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Abstract. This paper presents an iterative autoregressive system parameter estimation algorithm in
the presence of white observation noise. The algorithm is based on the parameter estimation bias
correction approach. We use high order Yule—Walker equations, sequentially estimate the noise
variance, and exploit these estimated variances for the bias correction. The improved performance
of the proposed algorithm in the presence of white noise is demonstrated via Monte Carlo experi-
ments.
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1. Introduction

Estimation of the parameters of an autoregressive (AR) system parameters from noisy
observations of its output has important applications in different fields such as signal
processing, speech analysis, spectral estimation, and noise cancellation (Haykin, 1996;
Srinath et al., 1996; Kay, 1993). Estimation of the AR parameters from noisy data is an
important problem in practice (Kay, 1988). The quality of estimated AR parameters can
be severely deteriorated due to the presence of noise. The least squares (LS) approach will
give biased estimates of the AR parameters when the measured signal is corrupted with
noise (Stoica et al., 1987). The techniques of parameter estimation using Yule—Walker
(YW) equations in the autocorrelation domain are described in (Zheng, 1999; Hasan and
Khan, 2003). In such case, parameter estimation is mainly confined to the 5 dB signal to
noise ratio (SNR). The technique requires estimation of noise, which is difficult to obtain,
and the autocorrelation function becomes noisy at a low SNR (Kay, 1980; Sun and Ya-
hagi, 1992). On the other hand, use of the high order Yule-Walker (HY W) equations does
not require a priori estimation of noise, but it is sensitive to the penetration of noise in
the positive lag data samples in the autocorrelation function and does not give acceptable
results in noisy conditions (Yahagi and Hasan, 1994). A least-squares based method for
noisy autoregressive signals has been developed, which needs to no prefilter noisy data
(Zheng, 2000). The improved least squares method with no prefiltering (ILSNP) yields
good results, as compared with the YW equations (Zheng, 1999). However, this technique
cannot reach 0 dB SNR. An approach for system identification at an extremely low SNR
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using energy density in a discrete cosine transform domain is analyzed in (Ferdousi et
al., 2005). In the proposed method, the system properties like energy density in a discrete
cosine transform domain have been utilized to estimate the autocorrelation function. Suc-
cessive autocorrelations of this estimated function are taken for a sequential estimation
of system parameters.

The paper considers the estimation algorithm of AR parameters in the presence of
white observation noise. The estimation algorithm is iterative because the estimation of
noise variance and parameters is sequentially repeated until some convergence criterion
is satisfied. The algorithm is built upon the bias correction principle (Stoica et al., 1987,
Zheng, 1999; Zheng, 2000). The idea is to use the HYW equations (i.e., to use more au-
tocorrelation samples), sequentially estimate the noise variance, and to use these variance
estimates for the bias correction.

The computer simulation results are presented and compared with other methods.

2. Preliminaries

Let the signal x(t) be generated by the pth order equation

P
x(t) = Z a;x(t —1) + v(t), (1)

i=1
where v(t) is white driving noise of zero mean and variance o2 (i.e., Ev(t) = 0,

Ev(t)v(s) = 026 5), and {a;} are real coefficients. Let y(k) denote the noise corrupted
measurement of x(t),

y(t) = =(t) + w(t), @)
where the noise w(t) is a stationary process of zero mean and variance o2 uncorrelated
with v(¢). N is the number of data samples.

For the noiseless case, {a;,i = 1,2,...,p} can be found using the Yule-Walker
equations
P

re(k) =Y ama(k—1), k=1, 3)

=1

where r,.(k) = E(z(t)z(t — k)) is the autocovariance function of x(t). Clearly, any p
equations are sufficient to determine the AR parameters. Generally k = 1,2,...,p is
chosen which results in a set of symmetric Toeplitz equations

r,(0) r.(1) coore(p—1) a1 re(1)

re(1) r,(0) oo re(p—2) az | _ r2(2) (4a)

rap—1) ra(p—2) ... 72(0) ) \r.)



Iterative Estimation Algorithm of Autoregressive Parameters 201
or in matrix form
Rya=r1,. (4b)

When the noise is present, we cannot estimate (k) since only y(t) is available. In
such case, we have

7y(0) ry(1) ry(p—1) ay ry(1)
TU(l) T'l/<0) TCU(p - 2) a’Q — TU(Q) (Sa)
ry(p—1) ry(p—2) ... 1,(0) a; 7y (p)
or in matrix form
Ryais = ry. (5b)
But
rz(0) + 02, if k=0,
k) = v 6
ry(k) {rx(k), if k # 0. ©
Then, from (6) it follows that r,, = r, and
R, =R, — o021, (7
where I, is the (p X p) identity matrix.
Substituting (7) into (4b), we have
a=as+ Ui}R;la, (8)

where a;s = R,/ 1ry is the least square estimate (Davis and Vinter, 1985).

