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Abstract. This paper discusses the determination of the spare inventory level for a multiechelon
repairable item inventory system, which has several bases and a central depot with emergency
lateral transshipment capability. Previous research is extended by removing a restrictive assumption
on the repair time distribution. A mathematical model that allows a general repair time distribution,
as well as an algorithm to find a solution of the model, is developed. Thus, the main focus of this
study is to improve the accuracy of previous models and to estimate the gain in accuracy from use
of the current methodology. Computational experiments are performed to estimate the accuracy
improvement and to determine the managerial implications of the results.
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1. Introduction

Repairable items refer to expensive, critically important components which have infre-
quent failures; these are common in the military and in a variety of commercial settings.
Aircraft and warship engines, transportation equipment, and high cost electronics are typ-
ical examples of repairable items. While the repairable inventory problem has its roots in
military applications, it is extremely relevant today for both the military and commercial
sectors. For this reason, researchers study numerous policies on setting the spare inven-
tory stocking levels and on estimating the operating characteristics of the system.

Research reports on single or multi-echelon systems include the works of Sherbrooke
(1968), Gross et al. (1987), Albright and Gupta (1993), and Kim et al. (1996, 2000). The
METRIC model, developed by Sherbrooke (1968) assumes infinite repair capacity. Gross
et al. (1987) consider a two-echelon (two levels of repair, one level of supply) system
and present an implicit enumeration algorithm to calculate the capacities of the base and
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depot repair facilities, as well as the spare levels, which jointly guarantee a specified
service rate at a minimum cost. Albright and Gupta (1993) develop an approximation
algorithm for the system with added assumptions of finite operating and multi-indentured
items; these models have two levels of supply and one level of repair. Kim et al. (1996,
2000) introduce algorithms that determine the optimal inventory level under finite repair
capacities.

For a lateral transshipment, Das (1975) suggests a periodic review inventory model
that consists of only two locations, and where transshipment is allowed at pre-specified
times during the review period. Hoadley and Heyman (1977) consider a one-period mul-
tiechelon model that allows lateral transshipment between stocking points at the same
echelon level. Lee (1987) develops a model that derives an approximation for the ex-
pected level of backorders and the quantity of emergency transshipments. Axsäter (1990)
suggests a method to estimate the same operating characteristics of a similar system that
puts more emphasis on accurately modeling the demand at a base; additionally, it can be
applied to the case of nonidentical bases, which is in contrast to (Lee, 1987). Jung et al.
(2003) consider lateral transshipments with finite repair channels. They develop a model
for the determination of the local optimal spare levels that minimizes the total expected
cost of the system; the algorithm is tested using examples of various size and format.

Most of the previous research on repairable item systems adopts an exponential dis-
tribution for the repair time. A few exceptions include the M/G/c models by Díaz and
Fu (1997), the VARI-METRIC models with an M/G/c queueing system by Sleptchenko
et al. (2002), the Erlang distribution model by Perman et al. (2001), and a dual sourcing
system by Fong et al. (2000). Real world distributions are often approximated by an ex-
ponential distribution since it can closely represent the various types of repair times and
has high tractability. However, this kind of approximation is often too crude for an ac-
ceptable system representation. When this is the case, a more specific type of distribution
must be used. For this reason, this study suggests a mathematical model that allows for
a variety of repair time distributions and an algorithm is proposed to find the solution of
the model.

This paper is organized as follows. In the next sections, Section 2 and Section 3,
the model and the probability distributions of the system are described, respectively. In
Section 4, the details are provided for the algorithm. Section 5 presents the results of
the computational experiments. The paper is concluded with Section 6, which includes
managerial implications and comments on the extension.

