
INFORMATICA, 2006, Vol. 17, No. 2, 279–296 279
 2006 Institute of Mathematics and Informatics, Vilnius

Iterated Tabu Search for the Unconstrained Binary
Quadratic Optimization Problem

Gintaras PALUBECKIS
Department of Practical Informatics, Kaunas University of Technology
Student ↪u 50, 51368 Kaunas, Lithuania
e-mail: gintaras@soften.ktu.lt

Received: January 2005

Abstract. Given a set of objects with profits (any, even negative, numbers) assigned not only to
separate objects but also to pairs of them, the unconstrained binary quadratic optimization problem
consists in finding a subset of objects for which the overall profit is maximized. In this paper,
an iterated tabu search algorithm for solving this problem is proposed. Computational results for
problem instances of size up to 7000 variables (objects) are reported and comparisons with other
up-to-date heuristic methods are provided.
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1. Introduction

We consider the following problem with quadratic objective function and binary variables

maximize f(x) =
n∑

i=1

n∑

j=1

cijxixj +
n∑

i=1

cixi, (1)

subject to xi ∈ {0, 1}, i = 1, . . . , n, (2)

where cij , i, j = 1, . . . , n, and ci, i = 1, . . . , n, are entries of a given n × n rational
matrix C and rational n-vector c, respectively. We can assume that the main diagonal of
C is zero, because, if not, we can add all nonzero diagonal entries to c at the same time
replacing them with zeros in C.

In fact, we deal with a problem in which a set of objects is given and, unlike in linear
optimization formulations, profits (any, even negative, numbers) are assigned not only
to separate objects but also to pairs of them. The problem is to select a feasible subset
of this set for which the overall profit is maximized. We focus on the most important
special case (1), (2) of this general problem obtained by assuming that each subset of
objects is a feasible solution. We call this special case the unconstrained binary quadratic
optimization problem (UBQOP for short).

The UBQOP (1), (2) or sometimes (1), (2) with some constraints added (which, how-
ever, can be included into the objective function (Hansen, 1979)) arises in various con-
texts in many areas including solid-state physics (Barahona et al., 1988; De Simone et
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al., 1995), economics (Laughunn, 1970), computer-aided design (Barahona et al., 1988;
Boros and Hammer, 1991; Shih and Kuh, 1993; Jünger et al., 1994), machine scheduling
(Alidaee et al., 1994), traffic message management (Gallo et al., 1980), code-division
multiple access wireless communications (Tan and Rasmussen, 2004), prediction of
epileptic seizures (Iasemidis et al., 2000), location (Dearing et al., 1988; Hammer, 1968)
and power network design (Carter, 1984). Furthermore, as reported by Kochenberger et
al. (2004), the UBQOP can serve as a unified model for many other optimization prob-
lems. They can be put into the form (1), (2) by applying certain transformations. The list
presented by Kochenberger et al. (2004) includes quadratic assignment, multiple knap-
sack, maximum clique, set partitioning, P-median, constraint satisfaction, maximum di-
versity, clique partitioning, task allocation, maximum cut and graph coloring problems.
Applications of these problems are numerous. For example, Levin and Danieli (2005)
proposed to use the multiple knapsack and morphological clique (a generalization of the
maximum clique) formulations for improvement/redesign of composite systems. On the
other side, the UBQOP can be considered as a member of a more general class of un-
constrained binary nonlinear optimization problems. Such problems arise in a number of
real-world applications, e.g., in system identification from input-output data pairs where
it is required to find an optimal subset of inputs, which are necessary and sufficient for
describing the system (Papadakis et al., 2005). It can be expected that some ideas from
the design of heuristic algorithms for the UBQOP could potentially be applied to other
models in the area of binary nonlinear optimization.

