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Abstract. Determination of stress strain state components of butt welded joint with a mild inter-
layer at elasto-plastic tension is presented in this paper. Function of normal transverse stresses
distribution on the thickness of mild interlayer and equations for determination of the stress in-
tensity maximum value in hard metal at elasto-plastic deforming are proposed. The longitudinal
stresses of mild and hard metals at elasto-plastic loading are determined from their integral equi-
librium condition to mean value of external load by estimating equality of hard and mild metal
longitudinal strains on their contact plane. Algorithm of stress strain state components calculation
in separate zones of this model is presented. The strength of butt welded joint with a mild inter-
layer and longitudinal strain distribution at static and cyclic elasto-plastic loading on its surface
calculated analytically is verified by the results of experimental investigations.

Key words: model of welded joint, stress strain state, non-uniform strain distribution, mild
interlayer, elasto-plastic tension, function of stress distribution.

1. Introduction

A great number of welded joints show higher or lower heterogeneity of mechanical prop-
erties of their separate zones. In some cases it is formed for constructional and tech-
nological reasons by using base metals and welding materials of different strength. In
other cases it appears during exploitation of the welded structures. The mechanically het-
erogeneous welded joint zone which strength properties are smaller than this of a base
metal is called mild interlayer, in opposite case – hard interlayer. Theoretically and ex-
perimentally is proved that mild interlayer is strongly affecting the strength of welded
joint especially under cyclic elasto-plastic straining. In these solutions hard metal H1 is

1Upper indexes H and M denotes stress strain components of hard and mild metals respectively;
* upper index denotes values of the content plane.
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assumed to be absolutely rigid and only in some cases it is absolutely elastic. Experi-
ments and calculations which were performed in our works showed that the life time of
defect less construction calculated by neglecting non-uniform strain distribution and was
found to be 6 . . . 10 times longer than the real one. In order to increase reliability of struc-
tures at low cyclic loading the stress and strain state at separate welded joints zones must
be evaluated. The conventional analytical calculation methods of mechanically heteroge-
neous welded joints usually consider the mild interlayer stress state neglecting both the
effect of mild metal M on a hard one and non uniform stress distribution in the thickness
of mild interlayer at elasto-plastic loading. In addition, hardening of material M in the
elasto-plastic zone is not evaluated (Prandtle’s type diagram of deforming material M

is used). Therefore these analytical methods are suitable approximately to evaluate the
ultimate monotonic strength, but they can not to evaluate the strain state of welded joints.

In this paper stress strain state of weld joint with a mild interlayer is determined by
using these refinements:

• the effect of mild metal M to base metal H is evaluated;
• distribution function of stress σM

x on the thickness of a mild interlayer and stress
σH

x in the direction of longitudinal axis are proposed;
• deforming diagrams of metal M and H in elasto-plastic zone, approximated lin-

early or by power function, are used;
• stress intensity determination method at the external point of contact plane (fu-

sion line) σH∗
i|ξ=1 = σH∗

i (1), when material H at this point is deformed elasto-
plastically, is proposed.

Model of welded joint consist of two materials-base metal H and mild interlayer M

(Fig. 1, a).
For stress strain determination of weld joint with a mild weld was choused mathemat-

ically more correct analytical solution of elasto-plastically deformed thin mild interlayer
(æ = h/l � 1) subjected to tension (compression) at plane deformation obtained by
L.Kachanov (1962). This solution was made on dimensionless co-ordinates ξ = x/l,
η = y/l (Fig. 1, a). The problem was solved by making use of the theory of small
elasto-plastic deformations by applying the hypothesis of flat cross-sections and assum-
ing that residual stresses are abolished by heat treatment. The modules of elasticity of
both materials are equal each to other (EH = EM = E), and the material is not pressed
neither in elastic nor in elasto-plastic zones. Additionally, when solving this problem it
was assumed that the base metal H is ideally elastic and is not influenced by mild metal
(σH

x = 0) and

τM
xy = τ∗

xy

η

œ
, (1)

where τ∗
xy = τ∗

xy(ξ) is unknown function of shear stress distribution on the contact plane.
Shear stress distribution expressed by Eq. 1 is equivalent to presumption (∂σx/l)∂η. Also
is assumed that tensile curve of mild material M is approximated linearly.