2. Model Description

The system considered in this study has several bases and a central depot with a single
type of repairable item. Each base has its own spare inventories and base repair center.
The central depot stocks no spares and only repairs failed items transported from the
bases. An infinite number of items are operating at each base. Failures occur according
to the Poisson process with a rate of Λi at the base i. If an item fails in a base and a
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spare is available at the base, then it is immediately replaced. However, if there is no
spare available at the base, the same type of item is requested as a lateral transshipment
to another base that has the item in stock. If an item is not available at any of the bases,
the item is backordered until a spare becomes available. The backorder is filled when a
repair is completed at the base repair center or a repaired item is returned from the depot.

The failed item is inspected and assorted into a base-repairable classification with a
probability of αi, where it is brought to the base repair center. Otherwise, it is classified
into depot-repairable with a probability of 1−αi. It is then transported to the depot repair
center. Upon receipt of the failed item from a base, the depot adds the base to the waiting
list, which contains the base numbers in the order of arrival. When a repair job is finished
at the depot repair center, a repaired item is sent to a base on a first come, first served
(FCFS) basis and the waiting list is updated.

3. The Probability Distribution of the Number of Unavailable Items

This section discusses the steady-state probability distribution obtained for the total num-
ber of unavailable items at each base i. The unavailable item denotes the items that are
not ready due to three reasons: they are at the base repair center, on the depot’s waiting
list, or in transit between the depot and base i.

The probabilistic behaviors of the base and depot repair centers follow the M/G/c
queueing system. However, it is well known that the M/G/c queue with a general ser-
vice time does not permit a simple analytical solution for the distribution of the number
of customers in the system, including the average waiting time (see, (Tijms, 1994)). In-
stead, useful approximations have been obtained by many researches, including Kimura
(1996) and Miyazawa (1986). Hur and Lee (2000) extend their results and obtain a bet-
ter approximation. They compare their algorithm with simulation and find that it shows
remarkable performance in terms of accuracy. Their approximation is within 6% of the
simulation result, especially with use of a small number of servers (c < 5) and light traf-
fic (ρ < 0.7), which is a commonly observed situation in the system evaluated here; their
result is briefly described in this subsection.

First, the M/G/c queueing system is considered with an arrival rate of Λ and a service
rate of µ. Here, the service time is denoted by A, so that E(A) = 1/µ. Let πn(Λ, A, c) be
the steady-state probability distribution that there are n customers in this system. Then,
for 0 � n � c − 1:

πn(Λ, A, c) =
(Λ/µ)n

n!
P0(M), (1)

where P0(M) =
(∑c−1

n=0
(Λ/µ)n

n! + (Λ/µ)c

c!(1−ρ)

)−1
and ρ = Λ/cµ.

That is, the solution of M/M/c is used because the probabilistic behavior of M/G/c
when 0 � n � c − 1 is very similar to that of a M/M/c system.

For the n = c case:

πn(Λ, A, c) =
(Λ/µ)c

c!
· 1 − ν

1 − ρ
P0(M), (2)
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where ν = ρQ
1−ρ+ρQ .Q is given by 1

4 ·
(
1 + 3E(A2)

2E2(A)

)
for light traffic and by E(A2)

2E2(A) for
heavy traffic (Kimura, 1996).

Finally, when n � c:

πn(Λ, A, c) =
( ΛE(A) + 3ΛE(A+)

4c − 3ΛE(A) + 3ΛE(A+)

)n−c

· πc(Λ, A, c), (3)

where A+ is the remaining service time, so that E(A+) = E(A2)/2E(A).
Next, in order to obtain the steady-state probability distribution of the total number of

unavailable items at each base, some probability distributions are derived.
The following describes some of notations used:

P (bi) – probability distribution that there are n items at the repair center of base i,
P (D) – probability distribution that there are N items in the waiting list of the depot

repair center,
P (ki) – probability distribution that there are ki depot-shortage items with respect to

base i at the depot,
P (li) – probability distribution that there are li items in transit from/to base i,
P (zi) – probability distribution that the total number of unavailable items of base i is zi.

A complete listing of notations can be found in the Appendix.

