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Abstract. The two major Markov Random Fields (MRF) based algorithms for image segmentation
are the Simulated Annealing (SA) and Iterated Conditional Modes (ICM). In practice, compared to
the SA, the ICM provides reasonable segmentation and shows robust behavior in most of the cases.
However, the ICM strongly depends on the initialization phase.

In this paper, we combine Bak–Sneppen model and Markov Random Fields to define a new
image segmentation approach. We introduce a multiresolution technique in order to speed up the
segmentation process and to improve the restoration process. Image pixels are viewed as lattice
species of Bak–Sneppen model. The a-posteriori probability corresponds to a local fitness. At each
cycle, some objectionable species are chosen for a random change in their fitness values. Further-
more, the change in the fitness of each species engenders fitness changes for its neighboring species.
After a certain number of iteration, the system converges to a Maximum A Posteriori estimate. In
this multireolution approach, we use a wavelet transform to reduce the size of the system.

Key words: image segmentation, Markov random fields, multiresolution, Bak–Sneppen, self-
organized criticality.

1. Introduction

Image segmentation process partitions the image in a set of disjoint regions (Haralick and
Shapiro, 1985) the union of which must correspond to the whole image. In this work, we
are interested in a segmentation based on Markov Random Field (MRF) model (Geman
and Geman, 1984; Besag, 1986; Derin and Elliott, 1987; Dubes et al., 1990; Kato et al.,
1992). The problem considered is the estimation of a configuration of labels x from a set
of pixels y. We cite the two main algorithms: The Simulated Annealing (SA) (Geman
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and Geman, 1984; Kirkpatrick et al., 1983; Van Laarhoven and Aarts, 1987; Metropolis
et al., 1953) and the Besag’s Iterated Conditional Modes (ICM) (Besag, 1986). Other seg-
mentation methods based on Genetic Algorithms (GA) have also been proposed (Andrey
and Tarroux, 1998; Kim et al., 2000). The SA approach (Geman and Geman, 1984; Kirk-
patrick et al., 1983; Van Laarhoven and Aarts, 1987; Metropolis et al., 1953) is based on
the combination of the Gibbs sampling and cooling schedule. It is inspired by simulation
equilibrium behavior of large lattice-based systems.

In SA, controlling temperature is a very important task. The case of the schedule
annealing is often quite difficult and the system can freezes into a local minimum. Theo-
retically, SA will always converge to global optimum. Unfortunately, SA remains a com-
putationally intensive image segmentation method. The ICM is proposed as an alterna-
tive method to MAP estimation by J. Besag (Besag, 1986). Beginning by a sub-optimal
configuration, the ICM maximizes the probability of the classification field by deter-
ministically and iteratively changing pixel segmentations. The ICM algorithm (Dubes et
al., 1990) is computationally efficient. However, it strongly depends on the initialization
phase and it converges to a local optima.

In this work, we present a new multiresolution based approach for image segmen-
tation. First, we combine Bak–Sneppen model and Markov Random Fields to define a
new image segmentation approach, and then we introduce a multiresolution technique to
speed up the segmentation process and help the restoration process.

We present a Bak–Sneppen and MRFs combined approach for image segmentation
called MRF-EO. In this MRF-EO approach, gray levels in image pixels are viewed as
species in a lattice of Bak–Sneppen model (Bak et al., 1987; Bak and Sneppen, 1993).
Indeed, we use Extremal Optimization (EO) heuristic (Boettcher, 1999; Boettcher and
Percus, 2001; Boettcher and Percus, 2003) motivated by the Bak–Sneppen mechanism.
The Graph Bipartitioning is one popular hard optimization problem, to which EO has
been applied successfully (Boettcher and Percus, 2000). Meshoul and Batouche (Meshoul
and Batouche, 2002) use the EO algorithm on a standard cost function for aligning natural
images.