On the other hand, since (6) is valid, we may estimate r, (k) for all & # 0 from y(t),
since it is assumed o2, to be unknown. Then, by choosing k¥ = p + 1,...,2p in (3) and
using (6), the resulting equations will not involve r,(0), i.e.,

ry(p) ry(p—1) ... 1y(1) ay ry(p+1)
ry(p+1) ry(p) oo my(2) az | _ | my (p+2) (92)
ry(2p—1) ry(2p—2) ... 7y(p) ap ry(2p)
or in matrix form
Rhah = Th- (9b)

These equations are called the high-order Yule-Walker (HYW) equations (Vergara—
Dominiguez, 1990). The high-order Yule—Walker estimate

an = R, 'ry,. (10)
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3. The Iterative Estimation Algorithm

As shown in (8) (see also (Stoica et al., 1987)), an asymptotic bias of the least square
estimate

a—as=0,R"a (11)

depends on the noise variance o2 and is direct proportional to the parameter vector a.
From (8), we obtain

a= (I—aiRy_l)_lals. (12)

Keeping in mind that (Bellman, 1960)
(I-A)=>" A, (13)
i=0

where A is a (p x p) matrix, (12) may be written as
a=a,+0onR,  ai + (00, Ry a + ... (14)
Define

0
a® = ay,

1 2 p—1
aV = a, + ol R, s,

a? = q + UiR?jlals + (UiRgl)zals’ (15)

and so on.
Next, we obtain from (15) the iterative parameter estimation algorithm

a® = as + aiR;la(ifl), (16)

which depends on the noise variance o2,.

The high-order Yule-Walker estimate ay(10) and the estimate a = R 'r, do not
depend on the noise variance. On the other hand, the least square estimate a;, (8) depends
on the noise variance. So, the difference of the high-order Yule-Walker estimate and the
least squares estimate is proportional to the noise variance. Substituting aj, into the left
side of (8), we get

an — ais = o0 R, a. (17)
From (17), we obtain the estimate of the noise variance in the least square sense

. (R;la)T(ah —ays)

oo =
1Ry al]

) (18)
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where ||| is the [3 norm of the vectors.
We can show that our algorithm is more general as compared with (Zheng, 2000).
Multiplying both sides of (17) by R}, we obtain

rh — Rhals = UfURhjola. (19)

From (19), it follows

— Rpas
v @
hity G

In case we use only one additional point 7, (p+ 1) of the autocovariance function, then in
9 Ry, = [ry(p)ry(p—1)...ry(1)], 7, = 7y(p+1), and (20) is equal to (24) in (Zheng,
2000).

The Iterative Algorithm:

1. Using noisy samples y(1), ..., y(IN) compute autocovariance estimates 7, (k), k =
0,1,...,2p, form the autocovariance matrix estimate Ry (5), vector estimate 7,
(5), autocovariance matrix estimate Ry, (9), and the vector estimate 75, (9).

2. Calculate the least square estimate (14)

al” = a, = R, ', 1)
and the high-order Yule—Walker estimate (10)
an = Ry iy (22)

3. Estimate the noise variance (17)

o ) o
IRy "atiD 2
4. Use the parameter estimation algorithm (15) to obtain
a® = ay, + 02" Ry talY, (24)
5. Terminate the calculations, if
la® —av7) e, (25)

1at]

where ¢ is a positive number; otherwise, set the iteration step ¢ = ¢+ 1 and go to 3.
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4. Simulation Results

Simulation results are given to illustrate the proposed iterative estimation algorithm. We
analyze the fourth order noisy AR process (1), (2), where (Zheng, 2000)

a’ =[1.352

—1.338 0.662

The measure of the signal to noise ratio is

2
SNR = 10log,, -% (dB).
Uu}

Table 1

Simulation results

~024], o

2 =1.0.