The UBQOP and many of its special cases as well are NP-hard problems. Particu-
larly, even recognizing positivity of f(x) in the following very restricted case was shown
to be an NP-complete problem (Palubeckis, 1995): the matrix C has zero lower triangle
(including the main diagonal), each nonzero coefficient cij or ci is equal to either 1 or
−1, and each variable belongs to at most three terms of the quadratic part of f . Because
of NP-hardness, the existing exact methods allow to solve instances of size less than 200
variables only. The most successful approaches include branch-and-bound methods of
Barahona et al. (1989), Pardalos and Rodgers (1990), Billionnet and Sutter (1994), and
Palubeckis (1995) and branch-and-cut method developed by Helmberg and Rendl (1998).
For solving medium and large size instances of the UBQOP, only heuristic techniques are
applicable. Recently, a number of iterative improvement methods have been proposed.
Glover et al. (1998) developed a tabu search algorithm based on a flexible memory sys-
tem. Their algorithm has shown good performance on a set of problems with up to 500
variables. Another tabu search algorithm was proposed by Beasley (1998). In the same
paper, also an implementation of the simulated annealing metaheuristic for the UBQOP
was described. Both algorithms were tested on several series of instances of size up to
2500 variables. An evolutionary heuristic for solving the UBQOP was developed by Lodi
et al. (1999). The effectiveness of this approach has been shown on small and medium
size instances. Merz and Freisleben (1999) presented a hybrid genetic algorithm incorpo-
rating a local search procedure. Using this approach, they have found new best solutions
for several large Beasley problems. A scatter search algorithm for the UBQOP was pro-
posed by Amini et al. (1999). Their algorithm is capable of finding solutions of good
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quality even to large problem instances. Katayama and Narihisa (2001) have described a
simulated annealing-based heuristic in which the annealing process is started a specified
number of times from different initial temperatures. Such a multistarting mechanism im-
proves performance of simulated annealing significantly. Computational tests were per-
formed using problem instances with the number of variables ranging from 500 to 2500.
Palubeckis and Tomkevicius (2002) developed a greedy randomized adaptive search pro-
cedure (GRASP) for solving the UBQOP. Especially good results were obtained with a
GRASP enhancement in local improvement phase of which a simple tabu search imple-
mentation was used. In a recent paper, Merz and Katayama (2004) proposed a memetic
algorithm with the original crossover operator and incorporated randomized k-opt local
search procedure. This algorithm seems, in general, to work better than that presented by
Merz and Freisleben (1999). In the paper by Palubeckis (2004), five rather different mul-
tistart tabu search strategies for the UBQOP have been described. The experiments were
conducted on the two sets of test problems: largest instances taken from the OR-Library
(Beasley, 1996) and randomly generated problem instances of size up to 6000 and density
at least 50%. Best results were obtained in the case where construction of a new starting
point for tabu search is based on applying a (fully deterministic) constructive procedure
to a projection of the whole problem.

It is widely believed that for very large instances of combinatorial optimization prob-
lems, iterative improvement methods become time consuming. For large problem in-
stances, fast constructive heuristics could be applied. One of the first such heuristics for
the UBQOP was a steepest ascent algorithm presented by Palubeckis (1992). Recently,
very similar heuristic, called greedy, was proposed by Merz and Freisleben (2002). Sev-
eral so-called “one-pass” heuristics for solving the UBQOP were developed by Glover et
al. (2002). They were experimentally compared against the well-known DDT method of
Boros et al. (1989).

This paper is concerned with the development of a multistart tabu search strategy
which would be very simple, in fact not much more complex than the classical random
restart method and, at the same time, would be competitive with the best existing algo-
rithms for solving the UBQOP. It has been found that these requirements are fulfilled by
a strategy based on solution perturbation. The method, called iterated tabu search (ITS),
can be considered as an algorithm constructed following the general schema of the iter-
ated local search (ILS) metaheuristic (Lourenço et al., 2003). In the improvement phase,
one of the parts of ILS, a tabu search procedure is invoked. The perturbation is applied to
a solution identified as the current solution during the tabu search at the moment of ter-
mination of this procedure. The solution is perturbed by changing the values of a subset
of the variables according to the formula xi := 1 − xi, i ∈ {1, . . . , n}. The manipulated
variables for this operation are selected in such a way that the resulting solution would
not be very far from the optimum. At each iteration, the cardinality of the subset is equal
to an integer randomly and uniformly drawn from some interval. It should be noted that
the term iterated tabu search is not entirely new in the field of optimization. Smyth, Hoos
and Stützle (2003) presented an iterated robust tabu search algorithm for solving MAX-
SAT, the optimization variant of the satisfiability problem arising in propositional logic.
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The perturbation mechanism employed in their approach invokes a tabu search procedure
tuned to execute a rather small number of iterations. This mechanism is applied to one
of the two possible candidates – either a solution that entered the perturbation phase last
time or a locally optimal solution found in the local search phase. As outlined above,
the algorithm proposed in this paper organizes iterations of tabu search in a somewhat
different way.

The rest of the paper is structured as follows. The algorithm to solve the UBQOP is
presented in Section 2. The two alternative multistart tabu search strategies (described in
Palubeckis (2004)) are outlined in Section 3. They are used for comparisons with the new
algorithm. An empirical evaluation of the relative performance of the algorithms both on
a set of problems taken from the OR-Library (Beasley, 1996) and on a set of randomly
generated problem instances with up to 7000 variables appears in Section 4. Finally, in
Section 5, conclusions are drawn.

2. The Algorithm

In this section, we develop an iterated tabu search algorithm for solving the unconstrained
binary quadratic optimization problem. We give a detailed description of the solution
perturbation procedure used to generate starting points for tabu search runs.

