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Abstract. The objective is to investigate two emerging information technologies in graduate studies
and scientific cooperation. Internet is the first technology. The open source is the second. They help
each other in many ways. We investigate the joint influence of both.

Results of complexity theory show the limitations of exact analysis. That explains popularity
of heuristic algorithms. It is well known that efficiency of heuristics depends on the parameters.
Thus we need some automatic procedures for tuning the heuristics. That helps comparing results
of different heuristics. This enhance their efficiency, too.

An initial presentation of the basic ideas is in (Mockus, 2000). Preliminary results of distance
graduate studies are in (Mockus, 2006a). Examples of optimization of sequential statistical deci-
sions are in (Mockus, 2006b).

In this paper the theory and applications of Bayesian Heuristic Approach are discussed. In the
next paper examples of Bayesian Approach to automated tuning of heuristics will be regarded.
The examples of traditional methods of optimization including applications of linear and dynamic
programming will be investigated in the last paper. These papers represents three parts of the same
work. However each part can be read independently.

All the algorithms are implemented as platform independent Java applets or servlets. Readers
can easily verify and apply the results for studies and for real life optimization models.

The information is on the main web-site http://pilis.if.ktu.lt/∼jmockus and four mir-
rors.
Key words: Bayesian approach, global optimization, tuning heuristics, scientific collaboration,
distance studies, e-education.

1. Introduction

The rapid development of the internet power accumulating knowledge and providing
communication services challenge the traditional way of studies. The traditional way
based on textbooks and formal lectures is natural for theoretical studies of mathematics,
physics etc. That is not true for new technologies of informatics and computer sciences.
Obviously a different approach is needed. The problem is to define the right approach.
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The objective is to investigate potential possibilities of two emerging information
technologies on graduate studies and scientific cooperation. Internet is the first technolo-
gy. The open source is the second. They help each other in many ways. We investigate
the joint influence of both.

The general properties of the Internet are the speed and the convenience of sharing sci-
entific information. For scientific collaboration the possibility to run software developed
by colleagues directly by Internet is essential. We can test directly other results by run-
ning their software with our data. Therefore algorithms, software and results published
in the scientific papers can be investigate independently. This possibility is not widely
used yet. But the potential appears great. In this sense Java applets are similar to proofs
of theorems in mathematics since we test theorems by reading the proofs. The snapshots
of graphical user interfaces are useful for testing the results, too. The snapshots help to
do calculations exactly as authors intended.

In a limited way the experimental approach can be applied to asymptotic results, too.
We can test actual convergence process by corresponding computer simulation.

That can be done by both the commercial and the open software. However the effi-
ciency is not the same. It is well known that the commercial software works best in the
proprietary environment, as usuall. That is natural.

Java is a platform independent language running software on remote computers. The
others are perl, python, php. However Java is more efficient for scientific calculations.

In the Internet environment computer simulation is the main tool of experimental
research. The well known results of algorithm complexity show the limitations of exact
analysis. That explains popularity of heuristic algorithms.

Investigating heuristic algorithms subjective factors are important. It is well known
that efficiency of heuristics depends on some parameters. Researchers often work hard to
define the best parameters for the proposed heuristic method before submitting a paper.
Othervise the paper may be rejected. Published results reflects not just the quality of
proposed heuristic method but authors experience, too. Thus we need some automatic
procedures for tuning the parameters of heuristics. That helps comparison of different
heuristics. This enhance their efficiency, too.

A problem is to define the reasons explaining the fast open source development with-
out any apparent financial rewards. A contributing element is the natural need of self
expression. Another element is a desire to show others what we can do. The first element
is useful for self esteem. The second helps building a positive professional image.

This was noticed by commercial software companies, too. Some well known software
companies support the development of open source software anticipating a profit from
services. Some users may run the free software completely by themselves. Others may
prefer to pay for services and help.

Results are suprising. The rate of some major open source shares are growing faster
comparing with the commercial ones. An IBM expert explained this as a general trend
to adapt the software to the specific needs instead of using ’out-of-shelf’ products. Then
profits of software companies are generated mainly by service sectors.
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Another explanation is security. The open source software helps to locate and de-
stroy malicious software directly without asking for any outside help. Desirable degree
of safety is defined flexibly just by limiting rights of different users including ourselves.