At each cycle of evolution, some worst species are chosen for a random change in their
fitness values. Moreover, the change in fitness value of each species engenders changes
in the fitness value of its neighboring species. After a number of iterations, the species
reorganize themselves in a set of categories, where each category represents an image
region. The MRF-EO algorithm operates in two principal phases: The initialization phase
consists in creating an initial configuration x. The update phase is the modification of
the current configuration by: first, calculating the local fitness values for the current site
labels. Second, choosing at random against some objectionable site labels. The novelty
of our approach can be summarized in:

• the evolution aspect of the system is not imposed from outside;
• it updates only a single copy of the solution by selecting against the worst site

labels;
• it is a non-equilibrium approach;
• it needs only minor parameters;
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• it has an emergent capabilities.

As a consequence for its advantages, MRF-EO has to pay an overhead computational
cost for evaluating and sorting the site labels. We have introduced a multiresolution tech-
nique in order speed-up the process and to improve the restoration aspect of the approach.
We refer the resulting algorithm as MMRF-EO. The main idea of this approach is to re-
duce the size of the system using the FWT. Several approaches based on the reduction of
the system size are proposed (Bouman and Shapiro, 1994; Liu and Yang, 1994).

The MMRF-EO based algorithm for image segmentation operates in three phases:

• First, we decompose the input discrete data corresponding to the observed image.
• Second, we perform the MRF-EO based algorithm on the approximation of input

discrete data.
• Third, we reconstruct a successively higher resolution segmented images.

This paper is organized in four sections: the first section presents related concepts. The
second section describes our algorithms. The third section is consecrated to preliminary
results. The conclusion is given in the fourth section.

2. Related Concepts

2.1. Definitions and Notations

An image S = {1, .., t, .., MN} specifies the gray levels for all pixels in an MN -lattice
(MN = M × N), where t is called a site. The true and the observed images are repre-
sented by the random variable vectors X = (X1, .., Xt, .., XMN ), Xt ∈ {1, .., C} and
Y = (Y1, .., YMN ), Yt ∈ {0, .., 255}. Let Ω be the set of all possible configurations. We
suppose that Y is the result of adding Gaussian noise process to the true image (Dubes et
al., 1990; Lakshmanan and Derin, 1989). A neighborhood system N = (Ni ⊂ S, i ∈ S)
is a subset collection Ni of S that verifies: (1) i /∈ Ni and (2) j ∈ Ni ⇔ i ∈ Nj . A clique
c is a set of points which are all neighbors to each other: ∀r, t ∈ c, r ∈ Nt.

Let X = (X1, .., XMN ) ∈ Ω. We abbreviate X = x the event (X1 = x1, ..., XMN =
xMN ). X is a MRF with respect to N if:

1. For all x ∈ Ω : P (X = x) > 0.
2. For every t ∈ S x ∈ Ω: P (xi/xj , j ∈ S − {i}) = P (xi/xj , j ∈ Ni).
X is a MRF on S with respect to N if and only if P (X = x) is a Gibbs distribution

defined by: P (X = x) = e−U(x)/Z where Z =
∑

x∈Ω

e−U(x) is the partition function and

U(x) is the energy function defined by:

U(x) =
MN∑
t=1

∑
r∈Nt

θrδ(xt, xr), (1)

where θr are the clique parameters, δ(a, b) = −1 if a = b, 1 if a �= b. P (X = x) is
called the a-priori probability.



228 K.E. Melkemi, M. Batouche, S. Foufou

The a-posteriori probability P (x/y) follows a Gibbs distribution given by: P (x/y) =
e−U(x/y)/Zy where Zy is the normalization constant and U(x/y) is the energy function
(Kato et al., 1992) given in Eq. 2:

U(x/y) =
MN∑
t=1

[
ln(

√
2Πσxt) +

(yt − µxt)2

2σ2
xt

+
∑
r∈Nt

(βδ(xt, xr))
]
, (2)

where β is a positive model parameter that controls the homogeneity of the image regions.
We can define image segmentation as the estimation of configuration x which minimizes
the fitness function U(x/y). We call this approach the MAP estimation.