When mild metal is deformed elastically (σM
i � σM

e ) and Poisson’s ratio ν = νp =
0.5 follows that under the plane deformation (εz = 0) stresses σx = τxy = 0, σy = p,
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Fig. 1. Scheme for the calculation of welded joint with a mild interlayer at plane deformation.

σz = 0.5p and σi =
√

3p/2 (p is mean stress caused by external load). In this case
strains are distributed uniformly (ey = −ex = 3p/4E). When p > 2σM

e /
√

3, elasto-
plastic deforming begins in all volume of the mild interlayer. But on the contact plane
of metals M and H the mild metal strains are constrained by hard metal H . Shear stress
appears and near the contact plane there is a triaxial stress state. In the mild metal M

tension stress σM
x appears. Therefore the effect of contact hardening of mild metal takes

place.
From equation

σy − σx

εy − εx
= 2

τxy

γxy
(2)
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which describes condition that directions of stress and strains vectors are the same. By
Eq. 1 written to contact plane (η = æ) and hypothesis of flat sections ( ∂v

∂x = 1
l

∂v
∂ξ = 0)

was obtained function

τM∗
xy (ξ) = ±

[σM
e√
3
· 1 − ĒM

1√
1 + CM∗2ξ2

ξ +
2
3
EM

1

v′(œ)
l

CM∗ξ
]
, (3)

where EM
1 is modulus of mild metal hardening at elasto-plastic zone when curve σM

i −
εM
i is approximated linearly; ĒM

1 = EM
1 /E; v′(æ)/l = 3p/(4E).

After integration differential condition of equilibrium it was obtained

σM
x = σM

x (ξ) =
1
æ

∫ 1

ξ

τM∗
xy (ξ) dξ + β, (4)

where β is the constant of integration.
Stress

σM
y = σM

x +
2τM

xy (ξ)
CM∗ξ

(5)

is obtained by condition (2) and hypothesis of flat sections ∂v/(l∂ξ) = 0.
By integral equilibrium condition

p =
∫ 1

0

σy dξ (6)

and Eq. 5 is obtained the dependence

CM
1

4œCM∗ +
1

CM∗

(
1 − 1

4œCM∗

)
ln(CM∗ + CM

1 )

=

√
3

2

[
p − 4

3EM
1 e∗y

(
1 + CM∗

6œ

)
− β

]
σM

e (1 − ĒM
1 )

(7)

for determining of constant CM∗; where CM
1 =

√
1 + (CM∗)2. For comparison equa-

tions of work (Kachanov, 1962) with presented in this subchapter these expressions are a

little changed. When EM
1 = ĒM

1 = 0 constant β = σM
e√
3
( CM

1
CM∗ arcsin CM∗

CM
1

− 1
CM

1
). In this

case stress at the cross-sections 0 � η � æ can be calculated from condition σM
i = σM

e .
Because determination of coefficient CM∗ is very complicated EM

1 = 0, ∂σM
y /∂η =

0, CM∗ → ∞ were assumed. Then limit mean stress was determined from formula

put =
2√
3
σM

e

(π

4
+

1
4æ

)
. (8)

From Eq. 8 follows that put → ∞ when æ → 0. Limit strength of real welded joint
with a mild interlayer put max = σH

ut when æ � æmin and put min = σM
ut when æ � æmax
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(æmin and æmax values can be determined from Eq. 8 when p = put max and p = put min

respectively).
Because hardening of material M at elasto-plastic zone is not evaluated (EM

1 = 0)
this method is suitable to evaluate approximately the ultimate strength of welded joint
when æmin � æ � æmax but it is not applicable for determination of strain distribution.
For determination lifetime of welded joint at cyclic elasto-plastic loading the separate
zone strain distribution must be known (Bae, 2003; Dexter, 1999; Rudolph, 2001).

