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Abstract. Error bounds are developed for a class of quadratic 
programming problems. The absolute error between an approxi
mate feasible solution, generated via a dual formulation, and the 
true optimal solution is measured. Furthermore, these error bounds 
involve considerably less work computationally than existing esti
mates. 
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1. Introduction. Quadratic programming has long 
been the cornerstone for many numerical techniques in nonlin
ear programming. Typically, these methods use a quadratic 
function to approximate the objective function and linear equ
alities and (or) inequalities to approximate the constraint 
functions, all in some neighborhood of a specified feasible 
point. The resulting quadratic programming problem is solved 
and the optimal solution (or approximation thereof) becomes 
the point from which a new round of approximations is made 
and a new quadratic programming problem is formulated. In 
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addition, quadratic programming merits attention in its own 
right as it arises naturally in such fields as engineering, eco
nomics, and game theory. 

Increasingly, though, the topic has been treated as a 
special case of the linearly constrained variational inequality 
problem: 
Find u * such that 

(u - u *) T f ( U *) ~ a for all u in J( (1) 

where K is polyhedral set 

K = {u: Cu ~ d, Au = b} (2) 

and C, A, d, and b are specified matrices and vectors of ap
propriate dimensions. Of special interest has been the devel
opment of error bounds for approximate solutions, x, to the 
true optimal solution, x* , of (1). Particular attention has been 
paid to the case where f (x) is a linear function 

f(x) =-Mx + c 

with M a positive definite (p.d.) matrix. Recently, Pang 
(1987) provided a survey of known error estimates along with 
a number of e~tensions. These follow the general format 

Ilx - x*11 ~ p·r(x) 

where p is a constant independent of x (but dependent on 
the data) and r( x) is the generalized residual, a quantity de
pending on the value of x and the type of measure employed. 
The norm, unless otherwise stated, is the Euclidean norm. A 
common drawback to these bounds is that at least one of the 
two quantities is difficult to calculate (and any simplification 
in one seems to make the other more difficult). 
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The purpose of this paper is to derive a set of error esti
mates for a special case of the quadratic programming prob
lem: 

min 1/2xT Hx + vT x (3) 

s.t. A:c = b 

x~O 

where H is positive definite, and A E Rmxn is of full row 
rank. We will sometimes refer to this as the primal (quadratic 
programming) problem. 

In relationship to Pang's work ~e remark that the results 
presented here are a hybrid of those termed linear program
ming measures (of error) and dual measures (of error) in Pang 
(1987). A Corollary to our Theorem 3.3 results in one similar 
to Pang's Theorem 4.1. However, our bounds are relatively 
easy to compute and thus can be employed not only for a pos
teriori error analysis but also as a test for termination of the 
particular quadratic programming algorithm being used. 

We have divided the remainder of this paper into two 
sections. In section 2 we develop a dual formulation to (3) 
using conjugate functions. This approach allows us to esti
mate the current duality gap (denoted by ~) and consequently 
bounds the improvement we can expect in our dual objective 
functional. As the dual formulation is solved it generates ap
proximate optimal solutions to the primal problem (given by 
the gradient of the dual objective functional). In section 3 we 
bound the error between ,these generated solutions (denoted 
by x) and the tr:ue optimal solution to the primal problem (de
noted by x*) as a function of the estimated duality gap (~). 

2. The Dual Formulation. In this section we derive 
the dual formulation to system (3). The theory of duality in 
quadratic programming is not particularly new. Dorn (1960) 
and Lemke (1960) are among the first to address this topic. 
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Both formulations in these works are different from t~le dual 
in this section, yet both can be used to derive it. Lost in the 
derivation, however, is the notion of the duality gap which is 
essential to our analysis. Therefore, we will use the general 
theory of duality as set forth in Avriel (1976). To employ this 
theory 'we introduce perturbation variables WI ,wz and 7/, and 
define 

{ 
1/2 xT H;r + vT:r 

4>(X,W1,W2,V) = , 

if Ar - b ~ 'WI 

-Al' + b ~ 'Wz 
x~v 

otherwise. +00 
The conjugate function, 4>*, becomes 

sup [(T.T + .AnAl' - b) 
x +.Af( -kr + b) - llT x 

-(1/2;r T H x + vT;r)] 

+00 

for .AI, .A2, 
1l~0 

otherwise. 