3.1. Derivation of P (bi)

There are ci repair channels at the repair center of base i, where the repair times at each
channel are assumed to be a independent and identically distributed (IID) random variable
Ai with mean 1/µi. Since an infinite population is assumed, the base repair center can
be modeled as an M/G/ciqueueing model, where the arrival (base-repairable failure) rate
is αiΛi and the repair time is Ai. Using the results from equations (1) through (3), the
steady-state probability distribution that there are bi items at the base repair center i,
P (bi), is given by the following (4):

P (bi) = πbi

(
αi(Λi + βi − δi), Ai, ci

)
. (4)

3.2. Derivation of P (zi)

The probability distribution of the unavailable items of base i, P (zi), can be obtained by
convolution of the probability distributions, as shown in Eq. 5. The rightmost distribution
on the right-hand side of (5) is the probability distribution of the number of items at the
base repair center.

P (zi) =
zi∑

li=0

zi−li∑
ki=0

P (li) · P (ki) · P (zi − ki − li). (5)

Derivation of P (li) and P (ki) can be found in (Jung et al., 2003) and is omitted from
this paper.
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3.3. Probability Distribution of Lateral Transshipments to Other Bases

The probability that a lateral transshipment is requested to base i from base j is

Bij =




P (z1 �s1)P (z2 �s2) . . . P (zi−1 �si−1)P (zi <si)P (zj �sj) if i < j,

P (z1 � s1)P (z2 � s2) · · ·P (zi−1 � si−1)P (zi < si) if i > j.
(6)

For example, the probability that a transshipment is requested to base number 3 when
a failure occurs at base number 5 is the P (no positive stock at base 1 and 2) ×P (positive
stock at base 3)×P (no positive stock at base 5). The probability that a transshipment is
requested to base number 5 when a failure occurs at base number 3 is the P (no positive
stock up to base 4) ×P (positive stock at base 5).

3.4. Fill-Rate and Cost Function

The probability that a demand at base i is met by a lateral transshipment is the probability
that base i has no operational item and at least one of the other bases has a positive stock
value. Thus, the probability is as follows:

Ri =P (zi �si)
[
1−P (z1 �s1) · · ·P (zi−1 �si−1)P (zi+1 �si+1) · · ·P (zI �sI)

]
. (7)

Actual fill-rate, which can be interpreted as the probability that a failed item is re-
placed immediately by on hand stock or by lateral transshipment, is the sum of Oi and
Ri. If no spare item is available in any of the bases, it is backordered. Thus, the probability
that a demand at base i is backordered is shown in Eq. 8.

Ei = P (z1 � s1)P (z2 � s2) · · ·P (zI � sI). (8)

When assuming linear holding, backorder and transshipment costs, the total expected
cost of the system can be expressed as shown in Eq. 9, which is the sum of the costs of
holding, backorder and transshipment at the bases.

TC(S) =
I∑

i=1

{hisi + eiEiΛi + viRiΛi}. (9)

4. The Algorithm

An algorithm that finds the spare inventory level to operate a system at a minimum cost
is presented in this section. The algorithm is as follows:

Step 1. Verify that the following steady-state conditions are satisfied.

ρd =
I∑

i=1

(1 − αi)Λi/cdµd < 1 and ρ =
I∑

i=1

αiΛi/ciµi < 1.
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If the conditions are met, go to Step 2. Otherwise, stop since the system cannot
reach the steady-state.

Step 2. Let βi = δi = 0 and S = (s1, s2, · · · , sI) = 0; calculate P (bi) and P (zi).
Step 3. For each base with hi/ei � 1, set si to the value that satisfies

∞∑
k=1

P (zi = si + k) < hi/ei <

∞∑
k=0

P (zi = si + k).

Step 4. For each base withsi � 1, obtain the probability values for S and for S+ and S−,
which are the same as S except si is increased by one unit for S+ and decreased
by one unit for S− by; these are solved using the subroutine below.