From Saint–Venant’e principle follows that with increasing of a relative distance from
the contact plane of M and H materials stress σM

x rapidly decreases.
Therefore the presumption that stresses σM

x and σM
y at the thickness of interlayer are

distributed uniformly (σM
x /∂η = ∂σM

y /∂η = 0) for real mild welds (œ � 0.6 . . . 0.75)
is not acceptable.

2. Analytical Calculation of Stresses and Strains

Solution presented in this paper made more accurate by estimating influence of metal M

on stress state of hard metal H (σH∗
x < 0), real strength characteristics of M and H de-

termined from their tensile curves and non-uniform σM
x distribution on the direct of lon-

gitudinal axis of welded joint. At elasto-plastic straining of material M (p > 2σM
e /

√
3)

when stress σM∗
x on the contact plane is known in other cross-sections

σM
x = σM∗

x f1(η). (9)

Examination of stress distribution in a mild interlayer (Fig. 1, b) shows, that function
f1(η) must have such peculiarities:

lim
æ→0

f1(η) = 1,

lim
æ→æl

f1(η) = 0,

f1(η) = f1(−η),

f1(æ) = 1,

which leads to the equation

f1(η) = 1 −
[
1 − 1

F (æ)

](
1 − η2

æ2

)
. (10)

Function F (æ) = 1 + M1æn1 increases with increasing of æ and mechanical het-
erogeneity of welded joint. Determination of a function F (æ) is described in work
(Bražėnas, 1995).

Equilibrium condition of element ξiξ
∗
i 1∗1 of metal M (Fig. 1, b) makes it possible to

calculate mean value of stress σM
x on the thickness of interlayer

σM
xm =

1
œ

∫ œ

0

σM
x dη =

1
œ

∫ 1

ξ

τM∗
xy dξ. (11)
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Then from Eqs. 9–11 is found

σM
x = f2(η)

∫ 1

ξ

τM∗
xy (ξ) dξ + C1, (12)

where

f2(η) = 3
1 −

[
1 − 1

F (œ)

](
1 − η2

œ2

)
œ

[
1 + 2

F (œ)

] . (13)

Constant C1 = 0 because σM
x|ξ=1 = σM

x1 = 0.

Shear stress τM
xy in cross-section η = const may be calculated from equilibrium con-

dition

τM
xy = −

∫ η

0

∂σM
x

∂ξ
dη + C2, (14)

where C2 = 0 because τM
.xy|η=0 = τM

xyc = 0. After designating

Φ(η) =
∫ η

0

f2(η) dη = 3
η

œ

1 −
[
1 − 1

F (œ)

](
1 − η2

3œ2

)
1 + 2

F (œ)

(15)

from Eqs. 11–15 is calculated shear stress

τM
xy = Φ(η)τM∗

xy (ξ). (16)

Shear stress τ∗
xy is determined from condition of interaction materials H and M at

the contact plane. An initial point of material H coordinate system OH is chosen in a
section which is remote from the contact plane at relative distance δH in which σH

x ≈ 0
(Fig. 1, b). When metal H is deformed elastically the relationship between stress strains
intensities may be expressed by equation

σH
i =

√
3
4
(
σH

y − σH
x

)2 + 3τH2
xy = E

√
4
3
eH2
y +

1
3
γH2

xy . (17)

From Eq. 3 for elastically deformed material H (E1 = E, Ē1 = E1/E = 1) was
determined

τH∗
xy =

2
3
Ee∗yC∗

Hξ = pC∗
pξ, (18)

where pC∗
p is a parameter of shear stress.

In other cross-sections

τH
xy = Φ(ηH)pC∗

pξ. (19)
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Expression of σH
x is obtained in the same way as σM

x calculated by Eq. 9

σH
x = −1

2
f2(ηH)pC∗

p (1 − ξ2). (20)

From the hypothesis of flat sections and the generalized Hooke’s law when ν = 0.5
follows that on the contact plane

eH∗
y =

3
4E

(σH∗
y − σH∗

x ) = const. (21)

Stress

σH∗
y =

2√
3
σH∗

i (0) + σH∗
x (22)

may be determined from Eqs. 17, 21 by estimating that τ∗
xy|ξ∗=0 = τ∗

xy(0) = 0.
Functions f2(ηH) and Φ(ηH) are determined from presumption that f2(ηH) = f2(η)

and Φ(ηH) Φ(η) when æ = δH . Therefore f2(ηH) and Φ(ηH) are determined from
Eqs. 12 and 15 by substituting δH , ηH and F (δH) instead of æ, η and F (æ).