It has been found that it is very convenient to work with the transformed instances of
(1), (2). Given a solution x = (x1, . . . , xn) to (1), (2), the new instance is constructed
by mapping x to the zero vector. This is achieved by replacing xi in (1) with 1 − xi for
each i such that xi = 1. Let c′ij , c

′
i be the coefficients of the objective function after this

operation. Then, denoting c(i, j) = cij + cji, we have the following relationships

c′ij = cij(1 − 2(xi − xj)2), (3)

c′i = (1 − 2xi)(ci +
∑

j,xj=1

c(i, j)). (4)

The constant term of the new objective function f ′ is equal to f(x). Thus f ′(0, . . . , 0) =
f(x). When dealing with the transformed instance, we always drop the constant term
from f ′. If c′q > 0 for some q ∈ {1, . . . , n}, then solution x can be improved by substi-
tuting the component xq with 1 − xq. For the resulting solution x′, f(x′) = f(x) + c′q.
This simple property allows to organize evaluation of solutions in the neighborhood
N1(x) = {(x′

1, . . . , x
′
n) | x′

i ∈ {0, 1}, i = 1, . . . , n,
∑n

i=1 |x′
i − xi| � 1} of x very

efficiently. The coefficients c′i of the transformed problem also play the crucial role in
the solution perturbation procedure we present later in this section. After fixing xq at the
opposite value, the coefficients c′q and c′i, c′(i, q) = c′iq + c′qi for each nonzero c(i, q)
must be updated using the following formulas

c′q := −c′q, (5)

c′i := c′i + c′(i, q), (6)

c′(i, q) := −c′(i, q). (7)
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This operation keeps solution x′ to the original problem (1), (2) in correspondence with
the zero vector treated as a solution of the transformed problem instance.

The algorithm we propose for solving (1), (2) repeatedly invokes the following two
procedures: GSP (Get Start Point) for construction of a starting 0 − 1 vector and TS
for performing tabu search. The parameter r̃ submitted to the first of them specifies the
number of components of x whose values must be replaced by the opposite ones, that is,
0 to 1 or vice versa. The algorithm can be described as follows.

ITS

1. Randomly generate a 0 − 1 vector x. Set x∗ := x.

2. Transform the problem instance according to formulas (3), (4) applied with respect
to x.

3. Call TS(x, x∗).

4. Check if a stopping criterion is satisfied. If so, then stop with the solution x∗ of
value f∗ := f(x∗). Otherwise proceed to 5.

5. Apply GSP(x, r̃), where r̃ is an integer number randomly drawn from the interval
[d1, d2n]. Go to 2.

In the algorithm, the positive parameters d1 � n and d2 � 1, d1 � d2n, control
the depth of solution perturbation. If d2 is small, then less components of the vector x

change their values. The stopping criterion used in Step 4 may be any. In the experiments,
a stopping rule based on the CPU clock was applied.

The procedure TS invoked in Step 3 of the above algorithm is an adaptation of a sim-
ple tabu search implementation proposed by Beasley (1998). It contains only the main
ingredient of tabu search, namely, a short-term memory tabu list without aspiration crite-
rion. Due to the applied computational trick – mapping of the current solution to the zero
vector – this modification is significantly faster than the original tabu search procedure
described by Beasley (1998). The input to TS includes two 0 − 1 vectors: an initial solu-
tion x and the best solution x∗ found so far. We should note that the best vector x∗ is not
overridden. It is passed from one run of TS to the next one. Thus, invocations of TS are
not fully independent. In the case of finding, during the run of TS, a solution x that is bet-
ter than x∗, a local search procedure LS is invoked. It accepts x and returns, through the
same parameter x, a locally optimal solution together with the difference flocal between
the value of f on this solution and that on the submitted vector x. The procedure TS can
be stated as follows.

TS(x, x∗)

1. Set m := 0, f̃ := f(x), tabu value Ti := 0, i = 1, . . . , n.

2. Set V := −∞, α := 0.

3. For k = 1, . . . , n such that Tk = 0 do

3.1. Increment m by 1. If f̃ + c′k > f(x∗), then set q := k, α := 1 and go to 4.
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3.2. If c′k > V , then set V := c′k, q := k.

4. Set xq := 1 − xq, f̃ := f̃ + c′q. Using (5)–(7), update c′q and c′i, c′(i, q) for each
nonzero c(i, q). If α = 0, then go to 6. Otherwise proceed to 5.

5. Apply LS(x, flocal, m) getting, possibly, improved solution x. Set f̃ := f̃ + flocal,
x∗ := x.

6. If m is greater than or equal to a predetermined upper limit m̃, then return. Other-
wise, decrement Ti by 1 for each positive Ti, i ∈ {1, . . . , n}. Set Tq := T , here T

is the tabu tenure value selected experimentally. Go to 2.

In the last step of TS, two parameters, T and m̃, are used. In a specific implementa-
tion of TS, the tabu tenure value T was fixed at 20, except the case where n is less than
80 (in which T was set to n/4). This constant was found to be good by Beasley (1998),
and the experiments with TS have confirmed this finding. A good choice for the max-
imum number of iterations m̃ is to take m̃ = µn, where µ is a tuning factor selected
experimentally.