Step 5. Step 5.1. For each base withsi � 1, calculate

∆TC(S|si) = max
{
TC(S) − TC(S+), TC(S) − TC(S−)

}
.

Step 5.2. If ρi = αi(Λi + βi − δi)/ciµi < 1, ∆TC(S|si) � 0 or si = 0 for all i,
go to Step 6.
Otherwise, set i∗ = arg maxi ∆TC(S|si) and si∗ ← si∗ +1 if the maximum
in Step 5.1 is from S+ or si∗ ← si∗ − 1 if the maximum in Step 5.1 is from
S−. If S+ and S− have the same value then randomly select one of the two.

Step 5.3. Go to Step 4.
Step 6. S is the solution of the algorithm. The expected total cost of the system is TC(S).

Subroutine

Step 1. For the current values of βi, δi, and S, calculate P (bi) and P (zi).
Step 2. Calculate Bij and Ri.
Step 3. βnew

i =
∑

j �=i BijΛi, δ
new
i = RiΛi.

Step 4. If |βnew
i −βi| � ε and |δnew

i − δi| � ε for all i or if the iteration exceeds a limit,
then calculate Ri, Ei, TC(S). Return the values and stop.

Step 5. βi = βi + ω(βnew
i − βi), δi = δi + ω(δnew

i − δi).
Step 6. Go to Step 1.

In the algorithm, Step 2 calculates the previously introduced probability distributions.
In Step 3, the starting point of the search is chosen to be the minimum cost spare levels of
the same system but with no lateral transshipment (Kim et al., 1996) and sets the vector
of spare levels, S = (s1, s2, · · · , sI), to the corresponding values.

In Steps 4 and 5, the base is searched, which gives the largest decrease in the objective
function by the unit change of si, and sets the stock level accordingly. Thus, the search
procedure is same as the steepest descent method. The error limit is specified by ε, which
is a small number, e.g., 10−2. If there is no more cost decrease possible, the algorithm
stops and generates the current point as a solution to the problem. The subroutine is used
to find the converged values of βi and δi for a given S and to calculate TC(S). A control
parameter for the movement speed to the next point is represented by ω and is set to a
value between 0.01 and 0.3. Since the method is based on the well known steepest descent
method, it is ensured to find a local optimum solution with guaranteed convergence.
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5. Computational Experiments

This section briefly introduces the results of the computational experiments. The main
purpose of the experiments is to compare the result of the current method to the result
of the most recent development on the same subject, but with an exponential repair time
(Jung et al., 2003). Comparing the result from the two methods, the amount of improve-
ment in accuracy could be estimated.

To perform the test, the proposed algorithm was written in C++ and run on an IBM
compatible personal computer with an Intel Pentium IV processor (2.0 GHz), 512 MB
memory, and Windows XP operating system. The input parameters were prepared from
the actual data values for the repairable items on an aircraft in the US Air Force (Sher-
brooke, 1992). Cost data, which was unavailable, was constructed so that the system had
a realistic fill-rate; i.e., about 90%. The prepared data is shown in Table 1 and the solution
and related information generated by the algorithm are summarized in Table 2.

An initial observation is that the solutions given by the different methods are not iden-
tical. Although the optimal cost of the current method is lower than that of the previous
method, the fill-rate achieved by the current method is higher. This is an interesting phe-

Table 1

Input data for the first test problem

Parameter
Base/Depot

Λi αi ci µi ti hi ei vi

Base 1 0.04 0.5 3 0.05 16.0 10.0 900.0 2.0

Base 2 0.04 0.5 2 0.05 16.0 10.0 900.0 2.0

Base 3 0.04 0.5 2 0.05 16.0 10.0 900.0 2.0

Base 4 0.04 0.5 1 0.05 16.0 10.0 900.0 2.0

Base 5 0.04 0.5 1 0.05 16.0 10.0 900.0 2.0

Depot – – 10 0.0167 – – – –

Table 2

Output of the first test problem (hi = 10, ei = 900, vi = 2)