2.2. Bak–Sneppen Model and EO Heuristic

The Bak–Sneppen model of evolution (Bak and Sneppen, 1993) is a successful applica-
tion of the Self-Organized Criticality (SOC) (Bak, 1996) concept. In this model, species
are placed on lattice-system sites. Each species has a fitness value in [0, 1], where the
higher the fitness, the better the chance of species survival (Bak and Sneppen, 1993).
Bak–Sneppen mechanism is expressed as a meta-heuristic called EO by Boettcher et al.
(Boettcher, 1999; Boettcher and Percus, 2000; Boettcher and Percus, 2003) into two ver-
sions: the basic EO and the τ -EO version. In the τ -EO heuristic, the process is based on
the selection against several objectionable variables. Indeed, all variables are selected for
state-updating indiscriminately. This general modification yields the stochastic aspect of
the meta-heuristic.

2.3. The Fast Wavelet Transform Algorithm

The Fast Wavelet Transform (FWT) is a wavelet representation which only requires a
number of operations proportional to the size of the initial discrete data.

This algorithm links the orthonormal wavelet bases to classical tools of digital signal
processing such as sub-band coding schemes and discrete filters.

The two dimension (2D) of this algorithm is not presented here (see (Mallat, 1998)
and (Chui, 1992)), however one dimension FWT is briefly presented. The decomposition
of a discrete signal (Yk), is performed by applying a pair of low-pass and high-pass
discrete filters (hk) and (gk) known as conjugate quadrature filters. This is followed by a
decimation of two filters to keep the same total information:

Y
(1)
k =

∑
n

hn−2kY (0)
n and D

(1)
k =

∑
n

gn−2kY (0)
n . (3)

It is then possible to iterate this decomposition process on the coarser approximation.

Y
(0)
k =

∑
n

(hk−2nY (0)
n + gk−2nD(0)

n ). (4)
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3. The Proposed Image Segmentation Algorithms

We present two new algorithms for image segmentation.

3.1. MRF-EO Based Algorithm

We consider site labels as species and the image as lattice-system as in Bak–Sneppen
model. The fitness value of species xi is λi given by Eq. 5:

λi = P (xi/xj , j ∈ Ni). (5)

We present the MRF-EO based algorithm as follows:

1) Input data y(0): y(0) represents the observed image of size M × N .
2) Create an initial solution x(0) (segmented image sized MN ): The MRF-EO

creates an initial sub-optimal configuration from the observed image using a
K-means procedure.
For t = {1, .., MN} Do compute λt. Compute U = U(x/y).

3) Let xbest = x, Fbest = and Iteration = 1.
4) Find a permutation π of site labels xt : λπ(1) � . . . � λπ(MN).

Example. In the Table 1, we suppose that N1 = 2 and M1 = 3. The site label x2 is
the worst site label and x5 is the best site label.

5) For s = 1..MN Do

– Compute probability Ps ∝ s−τ where τ is a parameter (Boettcher, 2003).
– Generate an uniform random number µs in [0, 1].
– If µs � Ps Then modify the label of the site π(s).

Example. In the Table 1, the MRF-EO based algorithm replaces the labels of the
sites π(1), π(2) and π(4).

6) For t = 1..MN Do evaluate λt of x. Compute U = U(x/y).
7) If U > Fbest Then xbest = x and Fbest = U .
8) Iteration = Iteration +1.
9) If (Iteration � a given number of iterations) Then goto 4.
10) Output xbest and Fbest.

Table 1

The selection and modification of the labels of the sites π(1), π(2) and π(4)

Site i i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

Site label xi x1 x2 x3 x4 x5 x6

Fitness value λi 0.53 0.1 0.35 0.63 0.8 0.25
π(i) 2 6 3 1 4 5
Pi 0.5 0.27 0.13 0.05 0.03 0.02
µ(i) 0.38 0.25 0.15 0.025 0.5 0.8
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We notice that the evolution of the system is not imposed from outside. In GA
approaches used in image segmentation based on MRF (Andrey and Tarroux, 1998),
crossovers operators perform global exchanges on a pair of configurations. In contrast,
our algorithm uses only a single copy of the system, which is refined simply by updating
some bad site labels. It is based on Bak–Sneppen mechanism, which yields an extremal
dynamic optimization process free of selection parameters. The MRF-EO based algo-
rithm is presented as a minimization process of U(x/y) of M ×N variables. Because of
such (M ×N ) large number of variables the time used for this optimization is very long.
In the next subsection, we improve this algorithm by the introduction of a multiresolution
analysis step, which reduces the number of system variables to optimize. The resulting
new algorithm called MMRF-EO decomposes the input data of size M×N in an approx-
imation data of size M/2k × N/2k and errors called details. Then, it performs MRF-EO
based algorithm on the approximation data and constructs the segmented image at the
original resolution.