The local search procedure applied within TS is a standard routine performing an
ascent from the given point to a local optimum. It consists of the following three steps.

LS(x, flocal, m)

1. Set flocal := 0, γ := 0.

2. For q = 1, . . . , n perform the following actions. Increment m by 1. Check whether
c′q > 0. If so, then set γ := 1, xq := 1−xq , flocal := flocal +c′q and, using (5)–(7),
update c′q, c

′
i and c′(i, q) (as in Step 4 of TS).

3. If γ > 0, then set γ := 0 and repeat 2. Otherwise, return with x, flocal and new
value of the counter m.

The tabu search is restarted from 0 − 1 vectors delivered by the procedure GSP im-
plementing a strategy for perturbation of a given solution. As already mentioned, besides
this solution, the input to it also includes the number r̃ of variables to be chosen for pro-
cessing (flipping of values). The task assigned to the procedure is to select variables that
must undergo a flipping operation. This process is randomized. Each variable is randomly
selected from the candidate list of size b. This list is constructed by including free (not
selected before) variables corresponding to the largest coefficients of the linear part of the
transformed problem instance. The procedure can be formally stated as follows.

GSP(x, r̃)

1. Set r := 0, I := {1, . . . , n}.

2. Form a subset J ⊂ I , |J | = b, such that c′j � c′i for each j ∈ J and each i ∈ I \ J

(in other words, pick the b largest coefficients c′j among those with indices in I).

3. Randomly select q ∈ J . Remove q from I . Set xq := 1 − xq . Update c′q and
c′i, c

′(i, q) for each nonzero c(i, q) (as in Step 4 of TS).
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4. Increment r by 1. If r < r̃, then go to 2. Otherwise return with the perturbed
solution x.

The experiments have shown that better performance of ITS can be observed when
smaller values of b are used, for example, b � 10. It is easy to see that, for such b,
the complexity of GSP is O(n2) provided r̃ is proportional to n, which is the worst case.
Since r̃ is drawn from the interval with the constant left end the execution of the procedure
in many cases is much shorter.

As it can be seen from the description of ITS, each time the procedure GSP is applied
to vector x that is the last evaluated solution during a run of TS. This solution usually
is rather good, though on the other hand, almost surely it is worse than the best solution
found thus far. Such a strategy increases a level of diversification in the search process,
yet the perturbed solution remains to be of sufficiently high quality and can serve as
a good starting point for the next invocation of TS. Thus, using the terminology of the
iterated local search metaheuristic (Lourenço et al., 2003), we can say that the acceptance
criterion in the algorithm is to take the value (solution) represented by the variable x at the
moment of termination of TS. Computational experience with ITS allowed us to conclude
that such an acceptance criterion together with the described perturbation strategy is an
efficient mechanism for restarting the search.

3. Alternative Strategies

In this section, we outline two other implementations of the multistart tabu search ap-
proach for the problem (1), (2). Later, we numerically compare the just described iterated
tabu search algorithm against these alternative multistart methods.

The first of these methods is a random restart approach. It is very simple and includes
the following two steps performed iteratively: random generation of a 0 − 1 vector x

(and, of course, transformation of the problem instance according to (3), (4) applied with
respect to x); execution of TS on the generated vector x. A formal description of this
algorithm, named MST1, can be found in Palubeckis (2004).

Another algorithm used for comparisons also is described in Palubeckis (2004). In
this approach, initial solutions for TS are generated in two steps. In the first of them,
using a certain formula, a set of variables is constructed. Each variable outside this set
is forced to 0. Thus a projection of the considered instance of the UBQOP is obtained.
When constructing the set, the algorithm tries to identify variables that are most prone
to flip (from 0 to 1 or vice versa) the value when moving from the current solution to an
optimal one. The special formula used for this purpose can be viewed as a measure of
attractiveness of variables in this respect. In the second step, a steepest ascent heuristic
(Palubeckis, 1992) to the obtained projection of the problem instance is applied. The basic
idea of this heuristic is to perform a steepest ascent from the centre of the k-dimensional
unit cube (0.5, 0.5, . . . , 0.5) to some its vertex (0 − 1 vector) by fixing one variable at
either 0 or 1 at each step of this climb. The details of the second algorithm, named MST2,
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can be found in the paper by Palubeckis (2004). It has been shown experimentally that
MST2 is superior to each of the other four multistart strategies considered in that paper.