New algorithm Previous algorithm

Optimal Optimal Fill-rate Optimal Optimal Fill-rate
spare level total cost (Oi + Ri) spare level total cost (Oi + Ri)

Base 1 3 0.922 2 0.902

Base 2 3 0.922 2 0.902

Base 3 2 96.0 0.922 5 117.9 0.902

Base 4 1 0.922 1 0.902

Base 5 1 0.922 0 0.902

Average 2 2



388 J.S. Kim, T.Y. Kim, S. Hur

nomenon which suggests that it is possible to achieve the same performance with less
cost when a system is controlled by the new method.

To investigate a more congested system, the input parameters are changed so that
the repair capacities reach around 90% utilization. This relatively heavy traffic situation
represents a commercial industry system rather a military one, which usually has ample
repair capacities. The heavy traffic data is shown in Table 3 and the results are summa-
rized in Table 4. The result is similar to the previous case. The cost for the same service
rate is reduced by 79.1 or 13.6% by adopting the policy of the proposed method.

To test some extreme cases, the holding cost is multiplied by 1/10 and the transship-
ment cost by 200, which makes them 1 and 400, respectively; the result is shown in
Table 5. For this system, two algorithms generate the same solutions or spare levels. The
fill-rate of 1.00 implies that the system has light traffic. The result implies that as the
system becomes more congested the accuracy of the repair time distribution has a larger
effect on the accuracy of the methods. It may be thus interpreted that it is acceptable to
use an approximate distribution for a light traffic system.

When the transshipment cost is restored to its original value, the results are as shown
in Table 6. The fill-rate values show that the corresponding situation is slightly more

Table 3

Input data for the heavy traffic problem

Parameter
Base/Depot

Λi αi ci µi ti hi ei vi

Base 1 0.27 0.5 3 0.05 16.0 10.0 900.0 2.0

Base 2 0.18 0.5 2 0.05 16.0 10.0 900.0 2.0

Base 3 0.18 0.5 2 0.05 16.0 10.0 900.0 2.0

Base 4 0.09 0.5 1 0.05 16.0 10.0 900.0 2.0

Base 5 0.09 0.5 1 0.05 16.0 10.0 900.0 2.0

Depot – – 10 0.045 – – – –

Table 4

Output of the heavy traffic problem (hi = 10, ei = 900, vi = 2)

New algorithm Previous algorithm

Optimal Optimal Fill-rate Optimal Optimal Fill-rate
spare level total cost (Oi + Ri) spare level total cost (Oi + Ri)

Base 1 15 0.920 16 0.914

Base 2 11 0.920 11 0.914

Base 3 11 504.4 0.920 12 583.5 0.914

Base 4 6 0.920 6 0.914

Base 5 6 0.920 7 0.914

Average 9.8 10.4
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Table 5

Output of the problem with low holding and high transshipment costs (hi = 1, ei = 900, vi = 400)

New algorithm Previous algorithm

Optimal Optimal Fill-rate Optimal Optimal Fill-rate
spare level total cost (Oi + Ri) spare level total cost (Oi + Ri)

Base 1 5 1.000 5 1.000

Base 2 5 1.000 5 1.000

Base 3 6 32.8 1.000 6 32.8 1.000

Base 4 6 1.000 6 1.000

Base 5 6 1.000 6 1.000

Average 5.6 5.6

Table 6

Output of the problem with low holding costs (hi = 1, ei = 900, vi = 2)

New algorithm Previous algorithm

Optimal Optimal Fill-rate Optimal Optimal Fill-rate
spare level total cost (Oi + Ri) spare level total cost (Oi + Ri)

Base 1 4 0.938 2 0.994

Base 2 3 0.938 3 0.994

Base 3 2 12.9 0.938 5 16.3 0.994

Base 4 1 0.938 3 0.994

Base 5 1 0.937 2 0.994

Average 2.2 3.0

congested than the previous case. The discrepancy of the results of the two methods now
becomes noticeable once again, showing the cost difference of 20.9%.