Letting y = .AI - .A2 and substituting ( = 0 (in anticipation of 
the 'Weak Duality Theorem), we get 

{

SUP [yT(Ax - b) + 1fT x 

4>*(0, y, u) = l' -(1/2:rT H;r + vT;r)] 

+00 
for 1£ ~ 0, 

otherwise. 

The suprenUU11 over ;r can now be removed by performing the 
necessary maximization and inserting the optimal solution, 
yielding 

(1/2yT AH-I Ay 

4>*(o,y,u) = 
_yT AH-1(u - v) 

+1/2yT AH-1 AT y for 1l ~ 0 

+00 otherwise. 



356 Practical error bounds 

By the Weak Duality Theorem we have 

inf 4>(x,O,O,O) ~ sup -4>*(o,y,u). 
x (y,u) 

Since y is free, it too can be eliminated by performing the 
required maximization of -4>*. One can easily show that the 
correct (optimal) choice of y (in terms of u ~ 0) is 

Substituting this result and acknowledging the dependence of 
4>* on u yields 

where 

4>*(u) = {. (1/2uTpu + cTu + k 
+00 

for u ~ ° 
otherwise, 

(4A) 

P = H-1 _ H-1 AT(AH-1 AT)-l AH-1 (4B) 

c = -Pv + H-1 AT(AH-1 AT)-lb (4C) 

k = 1/2vT Pv - bT(AH.-I AT)-l AH-1v 

- 1/2bT(AH-1 AT)-lb. (4D) 

The weak duality inequality becomes 

and by virtue of this inequality, any x satisfying the primal 
constraints [Ax = b, x ~ 0] and any tl ~ ° provides a "working 
duality gap", i.e., an upper bound on the possible improve
ment in either minimizing the left hand side (starting from a;) 
or maximizing the right hand side (starting from u). As such, 
we define 
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for each (x, u) satisfying Ax = b, x ~ 0, and u ~ O. Moreover, 
we define the dual quadratic program to (3) as 

inf 1/2uTpu + cT u + k. 

s.t. u ~ O. 
(6) 

Clearly, ~(x, u) = 0 means x and u are optimal to the primal 
and dual problems, respectively. 

The next proposition is an elementary exercise in linear 
algebra whose proof is left to the reader. 

PROPOSITION 2.1. The following relationships hold 

1. AP=O 

2. IIPII ~ IIH-111 
3. PHP=P 

4. A(Pu + c) = b 

5. cTHP = _vTp 

6. 1/2cTHc + vTc = -k. 

If we assume that the primal problem (3) has a feasible solu
tion, then the dual problem (6) is bounded below and it is not 
hard to show that there exists an optimal solution u*. This u* 
also solves the (equivalent) linear complementarity problem: 
Find u such that 

Pu +c ~ 0 u~O 

By virtue of proposition 2.1 (part 4), x* - Pu* +cis a·feasible 
point to the primal problem and a direct calculation shows 
~(x*, u *) = 0 demonstrating the optimality of x* as well. As 
a consequence of the same proposition (pa.rt 1), we observe 
that the function Pu + c is not strongly monotone over the 
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nonnegative orthant, as evidenced by the nontrivial nullspace 
of P. 

For the remainder of this paper we will make the following 
assumption: 

(A) There exists an intcrior point x to (3): Ax = b, 
x> o. 

We remark that assumption (A) is equivalent to either of the 
following assumptifJIls: 

(A') The set of optimal solutions to the dual problem 
(6) is bounded or 

(A") There exists a u ~ 0 such that Pu + c > o. 
The details can be found in Semple (1990). Observe that 
(A") implies (A') as previously shown by Mangasarian and 
McLinden (1985). 

3. Error Estimates. A number of reasons warrant 
computing solutions to (3) via the dual formulation (6). The 
constraint set consists only of nonnegativity constraints allow
ing for a considerable reduction in the computational work 
load. Moreover, "the dual problem preserves the number of 
variables, unlike many existing dualities, and has accessible 
feasible points. 