Rates of shares of commercial Microsoft and open-source Red-Hat are shown in the
Fig. 1. Shares of Microsoft and Google are compared in Fig. 2. Note that the rate scale is
logarithmic.

Development and applications of the open source software is new and dynamic field.
Important changes often happen in days and weeks. Thus some new non-traditional ap-
proaches of education should be investigate to meet the needs of open software ade-
quately.

An initial presentation of the basic ideas is in (Mockus, 2000). Preliminary results of
distance graduate studies are in (Mockus, 2006a). Examples of optimization of sequential
statistical decisions are in (Mockus, 2006b).

It is difficult to regard the problem in general. Therefore we investigate a set of rele-
vant examples. To make this a part of more general E-education environment one needs
a theoretical background and some basic software tools first. All the examples should be
united by some general concept.

We regard various examples as optimization models. That is the general concept. First
we investigate heuristic algorithms that reflects real life conditions. Comparing various
heuristics and improving the efficiency we need specific optimization methods. A conve-
nient theoretical concept is the Bayesian approach. We apply this approach for automatic
tuning of heuristic parameters and for search of optimal mixtures of heuristics.

Doing that in the Internet environment a specific software framework is developed
using Java. Students and researchers can conveniently include their own examples as
separate tasks of this unified framework. Representing the optimization results specific
graphical analysis objects are added to some general display tools. New methods devel-
oped by users can be easily included in addition to the Bayesian ones.

In this paper the theory and applications of Bayesian Heuristic Approach are dis-
cussed. In the next paper examples of Bayesian Approach to automated tuning of heuris-
tic parameters will be regarded. The examples of traditional methods of optimization
including applications of linear and dynamic programming will be investigated in the last
paper. These papers represents three parts of the same work. However each part can be
read independently.

Fig. 1. Comparing RedHat/Microsoft rates. Fig. 2. Comparing Microsoft/Google rates.
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All three papers show how optimization models can be implemented and updated by
graduate students themselves. That reflects the usual procedures of the open source deve-
lopment. This way students not just learn the underlining model but obtain the experience
in the development of open source software. The step-by-step improvement of the model
and software is at least as important as the final result.

This way we accumulate some experience in the completely new field of education
when all the information can be easily obtained by internet. The internet users are filtering
and transforming the information to meet their own objectives, to build their own models.
Here creative approach is needed. No well defined patterns and no well tested models yet.
The natural way of research is by computer experimentation. This approach is convenient
for scientific collaboration, too. We meet similar patterns in collective development of
scientific projects. Here researchers need fast ways to test and to apply results obtained
by the colleagues.

The development of open source software is regarded as “quite revolution”. That con-
tradicts many traditional notions in business administration and economics. Excellent
results appear without any noticeable economic incentives. Sometimes open source soft-
ware exceeds the commercial products. This trend is reflected by dynamics of share rates.
Two examples are shown in Figs. 1 and 2.

In the papers algorithms and models are described with references to web-sites of
on-line models. Examples of economic, social, and engineering models are regarded as
optimization problems. Simplified versions of these models are presented for better un-
derstanding. The computing time is reasonable, as usual.

No “perfect” examples in these web-sites. All examples has some advantages and
some disadvantages. Improvement of “non-perfect” models is useful both for students
and for colleagues. The main objective of this paper is to help establish scientific collab-
oration in the Internet environment with distant colleagues and students by creating an
environment of E-education and scientific collaboration in the fields related to optimiza-
tion.

Bayesian Approach (BA)

Tuning of heuristics is regarded as an optimization problem. We are looking for such
parameters x ∈ Rm of heuristics h = h(x) that provide best results. Denote the original
function to be optimized as φ(ω), ω ∈ Rmo . We know just that this function belongs
to some family Φ of functions. Thus we cannot define the optimization quality by just a
single sample φ(ω) ∈ Φ. All the family Φ have to be regarded. Assume that search time
is limited and defined as the number n of iterations.