3.2. Description of the Multiresolution MRF-EO Based Algorithm

3.2.1. The Wavelet-Decomposition
This first phase is presented as follows:

1) input data y(0): y(0) is the observed image;
2) output data y(k): y(k) is the approximation of input discrete data at k-th lower

resolution of size of M1 = (M/2k) × N1 = (N/2k).

3.2.2. MRF-EO Segmentation of the Approximation of Input Discrete Data
In this second phase, we perform MRF-EO based algorithm on the approximation input
image y(k) as follows :

1) input data y(k): y(k) of size M1 × N1, M1 = M/2k, N1 = N/2k;
2) output data x(k): x(k) of size M1 × N1.

3.2.3. Reconstruction of the Segmented Image at the Original Resolution
In this third phase, we reconstruct a successively segmented images x(k−1) . . . x(0). We
repeat the following three steps until (M1 = M and N1 = N ). First, we transpose the
segmented result x(k) of k-th lower resolution sized M1 × N1 at a higher resolution
x(k−1) using a quadtree structure. We represent the site i = j + (M1 − 1).l in 2D by
the (j, l); we associate four site labels xi1, xi2, xi3, xi4 where xi1 = xi2 = xi3 = xi4,
and the sites i1, i2, i3 and i4 correspond to (2j − 1, 2l− 1), (2j − 1, 2l), (2j, 2l− 1) and
(2j, 2l) respectively (see Fig. 1 (a)).

Second, we smooth errors detected near edges of the reconstructed segmented image
(see Fig. 1 (b)). Let i be an edge site and (e, d) its 2D representation, then for each site
(e, d) we:

1. Associate the four sites in segmented image x(k+1) at higher resolution:
(2× e− 1, 2× d− 1), (2× e− 1, 2× d), (2× e, 2× d− 1) and (2× e, 2× d). We
consider the neighbor sets of the four reconstructed sites of (e, d) (see Fig. 1(b)):
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Fig. 1. (a) Site label reconstruction, (b) Edge reconstruction.

N(2×e−1,2×d−1) = {(2×e−1, 2×d−2), (2×e−2, 2×d−2), (2×e−2, 2×d−1)}.
N(2e−1,2d) = {(2× e− 1, 2× d + 1), (2× e− 2, 2× d), (2× e− 2, 2× d + 1)}.
N(2×e,2×d−1) = {(2× e, 2×d−2), (2× e+1, 2×d−2), (2× e+1, 2×d−1)}.
N(2e,2d) = {(2 × e, 2 × d + 1), (2 × e + 1, 2d), (2 × e + 1, 2 × d + 1)}.

2. Assign classes to the four site labels as follows (see Fig. 1(b)):
x(k+1)(2 × e − 1, 2 × d − 1) = arg min

√
(x(j, l) − m)2 for

(j, l) ∈ N(2×e−1,2×d−1) and m is the mean given by the following formula:
m =

∑
(j,l)∈N(2×e−1,2×d−1)

x(j, l)/3, etc...

Third, M1 = 2 × M1 and N1 = 2 × N1.

4. Experimental Results

We present one result of the MRF-EO compared with the ICM. We assume an isotropic
second-order Ising model, so in equation 1, θ1 = θ2 = θ3 = θ4 = β. We have used one
value of β = 1.5 which is kept constant through each segmentation. The segmentation is
evaluated by both visual examination and energy function. The observed image y is the
same starting discrete data for all algorithms given with the maximum likelihood estimate
of the segmentation. In Fig. 2, we segment noisy scene containing a pyramid and a cube
on a table. It can be seen that the different regions are well segmented using MRF-EO
based algorithm despite the interference and the thinness of some regions whereas the
ICM algorithm fails to do so.