Recall from section 2 that an optimal dual solution u* 
• 

induces the corresponding (unique) optimal solution to the 
primal via the formula x* = Pu* + c. As such, we want to 
know how close the estimate x = Pu + c is to the primal op
timal solution. Observe that the estimate satisfies Ax = b by 
Proposition 2.1 (part 4) but not necessarily the nonncgativ
ity condition, ;T ~ O. A number of quadratic programming 
algorithms applied to (6) require nonnegativity of Pu + c, 
particularly those based on adding a logarithmic barrier func
tion (see Kojima, Mizuno and Yoshise (1989) or Monteiro and 
Adler (1989)). Others based on projecting (or truncating com-
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ponents of) the gradient do not. Of the former type, the two 
cited references actually enforce positivity which, as remarked 
in section 2, requires that assumption (A) hold. Error esti
mates in this case are handled easily by Corollary 3.4. 

To start, we will derive a bound on Ilx - x*11 (again, 
x = Pu + c) based on the true duality gap, i.e., the difference 

Lemma 3.1. Let u* denote an optimal solution to (6), 
namely 

mm 1/2uT Pu + cT u subject to u ~ 0, 

with P and c defined as in (4B, 4C). At u suppose an upper 
bound b has been acquired such that 

1/2uT Pu + cT u - [1/2( u*f Pu* + cT u*] ;;; b (7) 

(as, for example, when one has an upper bound on the duality 
gap). Then 

IIP(u* - u)11 ;;; V2Am b 

where Am is the largest eigenvalue of the (p.s.d.) matrix P. 

Proof. It is easy to show that 

b ~ 1/21lT p11. + cT 11. - [1/2(11.*fPu* + cl'u*] 

= -1/2('ll - 'll*fp(11. - u*) - (u* - u)T(pu + c). 
(8) 

Define F(t) on [0, 1] by 
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Observe that u+t[u* -u] is nonnegative for tc[O, 1] andF(t) is 
monotone decreasing on [0,1]. Thus F'(t) ~ 0 on [0,1] which, 
for t = 1, yields the inequality 

(u* - ufp(u* - u) ~ -(u* - uf(Pu + c). (9) 

The two inequalities (8) and (9) imply 

(u* - ufp(u* - u)~ 28. (10) 

Finally, since P is p.s.d. (and symmetric) we have 

from which we conclude 

Taking the square root of both sides of the inequality com
pletes the proof. 

COROLLARY 3.2. If x = Pu+c is an approximate optimal 
solution to (3) (not necessarily nonnegative), then 

Ilx - x*11 ~ v'2A m O 

where x* is the (unique) optimal solution to (3) and 8 satisfies 
(7). 

Our focus now turns to obtaining good estimates 'of the 
8 in (7). The working duality gap ~C1:, u) is one such bound, 
but it requires that ;1: be feasible to Ax = b, ;1: ;;::: O. If ;1: is not 
nonnegative (but satisfies Ax = b), then we can use a pertur
bation technique analogous to that in Fiacco and McCormick 
(1968, Thm. 29) or Robinson (1975) to create a nearby point 
which is. More precisely, suppose that an interior point x has 
been generated (or as is the case in some problems, known in 
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advance). Then for x = Pu + c, the perturbed point z given 
by 

z = tx + (1 - t)x 

is both feasible and nonnegative provided 0 ~ t ~ () where 

() . Xi { -- } =m~n;o.... . 
Z Xi - mm{xi' O} 

(11) 

Taking t = () to define a particular z, and then using it to 
evaluate ~(z, u) is the basis for the following theorem. 

Theorem 3.3. Suppose assumption (A) holds and that 
an interior point x has been specified. Let x be defined by 
x = Pu + c and let x* be the (unique) optimal solution to the 
primal quadratic programming problem (3). Then there exists 
a constant vector ( and constants p and T, all depending on 
x, such that 

Ilx - x*11 ~ 

where () is given by equation (11), k is the constant defined in 
(4D), and Am is the largest eigenvalue of P. 