Denote by (φn, ωn) the results obtained applying n times a heuristic h to a function
φ(ω) ∈ Φ. Here φn = φ(ωn) and ωn = ωn(h), where ωn(h) is the final decision
of heuristics h after n iterations. Formally heuristic h after n iteration transforms the
original function φ(ω) ∈ Φ into another function f(x) ∈ F . Here f(x) = φ(ωn(h(x)))
belongs to a family F of functions φ transformed by heuristics h. Transformed function



Examples of E-Education for Scientific Collaboration 263

f(x) shows how the value of the original function φ(ω) obtained applying n times the
heuristic h depends on the heuristic parameters x.

Denote results of nth iteration as (yn, xn). Here yn = f(xn) and xn = (xn
1 , . . . , xn

m).
Using the same heuristics parameter x we obtain different results f(x) depending on
which sample function φ optimize. Thus here is optimization under uncertainty. In the
optimization under uncertainty two different approaches are widely used: the Min-Max
and the Bayesian.

The Min-Max approach minimizes the maximal deviation from the solution. Here the
worst case is regarded. The Bayesian approach searches for minimal expected deviation.
Thus the average case is investigated. If the family F is a small set of well defined func-
tions f(x) then the Min-Max approach is efficient. Otherwise we regard the average case
because the worst case is too bad.

Applying the Bayesian approach we fix a prior distribution P on a set F of functions
f(x). We need that defining average results. A prior distribution is transformed into a
posterior distribution Pn on a subset Fn of the family of F . We can do that by conditional
probabilities.

Pn(y, x) = P
(
f(x) < y | f(xi) < yi, i = 1, . . . , n

)
. (1)

Here P (f(x) < y|f(xi) < yi, i = 1, . . . , n) shows how the probability P of event
f(x) < y depends on calculation results y1, . . . , yn.

Now we can define a risk function R0(x). The risk function R0(x) shows how the
expected deviation r(x) from the solution depends on parameters x. Here r(x) = f(x)−
f(x∗), where x∗ is the optimal and x is a current values of heuristic parameters. Owing
to linearity of deviation r(x) the risk function R0(x) can be expressed as the difference
R0(x) = Ef(x) − Ef(x∗). The second component is a constant associated with the
set F and a prior distribution P . We see that Ef(x∗) does not depend on the decisions
x therefore we disregard this component. Then we can define the risk function as the
expected value of f(x)

R(x) = Ef(x) =
∫

F

f(x) dP (f(x)). (2)

The Bayesian Approach (BA) is defined by fixing a prior distribution P on a set of func-
tions f(x) and by minimizing the risk function R(x) (DeGroot, 1970; Mockus, 1989; Di-
aconis, 1988; Berger, 1985; Kadane and Wasilkowski, 1985). The risk function shows
how the average deviation depends on parameters x. The distribution P is regarded as a
stochastic model of f(x), x ∈ Rm, where f(x) may be a deterministic or a stochastic
function. This is possible because using Bayesian approach uncertain deterministic func-
tions can be regarded as some stochastic functions (Lindley, 1971; DeGroot, 1970; Sav-
age, 1954; Fine, 1973; Zilinskas, 1986). That is essential feature of the Bayesian approach
in this setup. For example, if several values of some deterministic function yi = f(xi),
i = 1, . . . , n are known then the level of uncertainty can be represented as the condi-
tional standard deviation sn(x) of the corresponding stochastic function f(x) = f(x, ν)
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where ν is a stochastic variable. The aim of BA is to provide as small average deviation
as possible.

The difficulties depends on the heuristics. In general a heuristic is some decision
rule defining how the next point of observation depends on observed values. Obser-
vation means calculation of φ(ω) at fixed ω. Simplest are passive heuristics when all
the calculation points (ω1, . . . , ωn) are fixed (Traub et al., 1988; Traub and Wozni-
akowski, 1992; Packel and Wozniakowski, 1987; Sukharev, 1971). Well known examples
are ’grids’, both deterministic and Monte Carlo. In this paper we investigate sequen-
tial heuristics where next observation depends on observed results (Wald, 1947; Wald,
1950; Bellman, 1957). Regarding these heuristics we meet difficulties.