Shear stress on the contact plane of materials H and M are equalτM∗
xy = τH∗

xy =
τ∗
xy = pC∗

pξ. Then from Eqs. 9, 10, 12 and 13 follows

σM∗
x =

1
2
f2(æ)pC∗

p (1 − ξ2), (23)

σM
x =

1
2
f2(η)pC∗

p (1 − ξ2). (24)

From equality of linear strains of metals M and H on the contact plane is determined
stress

σM∗
y = σM∗

x +
2√
3
σM∗

i (0) − FM∗, (25)

where FM∗ is a correction function, obtained from equality of linear strains of metals
M and H on the contact plane (eM∗

y ≈ eH∗
y ). Determining of FM∗ is related with the

considerable mathematical difficulties. From condition eM∗
y ≈ eH∗

y and by estimating
that E′M = σM

i /eM
i and strain eM∗

y depends on τ∗
xy and this function rapidly decrease

with increasing distance form the contact plane point ξ∗ = 1 it may be expressed by
equation

FM∗ = DM
∣∣τM∗

xy (1)
∣∣ξn = DMpC∗

pξn. (26)

Coefficient DM is determined from the condition eH∗
y (1) = eM∗

y (1) at an external
point of the contact plane ξ∗ = 1 by approaching method. Power index n is calculated
from the condition eH∗

y|ξ=0.5 = eM∗
y|ξ=0.5. Then strains eH∗

y and eM∗
y are equal at the three

points of the contact plane ξ∗ = 0; 0.5; 1. At the other points of contact plane the
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Table 1

Values of longitudinal strains on the contact plane of welded joint when γe = σH
e /σM

e = 1.2, æ = 0.8,
mM

0 = 0.102, mH
0 = 0.125, p/σM

e = 1.4, when precision of calculations is 1%

Strains are equal at three points of
contact plane ξ = 0.0; 0.5; 1.0

Strains are equal at two points of
contact plane ξ = 0.0; 1.0

p/σM
e = 1.398; e∗i (0)/eM

e = 1.684; p/σM
e = 1.390; e∗i (0)/eM

e = 1.621;

γN = 1.187; pC∗
p/σM

e = 0.161; γN = 1.186; pC∗
p/σM

e = 0.159;

DM = −0.738; DH = −1.234; DM = −0.726; DH = −1.020;

n = 1.987; the total count of iterations: 142 n = 2.000; the total count of iterations: 94

ξ
eM∗

y (1)

eM
e

eH∗
y (1)

eM
e

disagreement, %
eM∗

y (1)

eM
e

eH∗
y (1)

eM
e

disagreement, %

0.0 1.458 1.458 0.000 1.404 1.404 0.000

0.1 1.477 1.477 0.000 1.421 1.421 0.000

0.2 1.534 1.535 0.065 1.474 1.474 0.000

0.3 1.634 1.635 0.061 1.567 1.567 0.000

0.4 1.782 1.783 0.056 1.705 1.705 0.000

0.5 1.990 1.990 0.000 1.897 1.898 0.053

0.6 2.27 2.271 0.044 2.156 2.159 0.139

0.7 2.645 2.644 0.038 2.501 2.506 0.200

0.8 3.14 3.138 0.064 2.955 2.965 0.337

0.9 3.795 3.791 0.106 3.553 3.571 0.504

1.0 4.661 4.655 0.129 4.339 4.370 0.709

condition eH∗
y = eM∗

y is content approximately (Table 1). But determination of n is more
complicated. Therefore it is recommended to determinate n at strain loading for making
more accurate determination of mean longitudinal strain eym. At first approaching is
assumed n = 2. In this case strains eH∗

y and eM∗
y are equal at the two points of the

contact plane ξ∗ = 0; 1.
In cross-sections η < æ

σM
y = σM

x +
2√
3
σM

i (0) − Φ(η)FM∗. (27)

For determining of stress strain state components of M and H metals the strain inten-
sity e∗i (0) at the centre of the contact plane and coefficient of mechanical heterogeneity
γN = σH∗

i (0)/σM∗
i (0) must be known (Fig. 1, c).