It should be emphasized that ITS differs noticeably from the algorithms MST1, . . . ,
MST5 described in Palubeckis (2004) despite the fact that all of them are based on the
tabu search schema. A salient feature of ITS is that, to enforce search diversification, it
uses a solution perturbation procedure. Each of the algorithms MST1, . . . , MST5 imple-
ments a search strategy different from that of ITS. In particular, MST1 is the random
restart method, which continues the search simply by randomly generating a 0− 1 vector
as a new starting point. The MST2 algorithm applies a constructive heuristic to certain
instances of the UBQOP obtained by fixing the values of a subset of the variables. These
operations are not used in ITS. The MST3 algorithm invokes a greedy randomized pro-
cedure for generating 0 − 1 vectors and, therefore, bears some similarity to the GRASP
method. The MST4 algorithm maintains a set of elite solutions that are used to generate
good quality initial solutions for the tabu search procedure. It is the only algorithm in the
group (ITS, MST1, . . . , MST5), which, like evolutionary methods, works on a population
rather than on a single solution at any time. Finally, the MST5 algorithm applies a prob-
lem perturbation technique, which periodically (and temporarily) modifies the problem
instance, that is, coefficients cij in (1) in order to direct the search to other promising
regions of the solution space. Meanwhile, ITS incorporates a solution perturbation mech-
anism, not problem perturbation, which makes it different from MST5.

4. Experimental Results

The main purpose of experimentation was to evaluate the performance of the described
iterated tabu search algorithm and to directly compare it with two alternative multistart
techniques MST1 and MST2 as well as with two most successful recent algorithms based
on different metaheuristics, namely simulated annealing algorithm (SA) of Katayama and
Narihisa (2001) and memetic algorithm (MA) of Merz and Katayama (2004).

The algorithms described or outlined in this paper were coded in the C programming
language. The sources are publicly available at http://www.soften.ktu.lt/
˜gintaras/ubqop_its.html. Additionally, the C code implementing SA and MA
was also written. The tests were carried out on a Pentium III 800 PC. As a testbed for the
algorithms, the largest instances from the OR-Library (Beasley, 1996) and some of our
own were considered.

After preliminary testing, the values of the ITS parameters have been fixed: b = 5,
d1 = 10, d2 = 0.1. In the program implementing ITS, these values appear as some
constants. Basically, the only algorithm’s parameter whose value is required to be sub-
mitted to the program is µ. It has been found that µ should increase with the problem
size n. Specifically, the value of µ was set to 10000 when n � 3000, to 12000 when
3000 < n � 5000, and to 15000 when n > 5000. The same values of µ were also
used in TS in the cases where TS was applied within MST1 and MST2. The experi-
ments with MA were done using the same parameter setting as that described in Merz
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and Katayama (2004). In the case of SA, the conditions of the experiments were the same
as in Katayama and Narihisa (2001), except that different stopping rules were applied.
Katayama and Narihisa terminated SA upon performing the annealing process twice. In
the current study, on the other hand, a stopping rule based on the CPU clock was adopted.
The other parameters of SA were set to the values recommended by Katayama and Nari-
hisa (2001).

The first experiment was conducted on a set of test problems taken from the OR-
Library. Only the largest problem instances available there were considered. All ten such
instances, named b2500-1, . . . , b2500-10, are of size 2500 and have density 10%. The
smaller problems were not used because, for them, each of the tested algorithms pro-
duced solutions with the best objective function values very quickly and, therefore, no
good comparison between algorithms can be provided. Each algorithm was run 25 times
on each problem instance. A maximum CPU time limit of 600 seconds was set for all
runs. The numerical results are summarized in Tables 1 to 3. In Table 1, the second
column provides, for each instance, the best known solution value reported in recently
published studies. The next columns give the number of runs of ITS, MST1, MST2, SA
and MA, respectively, when a solution of value equal to the best one was produced. The
results, averaged over 10 instances, are presented in the last row. The third column of
Table 2 shows the difference between the best value, displayed in the second column, and
the average value of 25 solutions found by ITS. The subsequent columns give this char-
acteristic for the rest of the algorithms. Table 3 compares the average time (in seconds)
taken by each of the tested algorithms to first find a solution that is best in the run.

From Tables 1 and 2, we immediately observe that the quality of solutions produced
by ITS and MST2 is very similar. Both approaches, clearly, outperform the random restart
method MST1. Table 3 shows that these two algorithms are also a bit faster than MST1.
We should notice that the results for MST1 and MST2 in Tables 1 and 3 are slightly better

Table 1

Performance of ITS and other algorithms on the Beasley problems: success rate

Problem Best value ITS MST1 MST2 SA MA

b2500-1 1515944 25 25 25 23 20

b2500-2 1471392 23 6 25 2 1

b2500-3 1414192 24 25 24 14 7

b2500-4 1507701 25 25 25 25 25

b2500-5 1491816 25 25 25 16 12

b2500-6 1469162 25 24 25 9 4

b2500-7 1479040 25 17 25 2 3

b2500-8 1484199 25 25 25 16 21

b2500-9 1482413 25 25 25 4 1

b2500-10 1483355 25 23 25 0 1

Average 24.7 22.0 24.9 11.1 9.5



288 G. Palubeckis

Table 2

Performance of ITS and other algorithms on the Beasley problems: average values

Problem Best Solution difference
value (i.e., best value – heuristic solution value)