Solutions of recurrent equations of sequential statistical analysis are defined just in
some special problems (Wald, 1947; Shiryayev, 1978). No general solution is known.

We by-pass this difficulty by reducing multi-stage decision function to simple ’two-
step’ rule. Here defining coordinates of the next observation we assume that next obser-
vation will be the last one. And so on until the end.

In the Gaussian model, assuming (Mockus, 1989) that the (n+1)th observation is the
last one

R(x) =
1√

2πsn(x)

∫ +∞

−∞
min(cn, z)e−

1
2 (

y−mn(x)
sn(x) )

2

dz. (3)

Here cn = mini yi − ε, yi = f(xi). mn(x) is a conditional expectation with respect
to observed values yi, i = 1, . . . , n. s2

n(x) is a conditional variance, and ε > 0 is a
correction parameter. The minimum of the risk function R(x) is obtained (Mockus, 1989)
at the point

xn+1 = arg max
x

sn(x)
mn(x) − cn

. (4)

The Wiener process (Kushner, 1964a; Kushner, 1964b; Saltenis, 1971; Torn and Zilin-
skas, 1989) is a convenient stochastic model in the one-dimensional case m = 1.

Fig. 3 shows the conditional expectation, the conditional standard, and the risk func-
tion with respect to available evaluations.

The Wiener model implies continuity of almost all sample functions f(x). The model
assumes that increments f(x4) − f(x3) and f(x2) − f(x1), x1 < x2 < x3 < x4, are
stochastically independent. Here f(x) is Gaussian (0, σ∗2(x), where σ∗2(x) is variance,
at any fixed x > 0.

Note, that the Wiener process originally provided a mathematical model of a particle
in the Brownian motion.

Calculations of conditional probabilities (1) are difficult, in general. The problem is
keeping consistency conditions. In a special one-dimensional case this problem is solved
by Wiener model (Zilinskas, 1978b; Zilinskas, 1978a; Torn and Zilinskas, 1989; Calvin
and Zilinskas, 2000; Kushner, 1964b; Saltenis, 1971; Mockus and Zilinskas, 1972). The
Wiener model assumes that function f(x) to be optimized is a sample of some Wiener
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process. Here we exploit the Markovian property of the Wiener process providing con-
sistency of the stochastic model by relatively simple calculations.

The Wiener model can be extended to many dimensions, too (Mockus, 1989). How-
ever, the Markovian property disappears. Therefore approximate model is designed by
replacing the traditional Kolmogorov consistency conditions. These conditions require
the inversion of matrices of nth order for computing conditional expectations mn(x) and
conditional variances s2

n(x).
Replacing the regular consistency conditions by:

– continuity of the risk function R(x),
– convergence of xn to the global minimum,
– simplicity of expressions of mn(x) and sn(x),

the following simplified expression of R(x) is obtained using the results of (Mockus,
1989)

R(x) = min
1�i�n

zi − min
1�i�n

‖x − xi‖2

zi − cn
. (5)

Simplified Bayesian algorithm minimizes this risk function

x(n + 1) = arg min
x

R(x). (6)

That means we replace a single stochastic function by a sequence of stochastic functions.
This is a natural because the “two-step” decision procedure means a similar approxima-
tion. Thus the terms “conditional” expectation and “conditional” variance do not core-
spond to their standard meaning. Fig. 4 shows that these parameters differ considerably
from their standard counterparts in Fig. 3. However the risk functions are similar in the
both models. The points of the next observations are close. That is what matters.

The Bayesian statistical methods are designed to optimize decisions when not many
observations are available. The good asymptotic behavior is not the aim. Nevertheless
there are some asymptotic results, too. Expressions (Mockus, 1989; Mockus et al., 1997)
show how the simplified Bayesian algorithm (6) converges to the global minimum of a

Fig. 3. Wiener model. Fig. 4. Continuous risk model.
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continuous function:

d∗/da =
(fa − f∗ + ε

ε

)1/2

, n → ∞. (7)

Here d∗ is a density of points xi around the global optimum. da is an average density of
xi in the feasible area. fa is an average value of f(x) in this area. f∗ is an average value
of f(x) around the global minimum. ε is the correction parameter in expression (3). That
means that the Bayesian algorithm converges to the global minimum for any continuous
f(x) and provides greater density of observations xi around the global optimum.