Although it may be too soon to draw a solid conclusion from the small scale exper-
iments performed here, it is shown that the developed method is a better control policy
that results in an enhanced performance with less cost. Thus, it is expected that it will
contribute to curtailing operating costs when applied to a real world system.

Finally, to test the speed of the algorithm for realistic problems, 10 different problems
are solved for base cases of 5, 10, 15 and 20; the obtained results are shown in Table 7.
The algorithm is capable of producing a solution in an average of less than two hours. In
all cases, the speed of the proposed algorithm is better than that of the previous one.

6. Concluding Remarks

In this paper, a model was presented for the multiechelon repairable inventory system
with emergency lateral transshipments, which extended the scope of research to the sys-
tem with a general repair time distribution. A method was developed to calculate the
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Table 7

Average time to solve the problems

New algorithm Previous algorithm
Number of base

5 10 15 20 5 10 15 20

Time in seconds 46 427 1458 4553 54 428 2819 5315

appropriate initial spare inventory levels to optimally control the system. Experimental
results showed that the solution from the current method was different from the previously
suggested algorithm. It was also implied that an equal service rate with less operating cost
could be achieved with the control policy of the current method.

Managerial implications drawn from this research are that it is worthwhile to apply
the method to real world systems to try to achieve better performance. Additionally, the
diverse use of the current method can easily answer other ‘what-if’ type of questions,
especially for finding the desired service rate of a military system. A suggestion for future
study would be to relax the assumption of an infinite number of items operating at each
base, which has enabled the use of formulas from the M/G/c model.

Appendix

List of notations

Λi – failure rate at base i,
α – probability that a failed item is base-repairable,
ci – number of repair channels at base i repair center,
µi – repair rate per repair channel at base i repair center,
bi – number of items at base i repair center,
cd – number of repair channels at the depot repair center,
µd – repair rate per repair channel at the depot repair center,
βi – failure rate increase at base i due to transshipments to other bases,
δi – failure rate decrease at base i due to transshipments from other bases,
D – number of items at the depot repair center,
ki – number of items at the depot repair center owed to base i,
ti – transit time from base i to the depot repair center,
li – number of items in transit between base i and the depot repair center,
zi – number of unavailable items of base i,

Bij – probability that a lateral transshipment is requested to base i from base j,
Ri – probability that a demand at base i is met with a lateral transshipment,
Ei – probability that a demand at base i is backordered,
si – spare inventory level at base i, S = (s1, s2, . . . , sI),
hi – unit holding cost per unit time of base i,
ei – unit backorder cost of base i,
vi – unit transshipment cost of base i.
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Daugiaešaloninė pakeičiam ↪u ↪irengini ↪u inventorizavimo sistema
su papildomu perkrovimu ir bendru atstatymo laiko pasiskirstymu

Jong Soo KIM, Tai Young KIM, Sun HUR

Šiame straipsnyje nagrinėjama, kaip nustatyti reikaling ↪a atsargini ↪u ↪irengini ↪u lyg↪i daugiaešalo-
ninei pakeičiam ↪u ↪irengini ↪u inventorizavimo sistemai, kurioje yra keletas bazi ↪u ir centrinis sandėlys
su avarinio papildomo perkrovimo galimybe. Ankstesnis tyrimas yra išplėstas atsisakant apribo-
jančios atstatymo laiko pasiskirstymo prielaidos. Matematinis modelis su bendru atstatymo laiko
pasiskirstymu ir algoritmas modelio sprendinio paieškai yra sukurti. Pagrindinis šio tyrimo akcen-
tas yra skiriamas ankstesni ↪u modeli ↪u tikslumo pagerinimui ir esamos metodologijos panaudojimo

↪ivertinimui. Tikslumo pagerinimas yra ↪ivertintas eksperimentiškai.