Proof. In light of Lemma 3.1 it .suffices to show that the 
quantity in brackets {. } is an upper bound similar to {j in (7). 
Define z = ()x + (1- ())x where () is given (depending on x and 
x) by (11). Then ~(z,u), as given in (5), becomes 

~(z,u) = 1/2()2uT pHPu + ()2c T HPu + 1/2()2cT Hc 

+ ()(1 - ())xT H(Pu+ c) + 1/2(1 - ())2XT Hx 

+ ()vT(pu + c) + (1 - ())vTx + 1/2uT Pu + cTu + k. 
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Using the identities P HP = P, cT H P = _vT P, and 1/2cT c = 
-k - vT c from propo~iti~~n 2.1 and regrouping: 

~(z, u) =(1/2(;2 + 1/2)uT pu + cT u 

+ (1 - B)[8(P~ J.c)T(Hx + v) + (1 + B)k 

+ 1/2(1 - B)xT.H¥-+.xTv]. ) 

Finally, using the positive semi-definiteness of P and the def
inition of x, we obtain 

~(z, u) ~'uT x + (1 - B) [BxT(Hx + v) 

+ (1 + B)k + (1- B)(1/2xTHx) + 'XT v], 

the constants in bracktts {. } now being evident if we take 

( =H'X+v ~T 
T = X v. (12) 

COROLLARY 3.4. Suppose for a given u ~ 0 Pu + c ~ O. 
Then for x = Pu + c 

Proof; () = 1 if Pu + c ~ 0, and the term under the root 
in Theorem 3.3 reduces accordingly. 
Observe that no attempt has been made to fit the interior 
point 'X to a particular value of Pu + c, nor have we tried to 
optimize our choic.e of 8 for given x. For example, given x and 
Pu + c one might minimize the function 

subject to the constraint 0 ~ s ~ 8, possibly improving the er
ror bound. Additionally, in response to a candidate Pu+c, one 
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might attempt to generate an interior point with larger posi
tive components corresponding to (and in scale with) the nega
tive components of Pu + c, thus reducing the factor 
1 - (). However, without additional knowledge, a priori, of 
the particular approximate solutions (Pu + c) to be encoun
tered, it seelUS wise to find a "good" interior point (i.e., one 
with uniformly large positive entries) in an attempt to keep 
the factor 1 - () small. Such an interior point can be found by 
solving (either exactly or approximately) the linear program 

Max t 

s.t. Ax =b 
(13) 

x..,.. te ~ 0 

x, t ~ 0, 

where e is the vector of l's, eT = (1,1, ... ,1). Observe that 
any feasible point (x, t) to (13) with t > 0 yields a set of 
constants via (12) which may be used to estimate the absolute 
error between our current candidate (Pu + c) and the true 
optimal solution (x*). 

Note that Theorem 3.3 (and Corollary 3.4) can be ex
tended to incorporate the notion of the residual, i.e., the por
tion of Pu + c which violates the nonnegativity condition. To 
mea.sure the violation consider the Ip norm 

\vhere (Pll + c) - denotes the vector obtained by inserting 0' s 
in the positive components of Pu + c. In particular, if the 00-

norm is chosen, and (x, t) is a feasible solution to (13) with 
t > 0 then 
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thus the factor (1 - B) in Theorem 3.3 satisfies 

Various extensions and alternate formulations of Theorem 3.3 
and Corollary 3.4 are now obvious. We will not pursue these 
here. 

We conclude with a remark about the computational effi
ciency of these error estimates. As previously mentioned, once 
an interior point to Ax = b x ~ 0 has been found, it may be 
used to bound the error between any candidate (Pu + c) and 
x*. The error bounds are, of course, more relevant to those ap
proximate solutions which are nearly nonnegative (thus 1 - B 
will be small) and nearly complementary (hence x T u will be 
small). Each ofthe constants in Theorem 3.3 can be computed 
(or bounded) with a minimal amount of work. 

In contrast, error estimates which rely on the gap func
tion (see section 4 of Pang (1987)) require the complete so
lution to a linear programming problem for each approximate 
optimal solution considered. The dual measures (see section 
5 of Pang (1987)) also require a substantial amount of work. 
Here, one needs a constant defined by the maximum norm of a 
vector constrained to the surface of an ellipsoid (characterized 
by the data). 

The potential of the error bounds in Theorem 3.3 can be 
realized with minimal computational work. They should be 
considered, as our title suggests, practicaL 
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