The correction parameter ε has a similar influence as the temperature in simulated
annealing. However, that is a superficial similarity. The good asymptotic behavior is just
some “by-product” of Bayesian approach. The reason is that Bayesian decisions are de-
signed for small size samples where asymptotic properties are not noticeable.

Minimization of R(x) is a complicated auxiliary optimization problem. That means
that Bayesian methods are efficient just for complicated functions of a few (m < 20)
continuous variables.

Software Framework for Global Optimization (GMJ)

In optimization problems theory and software are interconnected. The final results depend
on the mathematical theory of optimization and the software implementation. Thus we
have to regard them both.

Representing a set of examples as a part of E-education environment we need a basic
software tools. The examples should be united by some common framework. We call that
Global Minimizer by Java (GMJ). Java is platform independent and almost as efficient
as “C++” for difficult optimization problems. We implement the Bayesian Heuristic Ap-
proach as a convenient theoretical concept. We apply this approach for automatic tuning
of heuristic parameters and for search of optimal mixtures of heuristics.

That is just an initial part of the GMJ. Important is to make GMJ open for development
by users. Users contribute their own optimization methods in addition to the Bayesian
ones. User optimization models are included as GMJ tasks. The results of optimization
are represented by GMJ analysis objects. A minimal set of methods, tasks, and analysis
objects is implemented by default. The rest depends on users.

Sample of GMJ

Here is the default applet tag with additional contributed task of cut optimization:

Applet Tag

<html><head>
<meta http-equiv="Content-Type" content="text/html;
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charset=ISO-8859-13">
<body bgcolor="#d0d0d0"><h1>GMJ</h1><p>

<applet
code="lt.ktu.gmj.ui.GMJext.class" codebase="lib"
align="bottom" high="800" width="800" height="450"
archive=
"gmj2.jar,url.jar,Sinc.jar,gmj.cut.jar">
<param name="TASKS"
value=
"lt.ktu.gmj.tasks.Sinc|lt.ktu.gmj.tasks.Cut">
<param name="METHODS"
value=
"lt.ktu.gmj.methods.Bayes|lt.ktu.gmj.methods.Mig1">
<param name="ANALYSIS"
value=
"lt.ktu.gmj.analysis.cutAnalyser|lt.ktu.gmj.analysis.Convergence">
<p>You need Java compatible browser to see this applet </p>
</applet>

</p></body></html>

All the default classes are in archives ’gmj2.jar’ and ’url.jar’. Contributed task is in
’cut.jar’. The parameter “TASKS” defines a default sinusoidal task ’Sinc’ and the con-
tributed task ’Cut’.

The parameter “METHODS” defines two default methods: Bayesian ’Bayes’ and
Monte Carlo ’Mig1’

The parameter “Analysis” defines the contributed object ’CutAnalysis’ and the default
object ’Convergence’ .

Examples of Methods

Bayesian Multi-Dimensional Search, “Bayes”

The “Bayes” is a multi-dimensional search procedure by the continuous risk model (6).
Fig. 4 shows the shape of the risk and other functions of this model. The aim is to mini-
mize the average deviation from the global minimum at fixed number of iterations. That
involve both the active observations (calculations of objective function at fixed variables)

Fig. 5. Cut optimization, input.
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Fig. 6. Cut optimization, convergence. Fig. 7. Default task, “Sinc”.

Fig. 8. Cut optimization, sample.

Fig. 9. Clustering method “Globt”, x-projection. Fig. 10. Clustering method “Globt”, spectrum.
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depending on available results and a few passive uniformly distributed initial observation.
The initial observations are for estimation of search parameters.