v

(26)

o2 =0.122,

SNR ~ 15dB,

N = 6000

True Parameter

LS

ILSNP

ILSD

Iterative

a; = 1.352 1.0779 £ 0.0163  1.3516 +0.0423  1.3517+0.0421  1.3516 + 0.0403
az = —1.338  —0.8728 £0.0247 —1.330540.0719 —1.3306 + 0.0703 —1.3340 4 0.0651
a3 = 0.662 0.2303 £0.0246  0.6593 + 0.0633  0.6586 + 0.0631  0.6599 =+ 0.0592
ag = —0.24 —0.044+0.0163 —0.2391 +0.0301 —0.2372 4 0.0300 —0.2402 + 0.0027
&2, - 0.1213+£0.0179  0.121440.0176  0.1217 + 0.0136
Estimation error 12.5889% 0.0017% 0.0018% 0.0005%
02, =03, SNR=~11dB, N = 6000
True Parameter LS ILSNP ILSD Iterative

a1 = 1.352 0.8874 £ 0.0161 1.3554 4+ 0.0813 1.3548 4+ 0.0824 1.3540 4 0.0569
az = —1.338 —0.594 £+ 0.0223 —1.3481 +£0.1291 —1.3471 +0.1304 —1.3401 +0.0917
a3z = 0.662 0.0104 £+ 0.0210 0.6738 £0.1164 0.6737 £0.1183 0.6643 £+ 0.0801
aqg = —0.24 0.0329 £0.0153 —0.2451 +0.0512 —0.2450 £+ 0.0567 —0.2389 £ 0.0393
&?H - 0.2931 £ 0.0346 0.2930 £ 0.0345 0.2973 £+ 0.0301
Estimation error 30.8325% 0.0068% 0.0061% 3.6242.1073%
ofu =0.7573, SNR=~7.0dB, N = 6000
True Parameter LS ILSNP ILSD Iterative

a1 = 1.352
az = —1.338
a3 = 0.662
ag = —0.24
&2

w

0.6689 £ 0.0141
—0.3648 £ 0.0167
—0.1371 £ 0.0163

0.0454 £+ 0.0129

1.2521 4+ 0.2563
—1.2173 £0.3614
0.5271 £ 0.2913
—0.2038 £ 0.0981
0.5217 £ 0.3617

1.2710 £ 0.2631
—1.2210 £ 0.3691
0.5311 £ 0.2901
—0.2042 £ 0.191
0.5131 £ 0.3501

1.3014 + 0.1416
—1.2416 £0.1817
0.601 £ 0.1571
—0.2201 £ 0.0671
0.7103 £ 0.2201

Estimation error

51.8758%

1.071%

0.9398%

0.38819%
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The stop criterion for iterative algorithm is chosen

a® — a1
— <e¢ 27
oy < 7
where a(%) is the parameter estimate at the 4th iteration step; ¢ = 10~%.
The parameter estimation error is
|lmean(a) — all

100%, (28)
lall

where a is the true parameter vector, mean (@) is the mean of the parameter vector esti-
mates in 150 Monte Carlo tests.

We consider the performance of the iterative algorithm for different SNR when noisy
observations N = 6000 of y(t) are available. Table 1 shows that the least squares method
is very sensitive to the measurement noise, while ILSNP (Zheng, 1999), ILSD (Zheng,
2000) and iterative estimation algorithms yield consistent estimates of the noise variance
and AR parameters. On the other hand, we see that the iterative estimation algorithm is
better than the ILSNP and ILSD methods in terms of standard deviations of the estimated
parameters, i.e., standard deviations of the estimates of the iterative algorithm are less
as compared with the ILSNP and ILSD methods. It is due to the fact that the iterative
algorithm requires more additional autocovariance points 7y (p),ry(p + 1),...,74(2p),
i.e., more information about the noisy signal y(¢) is used for the evaluation of noise
variance.

5. Conclusions

This paper introduces a new iterative estimation algorithm for system identification. The
noise compensation approach presented in the paper offers a better method than the
ARMA method for reducing the white observation noise effects on the parameter esti-
mates. The bias error of the least square method introduced by noise can be reduced. An
advantage of the iterative algorithm is its ability to get more accurate estimates of the AR
parameters as compared with the ILSNP and ILSD methods. The use of the high order
Yule—Walker equations (9) is equivalent to noise compensation in the autocovariance ma-
trix (5). We approximate a set of the first 2p + 1 autocovariance estimates to a noisy AR
process of order p. Our approach is more general as compared with the ILSNP method
(Zheng, 2000), because we use more additional samples of the autocovariance function
for the noise variance estimation.
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Iteratyvusis autoregresijos parametru ivertinimo algoritmas

Kazys KAZLAUSKAS, Jaunius KAZLAUSKAS

Straipsnyje pasiillytas iteratyvusis autoregresinés sistemos parametry ivertinimo algoritmas,
kai sistemos i$¢jimo signalas yra iSkreiptas adityvaus baltojo triuk§mo. Algoritmo esmé — sistemos
parametry paslinktuju iverCiu korekcijos metodas. Naudojamos aukStesniosios eilés Julo—Volkerio
lygtys ir nuosekliai ivertinama triuk§mo dispersija, kurios tarpiniai iver¢iai panaudojami sistemos
parametry iver¢iy patikslinimui.