ITS MST1 MST2 SA MA

b2500-1 1515944 0 0 0 4 13

b2500-2 1471392 9 133 0 433 645

b2500-3 1414192 11 0 11 117 173

b2500-4 1507701 0 0 0 0 0

b2500-5 1491816 0 0 0 6 55

b2500-6 1469162 0 1 0 58 190

b2500-7 1479040 0 4 0 208 416

b2500-8 1484199 0 0 0 35 3

b2500-9 1482413 0 0 0 33 321

b2500-10 1483355 0 8 0 493 446

Average 2 15 1 139 226

Table 3

Performance of ITS and other algorithms on the Beasley problems: average time to the best solution in the run
(in seconds)

Problem ITS MST1 MST2 SA MA

b2500-1 18 14 13 225 461

b2500-2 205 281 158 334 430

b2500-3 196 91 134 319 422

b2500-4 6 8 9 120 293

b2500-5 12 7 11 305 469

b2500-6 22 48 23 283 452

b2500-7 75 168 99 387 478

b2500-8 46 26 47 293 359

b2500-9 54 77 71 340 450

b2500-10 104 161 138 351 477

Average 74 88 70 296 429

than those reported in Palubeckis (2004), primarily because they were obtained by using
a faster computer. The results for MST1, especially the running times, tend to differ more
significantly because the values of µ were slightly different: in the previous experiments,
µ for MST1 was set to 15000, whereas now to 10000.

Comparing ITS solutions with the results obtained by SA and MA shows that ITS
is definitely superior to SA and MA in terms of both solution quality and computation
time. Basically, for instances in b2500 series, SA and MA perform worse than any of
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the three tabu search-based algorithms considered in this section. It can be noted that
the results for SA shown in Tables 1 and 2 are better than those obtained by Katayama
and Narihisa (2001). The explanation of this fact is rather simple: in the experiments of
Katayama and Narihisa, each run of SA took only 15 − 16 seconds on a Sun Ultra 5/10
(UltraSPARC-IIi 440MHz), whereas, in the experiments reported here, a time limit of
600 seconds on a Pentium III 800 PC allowed to perform more iterations of SA, and
therefore significantly better solutions were found. On the other hand, comparison of
the results for MA gives a different picture. Merz and Katayama (2004) conducted their
experiments allowing MA to create up to 150 − 190 generations during a run, whereas
the number of generations within allotted 600 seconds on a Pentium III 800 PC was less
than 20. Therefore, the results (values of the objective function) presented by Merz and
Katayama are considerably better than those displayed in columns for MA in Tables 1
and 2. Additionally, MA was run once with the time limit set to two hours per problem
instance. The best known solutions were found for all ten instances. In particular, for three
of them, namely for b2500-1, b2500-4 and b2500-8, a time period of 600 seconds was
already sufficient. The time t (in seconds) taken by MA and the corresponding number
of generations g for the remaining problem instances were as follows: for b2500-2, t =
1267, g = 36; for b2500-3, t = 718, g = 20; for b2500-5, t = 634, g = 19; for b2500-6,
t = 742, g = 21; for b2500-7, t = 970, g = 28; for b2500-9, t = 4655, g = 187;
for b2500-10, t = 1669, g = 59. These values of g are pretty comparable to generation
numbers reported by Merz and Katayama (2004).

From the results presented in Tables 1 and 2, the following general conclusion can
be drawn: the problem instances in the b2500 series, though being largest for (1), (2) in
the OR-Library, are not sufficiently strong for state-of-the-art algorithms for the UBQOP.
Therefore, ITS and alternative approaches were also tested on a set of randomly gener-
ated problems of larger size and higher density. Specifically, these problems have density
from 50% to 100% and vary in size from 3000 to 7000 variables (it was not possible
to try even larger problems due to insufficient computer memory to run programs im-
plementing algorithms on them). All nonzero coefficients of the objective function are
drawn uniformly at random from the interval [−100, 100]. The sources of the genera-
tor and input files to replicate problem instances used in the experiments can be found
at http://www.soften.ktu.lt/˜gintaras/ubqop_its.html. Each algo-
rithm was run 5 times on each instance. The time limit for a run was set to 15, 30, 60,
90 and 150 minutes for an instance with 3000, 4000, 5000, 6000 and 7000 variables,
respectively.

The results of empirical evaluation of ITS and other algorithms for larger problems
are summarized in Tables 4 to 6. The first column of Table 4 gives the names identifying
the problem instances. The number of variables in an instance is included into its name.
The second column indicates the density of the coefficients matrix C and vector c. The
third column contains, for each instance, the value of the best solution obtained from all
runs of ITS, MST1, MST2, SA and MA. The fourth column shows the difference between
the best value, displayed in the third column, and the value of the best solution (out of
5) found by ITS. The remaining columns give this difference for the rest of the tested
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algorithms. The structure of Table 5 (respectively, Table 6) is the same as that of Table 2
(respectively, Table 3). The set of the same problem instances of size up to 6000 variables
was also used in the earlier experiments conducted by Palubeckis (2004). The results
obtained with MST1 and MST2 in the current study are, on the average, slightly better
than those reported earlier, most of all because more time for a run of each algorithm
was allotted. Moreover, in the new experiments with MST1 and MST2, slightly different
values of the parameter µ were used.