Coordinate Search by Wiener Model, “Exkor”

The “Exkor” performs a multi-dimensional coordinate search. The search starts from
some initial point. The optimization is done by changing single variables separately using
the Wiener model (Zilinskas, 1978b; Mockus and Zilinskas, 1972). This is the first loop:

xn+1
1 = arg min

x1
f(x1, x

n
2 , . . . , xn

m),

xn+1
2 = arg min

x2
f(xn+1

1 , x2, x
n
3 , . . . , xn

m),

.........................................

xn+1
m = arg min

xm

f(xn+1
1 , xn+1

2 , . . . , xn+1
m−1, . . . , xm). (8)

If xn+1 = xn exkor stops, otherwise next loop is made:

xn+2
1 = arg min

x1
f(x1, x

n+1
2 , . . . , xn+1

m ),

xn+2
2 = arg min

x2
f(xn+2

1 , x2, x
n+1
3 , . . . , xn+1

m ),

.........................................

xn+2
m = arg min

xm

f(xn+2
1 , xn+2

2 , . . . , xn+2
m−1, . . . , xm). (9)

Here arg minxi denotes the value of the variable xi obtained using the Wiener model of
optimization.

The method converges to some point of attraction depending on the initial point. Some
ε-accuracy can be provided by optimizing a monotone transformation ν(f(x)) such that

ν(f(x)) =
m∑

i=1

νi(xi) + εν0(x). (10)

Here ε > 0, the component ν0(x) depends on all variables, and components νi(xi) de-
pend just on a single variable xi. For example, if ν(f(x)) = f(x) then from (10)

f(x)) =
m∑

i=1

fi(xi) + εf0(x). (11)

If ν(f(x) = log f(x) then

f(x) = εf0(x)
m∏

i=1

fi(xi). (12)

The specific feature of multi-dimensional coordinate search are good projections. The
nth projection shows how values of objective function depend on the nth variable xn,
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Fig. 11. Method of coordinate optimization
“Exkor”, x-projection.

Fig. 12. Methot “Exkor”, y-projection.

Fig. 13. Bayesian method “Bayes”, x-projection. Fig. 14. Method “Bayes”, spectrum.

Fig. 15. Monte Carlo method “Mig1”, x-projec-
tion.

Fig. 16. Method “Mig1”, spectrum.

n = 1, . . . ,m. The first projection obtained using Exkor for minimization of sinusoidal
function is in Fig. 11. Fig. 12 shows the second projection.

That helps to obtain some initial information about behavior of the objective function.
Starting the optimization no such information is available, as usual.

Using other methods we change several variables at once. The visual results are
blurred figures. The first projection of the Bayesian search is in Fig. 13. Fig. 15 shows
the first projection of the Monte Carlo search.
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Monte Carlo, Uniform Search, “Mig1”

Often the calculation of deviation from the exact global minimum is as difficult as the
original global optimization problem. We can define some ε-bounds by using additional
properties of the objective function, such as Lipshitz constant.
Otherwise a different standard should be defined. The uniform Monte Carlo search can
be used:

xn+1 = arg min
1�i�n

f(xi). (13)

Here components xi
j are generated randomly by uniform distribution on the feasible in-

tervals aj � xi
j � bj , j = 1, . . . ,m, i = 1, . . . , n

Monte Carlo is apparently the simplest method providing convergence with proba-
bility one for any continuous objective function. Thus we can test efficiency of global
optimization methods by comparing them with Monte Carlo search (13).
The analysis tool “Convergence” defines how the best values of objective functions de-
pend on iteration number. Fig. 6 illustrates convergence of the Bayesian method optimi-
zing heuristics in the cut problem. A method of search can be regarded efficient only if it
converges faster than Monte Carlo.

Clustering Search, “Globt”

We use the Torn algorithm of the clustering optimization (Torn and Zilinskas, 1989).
The clustering optimization is a version of the general multi-start algorithm. We do local
searches from several starting points and accept the best result as a solution. Starting
points are generated by a Monte Carlo procedure.

The specific feature of the clustering algorithm is the procedure of eliminating local
searches. In short the first stage of clustering algorithm can be described this way:

• generate k starting points xi, i = 1, . . . , k randomly by uniform distribution on
the feasible interval aj � xi

j � bj , j = 1, . . . ,m, i = 1, . . . , k;
• perform k local searches starting from the points xi, i = 1, . . . , k, denote the

results of local searches as xi(1);
• perform the clustering of the points xi(1) by grouping the ’neighbors’ into clusters;
• eliminate the ’bad’ points xi(1) by some heuristic procedure and denote the re-

maining points as xi(2), i = 1, . . . , k2 < k;
• go to second stage.

