
Communications, 23, 1437–1447.

Perdikeas, M.K., F.G. Chatzipapadopoulos, I.S. Venieris, G. Marino (1999). Mobile agent standards and avail-
able platforms. Computer Networks, 31, 1999–2016.

Perlman, R. (1999). Interconnections, Bridges and Routers. Addison-Wesley, London.
RFC 1058 (RIP), RFC 2178 (OSPF), RFC 1142 (IS-IS).
Schoonderwoerd, R., O. Holland, J. Bruten, L. Rothkrantz (1996). Ant-based load balancing in telecommuni-

cations networks. Adaptive Behavior, 5(2).

426

Schwartz, M., T. Stern (1980). Routing techniques used in computer communication networks. IEEE Trans. on
Commn., 28, 539–552.

Tennenhouse, D.L., J.M. Smith, W.D. Sincoskie, D.J. Wetherall, G.J. Minden (1997). A survey of active network
research. IEEE Communications Mag., 35(1), 80–86.

Wong, D., N. Paciorek, D. Moore (1999). Java based mobile agents. Communications of ACM, 42.

S.S. Manvi received ME degree in electronics from U.V.C.E, Bangalore University, India,
in 1993 and PhD degree in electrical communication engineering from Indian Institute
of Science, Bangalore, India, in 2004. He is currently working as professor and a head
of Electronics and Communication Engineering Department, Basaveshwar Engineering
College, Bagalkot, India. His areas of interest include multimedia communications and
networking, applications of mobile agents and mobile computing. He has more than 60
national and international publications in referred journals and conferences. He has coau-
thored a book titled “Communication Protocol Engineering", published by PHI, India, in
2004. He has also served as program commitee member of several national and interna-
tional conferences. He is a member of IEEE, USA, Fellow of IETE, India, and member
of ISTE, India.

P. Venkataram received MSc degree in mathematics from Sri. Venkateswara Univer-
sity, Tirupathi, India, in 1973 and PhD degree in information sciences from University
of Sheffield, U.K, in 1986. He is currently professor of Electrical Communication Engi-
neering Department, Indian Institute of Science, Bangalore, India. His areas of research
include wireless networks, computational intelligence in communication networks, pro-
tocol engineering and multimedia systems. He has visited several universities in India
and abroad as visiting scientist and professor. He has more than 150 paper publications
in referred conferences/journals, chapters in two books and edited a book. He has also
authored a book titled “Communication Protocol Engineering", published by PHI, India,
in 2004. He has served in various capacities in many IEEE and ICCC conferences and
workshops. He is a fellow of IEE, U.K, a fellow of IETE, India, and a senior member of
IEEE computer society, U.S.A.

Agentais grindžama geriausio bandymo maršrutizavimo schema
srautams balansuoti

Sunilkumar S. MANVI, Pallapa VENKATARAM

Naudojami keli geriausio bandymo metodai duomenims ↪i Internet ↪a transportuoti. Maršrut ↪u
skaičiavimai, atliekami kai kuriais iš t ↪u metod ↪u, nesugeba lanksčiai susidoroti su tinklo dinamika.
Mobili ↪u agent ↪u technologijos turėt ↪u užtikrinti lankstesn↪i, adaptyvesn↪i ir labiau paskirstyt ↪a maršruti-
zavimo mechanizm ↪a. Straipsnyje siūloma Mobiliais Agentais grindžiama Maršrutizavimo (MOM)
schema, kurios tikslai panašūs ↪i Maršrut ↪u Informacijos Protokolo (MIP) schem ↪a. Ši ↪u schem ↪u ly-
ginimo rezultatai rodo, kad MAM schema veikia geriau nei MIP schema. MAM lankstesnė, adap-
tyvesnė, jos konvergavimo laikas trumpesnis.