In the experiment presented in Fig. 3, the observed image is corrupted by noise and
the MRF-EO extracts the segments of the image better than the ICM.

In Fig. 4, we show the segmentation of a two gray-tones containing four geometric
formes (rectangle, triangle, circle, star). It can be seen that despite the interference and the
thinness of some regions the image is better segmented using MMRF-EO than MRF-EO
algorithm. The justification of this result is due to decomposition phase which reduces
noise in the observed image (see Fig. 4).

We deduce that the MRF-EO produces better segmentation results than the ICM. The
major inconvenience of ICM resides in the fact that its convergence depends on the ini-
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Fig. 2. (a) true image (b) noisy image, (c) ICM segmentation, (d) MRF-EO segmentation. Parameters:
β = 1.5, τ = 1.3, C = 4.

Fig. 3. Chess image segmentation. (a) noisy image 128 × 128, (b) MRF-EO segmented image, (c) FWT de-
composition, (d) Segmentation at lower resolution (the second phase of MMRF-EO), (e) MMRF-EO segmented
image. The parameters are C = 2, β = 1.5, τ=1.3, k = 1.

tial data. Segmentations on different images show that the MMRF-EO based algorithm
performs better and requires much less computations than the MRF-EO algorithm for
MAP estimation. The MMRF-EO algorithm combines the wavelet decomposition and
the MRF-EO procedure in order to speed up the segmentation process. In Fig. 3, the
segmentation using the MMRF-EO algorithm is reasonable and largely faster than the
MRF-EO algorithm. These experiments were performed on a Pentium P4, CPU 2.66
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Fig. 4. A geometric figures at 128 × 128 resolution with two regions, β = 1, 5, k = 1).

GHz with 128 Mo of RAM. We performed the segmentation of chess figure (Fig. 3) at
512× 512 resolution in 8 minutes and 45 seconds using the MRF-EO algorithm and in 4
minutes and 11 seconds using the MMRF-EO algorithm with the parameter value k = 2.

5. Conclusion

We have introduced a new MRF model-based approach for image segmentation. It is
based on the Bak–Sneppen model. Indeed, site labels evaluated by the a-posteriori prob-
abilities and their image represent the elements of the Bak–Sneppen model whose SOC’s
states are exactly the MAP estimates. Unlike the SA, the MRF-EO algorithm proceeds
without need of any control parameter and optimal states of the system emerge naturally
without any external intervention. The robustness of our approach is due to large fluctu-
ations called avalanches which are result of the modification of several worst site labels.
This co-evolutionary activity allows the process to explore new solutions in configuration
space. We presented a multiresolution application which reduces the size of the system
and allows a faster convergence of the process. Moreover, the advantage of the FWT
decomposition reduces the noise in observed images which improves the segmentation
results.
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MRF ir Bak–Sneppen modeliais pagr ↪istas vaizd ↪u segmentavimas

Kamal E. MELKEMI, Mohamed BATOUCHE, Sebti FOUFOU

Šiame straipsnyje pasiūlytas naujas vaizd ↪u segmentavimo būdas, apjungiantis Bak–Sneppen
model↪i ir Markovo atsitiktinius laukus. Segmentavimo proceso pagreitinimui ir atstatymo proceso
pagerinimui supažindinama su daugiarezoliuciniu metodu. Vaizdo taškai laikomi Bak–Sneppen
modelio groteli ↪u elementais. Aposteriorinė tikimybė atitinka lokal ↪u tinkamum ↪a. Kiekvieno ciklo
metu dalies netinkam ↪u element ↪u tinkamumo reikšmės pakeičiamos atsitiktinėmis. Be to tinkamumo
pasikeitimas sukelia gretim ↪u element ↪u tinkamumo pasikeitim ↪a. Po tam tikro iteracij ↪u skaičiaus sis-
tema konverguoja ↪i maksimal ↪u aposteriorin↪i ↪ivert↪i. Šiame metode sistemos sumažinimui naudojama
bangeli ↪u transformacija.