In the second stage of clustering we make local search from ’good’ points xi(2), i =
1, . . . , k2 Clustering stops at some stage K when kK = 1 and the final local search is
made from the single staring point xi(K).

No convergence is provided. However the clustering algorithm is efficient if there are
not many local minima and the region of attraction of global minimum is large.
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Examples of Tasks

Sinusoid, “Sinc”

The sinusoid is a well-known multi-modal function and is implemented as a default task
“Sinc”:
(sin(x)/n where n is a number of variables x = (x1, . . . , xn). By default the uni-modal
version is defined by fixing bounds [−3.14, 0]. In this paper we use a ’two-modal’ version
by extending the default bounds to [−3.14, +3.14]. Fig. 7 shows the input window of
“Sinc”.

Cut Optimization, “Cut”

This is a simple example of typical contributed task using the Bayesian Approach for
tuning heuristics. The two-dimensional “Guillotine” cut is regarded. The ’mixture’ of
three ’greedy’ heuristics is optimized. The term ’Greedy’ describes heuristics that build
system from scratch by adding elements one-by-one. The ’mixture’ means that different
heuristics are selected randomly at each iteration by some fixed probabilities.

The first heuristic is denoted as “Random”. Here we select cut elements with equal
probabilities. The second heuristic is ’Max Size First’. The third heuristic is ’Min Size
First’. The names speaks for themselves. Fig. 5 shows the input window. Fig. 6 shows
convergence. We search for the best mixture of these tree heuristics at fixed optimiza-
tion time. The time parameter is important because the optimal mixture depends on the
number of iterations. Fig. 8 shows the results. The optimal mixture is described by the
numbers of iterations. The mixture probabilities are estimated as corresponding fractions.

Examples of Analysis Tools

Convergence

The ’Convergence’ window shows how the best value of the objective depends on the
number of iterations, For most methods that is a decreasing step-function. Steps hap-
pen at ’improving’ iterations. In global optimization the convergence line often is nearly
logarithmic, see for example, Fig. 6. That illustrates the high complexity of global opti-
mization, in general.

Projection

The ’Projection’ is apparently the simplest two-dimensional visualization of multi-
dimensional objective functions. Using the Projection we may obtain some useful infor-
mation about the objective if the variables are changed separately. The method ’Exkor’
does just that.
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Other optimization methods change many variables at each iteration. Here the ’Projec-
tion’ shows how the density of observations depends on variables x. In efficient methods
the density is higher around the global minimum.

Comparing “Projection” of different methods we see higher densities around global
minima in both Bayesian methods “Exkor” and “Bayes”. Method “Exkor” is in Fig. 11
and Fig. 12. Method ‘Bayes’ is in Fig. 13. In the Monte Carlo method “Mig1” the density
of observations is nearly uniform, Fig. 15. In the clustering method “Globt” the observa-
tion density is slightly higher around the global minimum, Fig. 9. Therefore the simple
one-dimensional projection is a second tool for visual analysis of optimization results in
addition to the “Convergence”.

The third tool is “Spectrum”. That is the last default tool. Other analysis tools are for
specific problems.

Spectrum

The ’Spectrum’ shows how the ’density’ of objective function values depends on the
number of iterations. The density is represented by color. Bright yellow color means a
high density. Dark color- low density. In the Monte Carlo method “Mig1” the density is
close to uniform for all iterations as it should be, Fig. 16.

In the clustering “Globt” method the density is highest around the zero values, Fig. 10.
In the “Bayes” method the density is highest close to minimal objective values,

Fig. 14.
This way the “Spectrum” provides some additional information about the behavior of

different methods.

Distance Studies

On-Line

The video-conferencing is regular: each Friday from 8:00 until 9:30 EET (EEST). Now
the language is Lithuanian is because no foreign students are connected. However essen-
tial part of the web-site is in English so the English broadcasts are possible, too. The main
difficulty for English speaking students apparently are early hours (7:00–8:30 CET) .
The connection is free. Static IP and NetMeeting is used. Advance notification is as-
sumed. Interactive mode is easy using some standard Audio and Video tools. Fig. 17
shows that using just sound and data low speed connection (128 kbps) is enough. Using
video we need at least 256 kbps, Fig. 18 and Fig. 19.