The results in Tables 4 to 6 indicate that the iterated tabu search algorithm ITS is at
least as good as MST2 and clearly beats the random restart method MST1. In fact, the
best solutions produced by ITS and MST2 are of very similar quality. Furthermore, when
comparison is based on average values, then some superiority of ITS over MST2 can be
observed. Yet, none of these two algorithms dominates another algorithm in all cases.
As Table 6 shows, ITS is also a faster algorithm than MST2. By analyzing the results in
Tables 4 and 5, we also find that ITS is able to provide solutions of significantly higher

Table 4

Performance of ITS and other algorithms on larger problems: best values

Problem Dens. Best Solution difference
value (i.e., best value – heuristic solution value)

ITS MST1 MST2 SA MA

p3000-1 50 3931583 0 0 0 0 3950

p3000-2 80 5193073 0 0 0 0 342

p3000-3 80 5111533 0 357 0 0 0

p3000-4 100 5761822 0 0 0 0 1097

p3000-5 100 5675625 0 478 0 0 478

p4000-1 50 6181830 0 0 0 0 2390

p4000-2 80 7801355 0 1686 0 504 6564

p4000-3 80 7741685 0 54 0 0 5760

p4000-4 100 8711822 0 0 0 0 2359

p4000-5 100 8908979 0 0 0 0 9028

p5000-1 50 8559355 375 2691 0 1107 4647

p5000-2 80 10836019 0 0 582 582 7519

p5000-3 80 10489137 0 3277 0 354 11552

p5000-4 100 12251874 490 3341 1199 0 15955

p5000-5 100 12731803 0 5150 0 1025 6644

p6000-1 50 11384976 0 3198 0 430 9046

p6000-2 80 14333855 88 10001 0 675 21732

p6000-3 100 16132915 2729 11658 0 0 13400

p7000-1 50 14478336 0 6778 1267 2239 13365

p7000-2 80 18248297 0 7251 679 3901 18898

p7000-3 100 20446407 0 17652 0 2264 14684

Average 175 3503 177 623 8067
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Table 5

Performance of ITS and other algorithms on larger problems: average values

Problem Best Solution difference
value (i.e., best value – heuristic solution value)

ITS MST1 MST2 SA MA

p3000-1 3931583 0 667 0 0 4784

p3000-2 5193073 97 117 97 97 1198

p3000-3 5111533 344 897 287 535 3879

p3000-4 5761822 154 335 77 308 2760

p3000-5 5675625 501 1154 382 459 2982

p4000-1 6181830 0 517 0 734 3621

p4000-2 7801355 1285 3597 804 1887 7870

p4000-3 7741685 471 1465 1284 79 7218

p4000-4 8711822 438 1246 667 536 4995

p4000-5 8908979 572 2611 717 984 9567

p5000-1 8559355 646 3893 256 2130 8173

p5000-2 10836019 1068 3540 978 2101 10790

p5000-3 10489137 1266 5644 1874 2451 14663

p5000-4 12251874 1508 6270 2126 692 17744

p5000-5 12731803 835 7320 1233 1172 12996

p6000-1 11384976 57 9213 34 2248 15287

p6000-2 14333855 1709 11626 1269 2067 23632

p6000-3 16132915 3064 14958 2673 3845 19916

p7000-1 14478336 799 9281 2175 5164 18298

p7000-2 18248297 2650 11914 2163 6186 23844

p7000-3 20446407 3078 22990 7868 8978 29584

Average 978 5679 1284 2031 11610

quality than those delivered by SA and especially MA. Comparing average values (Ta-
ble 5), we see that the superiority of ITS over SA is more pronounced for the largest
instances, that is, containing 6000 and 7000 variables. Compared with MA, ITS found
far better solutions for most of the UBQOP instances used in the second experiment. Cer-
tainly, continuing the run of MA for more generations can produce some improvements
in its performance. However, it seems that, unlike in the case of b2500 series, increasing
the time limit for MA several times does not help very much (at least for the largest in-
stances). The memetic algorithm was run once on each problem of size 3000 and 7000
setting the time limit to 5 and 15 hours, respectively. The best known solutions were
obtained for the following three problems (the time to solution t in seconds and the cor-
responding number of generations g are given in the parenthesis): p3000-1 (t = 2635,
g = 49), p3000-2 (t = 1229, g = 24), p3000-4 (t = 10318, g = 247). The values f∗

of the solutions found by MA for the remaining problem instances were as follows: for
p3000-3, f∗ = 5110816; for p3000-5, f∗ = 5674778; for p7000-1, f∗ = 14473676; for
p7000-2, f∗ = 18238055; for p7000-3, f∗ = 20428607. The total number of generations
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Table 6