The snapshot in Fig. 19 is a slide explaining optimality of the uniform search with
some “on-line” graphical explanations made by the “Acrobat pencil” in response to stu-
dents questions.

Fig. 20 is a snapshot of interactions with a single student at her home PC.
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Fig. 17. Audio. Fig. 18. Video.

Fig. 19. Video-conferencing, explaining global optimization.

Off-Line

All the video-conferences are recorded and put on web-site
http://distance.ktu.lt/vips/join.php?sr=242

Here is the web-site
http://pilis.if.ktlu.lt/∼jmockus

and four mirror-sites:
http://kopustas.elen.ktu.lt/∼jmockus
http://eta.ktl.mii.lt/∼mockus
http://proin.ktu.lt/∼mockus
http://mockus.us/optimum

The theoretical background and the complete description of the software is in the web-
site section “General Description”. Software tools are in the section “Software Systems”
Examples of continuous global optimization are in “Global Optimization”. The section
“Discrete Optimization” is for examples of discrete optimization and linear and dynamic
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Fig. 20. “Student-at-home”.

programming.
All the results for international users are in English. Examples intended for Lithuanian

universities are described in Lithuanian.

2. Conclusions

1. An objective of the paper is to start the scientific collaboration with colleagues on
similar lines.

2. The growing power of internet presents new problems and opens new possibilities
for distant scientific collaboration and graduate studies. Therefore some nontradi-
tional ways for presentation of scientific results should be defined.

3. The paper is writen as an example of specific style designed for encouragement of
new approaches to presentation and sharing of scientific results.

4. The results of optimization show the possibilities of some nontraditional ways of
graduate studies and scientific collaboration by creating and using a specific envi-
ronment for E-education.
5. Examples of applications of the Bayesian heuristic approach show the efficiency
of automated tuning of heuristics.
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Eletroninės mokymo aplinkos, skirtos moksliniam
bendradarbiavimui ir aukštosioms nuotolinėms studijoms,
pavyzdži ↪u tyrimas, 1-ji dalis

Jonas MOCKUS

Tikslas – ištirti nauj ↪u informacini ↪u technologij ↪u ↪itak ↪a aukštosiom studijom ir moksliniam ben-
dradarbiavimui.

Sudėtingumo teorijos rezultatai rodo, kad tiksli ↪uj ↪u metod ↪u galimybės yra ribotos. Tai
paaišskina heuristini ↪u metod ↪u paplitim ↪a. Heuristik ↪u efektyvumas priklauso nuo parametr ↪u. Todėl
reikalingos automatinės procedūros heuristik ↪u optimizavimui.

Pradinės mintys aprašytos (Mockus, 2000). Preliminarūs nuotolini ↪u studij ↪u rezultatai pateikti
(Mockus, 2006a). Nuosekli ↪u statistini ↪u sprendim ↪u pavyzdžiai nagrinėjami (Mockus, 2006b).

Šiame straipsnyje tiriami Bajeso heuristini ↪u metod ↪u taikymai. Kitame straipsnyje bus nagri-
nėjami pavyzdžiai, skirti ši ↪u metod ↪u taikymui optimizuojant heuristik ↪u parametrus. Tradicini ↪u op-
timizavimo metod ↪u atitinkami pavyzdžiai bus pateikti trečiame straipsnyje. Visi šie straipsniai yra
trys vieno bendro darbo dalys. Tačiau juos galima nagrinėti nepriklausomai.

Visi algoritmai realizuoti nepriklausančios nuo platformos Java kalbos applet ↪u bei servlet ↪u for-
moje. Todel skaitytojai gal legvai panaudoti visus rezultatus sav ↪uj ↪u optimizacini ↪u modeli ↪u studi-
joms, tyrimui ir tobulinimui. Pilna informacija tinklapyje http://pilis.if.ktu.lt/∼mockus
bei keturiuose jo atspindžiuose.