Performance of ITS and other algorithms on larger problems: average time to the best solution in the run (in
seconds)

Problem ITS MST1 MST2 SA MA

p3000-1 228 396 106 251 726

p3000-2 212 395 97 337 809

p3000-3 327 464 271 517 590

p3000-4 519 480 559 336 722

p3000-5 462 436 255 327 638

p4000-1 215 776 436 842 1515

p4000-2 1070 785 1082 1680 1063

p4000-3 730 1011 359 1094 1106

p4000-4 845 656 624 1002 1373

p4000-5 797 862 700 1279 1287

p5000-1 1520 2260 1621 1816 3000

p5000-2 1264 1984 1946 2072 2562

p5000-3 2015 1410 2365 2836 2925

p5000-4 1787 2005 2805 3178 2075

p5000-5 1652 1922 2156 3171 3095

p6000-1 2935 2860 3112 1844 4009

p6000-2 2517 3119 2661 3256 3688

p6000-3 2871 3217 3655 4422 4364

p7000-1 5313 4954 4348 5806 7942

p7000-2 3039 4484 5165 5215 5525

p7000-3 4339 2801 6342 6417 8197

Average 1650 1775 1936 2271 2724

within the allotted time period was about 380 and 155 for p3000 and p7000 instances,
respectively.

Table 6 shows that ITS takes on the average less time to first find the best solution in
a run than any of the other tested algorithms. Notice that the memetic algorithm MA is
the slowest of them all.

In the final experiment, longer runs of ITS on the problems with 5000, 6000 and 7000
variables were performed. The time limit was set to 5, 8 and 10 hours, respectively. Ta-
ble 7 displays the results only for those problem instances for which a solution better than
that reported in Table 4 for ITS was produced. Comparing these tables, we see that ITS
was able to match the solutions found by MST2 for p5000-1 and p6000-3 but, however,
failed for p6000-2. Furthermore, ITS, when allowed to run longer, improved the best so-
lutions also for p5000-4, p7000-1 and p7000-2. However, in most cases, better solutions
were obtained at the cost of a significant increase in computation time.

In closing this section, we note that, for many problems in the second series, the
solutions of the best-reported value were found many times with different algorithms.
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Table 7

Results of longer runs of ITS

Problem Solution value Time (in seconds)

p5000-1 8559355 3457

p5000-4 12252318 12605

p6000-3 16132915 9830

p7000-1 14478676 30198

p7000-2 18249948 1877

Therefore, it could be argued that for a subset of instances the best values given in the
paper (third column of Table 4) are very close to the optimum.

5. Conclusions

This paper described an iterated tabu search algorithm for the unconstrained binary
quadratic optimization problem. The algorithm is rather simple and easy to implement.
The experiments have shown that, at the same time, it is very competitive with existing
state-of-the-art algorithms for the UBQOP. The proposed algorithm is reliable in the sense
that it is able to produce better solutions than other tested algorithms for both sparse and
dense problem instances. Moreover, this algorithm is fastest among the five considered al-
gorithms. In particular, it required about 27% and 39% less time to find the best solutions
for large UBQOP instances than the simulated annealing and, respectively, evolutionary
search implementations. Thus, we can conclude that the proposed iterated tabu search
algorithm performs remarkably well, both in terms of solution quality and computational
speed. An open problem is a more systematic investigation of an optimal trade-off be-
tween the number of tabu search restarts and the number of iterations of a tabu search
run, assuming that the time interval allotted for the execution of the whole program is
fixed.

We believe that a similar solution strategy could be successfully applied to develop
heuristic algorithms for some other hard combinatorial optimization problems.
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Iteracinė tabu paieška neapribotos binarinės kvadratinės
optimizacijos uždaviniui

Gintaras PALUBECKIS

Straipsnyje nagrinėjama situacija kai yra duota aibė objekt ↪u ir tam tikri dydžiai (bet kokie,
netgi neigiami skaičiai), ↪ivertinantys naudingum ↪a, yra priskirti ne tik pavieniams objektams bet ir
j ↪u poroms. Neapribotos binarinės kvadratinės optimizacijos uždavinys reikalauja surasti objekt ↪u
poaib↪i, kuriam suminis naudingumas būt ↪u maksimalus. Prie tokio modelio susiveda daug praktini ↪u
uždavini ↪u, iškylanči ↪u ↪ivairiose srityse. Straipsnyje siūlomas iteracinės tabu paieškos algoritmas
suformuluotam uždaviniui spr ↪esti. Pateikiami skaičiavim ↪u rezultatai uždavinio pavyzdžiams, tu-
rintiems iki 7000 kintam ↪uj ↪u (objekt ↪u). Algoritmas palyginamas su kitais šiuolaikiškais euristiniais
metodais.