Stress intensity of metal H on the contact plane is calculated from Eq. 17 by estimat-
ing (18) and (22). Then

σH∗
i =

√[
σH∗

i (0)
]2 + 3(pC∗

pξ)2. (28)
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The largest it value is at external point of contact plane ξ∗ = 1, maximum stress
intensity of elastically deformed metal H

σH
i max = σH∗

i|ξ=1 = σH∗
i (1) =

√[
σH∗

ie (0)
]2 + 3(peC∗

pe)2 = σH
e , (29)

where σH∗
ie (0) and peC

∗
pe are values of σH∗

i (0) and pC∗
p which corresponds to σH∗

i (1) =
σH

e . Their values is determined from condition (28) by approaching method.
When σH∗

i (0) > σH∗
ie (0) metal H at the contact plane point ξ∗ = 1 is deformed

elasto-plastically (σH∗
i (1) > σH

e ). Stress state near this point and stress concentration
zone under elasto-plastic loading is similar. Therefore strain eH∗

y near of the point ξ∗ = 1
increases and hypothesis of plane section is not valid.

Stress intensity σH∗
i (1)SCZ at the stress concentration zone, caused by interaction of

materials H and M , under elasto-plastic loading is determined from equation

[
σ̄H∗

if (1)
]2 = σ̄H∗

i (1)SCZ · ēH∗
i (1), (30)

where σH∗
if (1) is fictitious stress intensity at the point ξ∗ = 1, when material H is ideally

elastic; σ̄H∗
if (1) = σH∗

if (1)/σH
e ; σ̄H∗

i (1)SCZ = σH∗
i (1)SCZ/σH

e ; ēH∗
i (1) = eH∗

i (1)/eH
e .

This equation was used for determination of σ̄i max in stress concentration zone at
elasto-plastic straining (Neuber, 1961). When tensile curve of material H at elasto-plastic
loading is approximated by power function

σH∗
i (1)SCZ = σH∗

e

[
σ̄H∗

if (1)
]2mH

0 /(mH
0 +1)

, (31)

where mH
0 is power index of material H hardening at elasto-plastic zone.

When tensile curve of material H in elasto-plastic zone is approximated linearly

σH∗
i (1)SCZ = σH∗

e

[
1 − ĒH

1

2
+

√(1 − ĒH
1

2

)2

+ ĒH
1

σH∗
if (1)
σH∗

e

]
. (32)

Intensity of fictitious elastic stress σH∗
if (1), which corresponds to e∗i (0), may be cal-

culated from Eq. 30 when material H is absolutely elastic and ξ∗ = 1, then

σH∗
if (1) =

√
σH∗

if (0)2 + 3(pfC∗
pf )2, (33)

where σH∗
if (0) = γNfσM∗

i (0) is intensity of fictitious elastic stress on the centre
of contact plane. Fictitious coefficient of mechanical heterogeneity γNf = γe, when
eH∗
i (0) � eH

e and γNf = ēM∗
i (0) when eH∗

i (0) > eH
e . Parameter pfC∗

pf is calculated by
substituting γNf instead of γN .

At elasto-plastic deforming of material H the same expression of σH
y as in mild metal

σM
y is accepted. On the contact plane

σH∗
y = σH∗

x +
2√
3
σH∗

i (0) − FH∗ (34)
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and in other cross-sections

σH
y = σH

x +
2√
3
σH

i (0) − Φ(ηH)FH∗, (35)

where FH∗ = DHpC∗
pξ2. When σH∗

i (1) > σH
e DH is calculated from dependency

DH =
2
{
σH∗

i (0) −
√

[σH∗
i (1)SCZ ]2 − 3(pC∗

p )2
}

√
3pC∗

p

. (36)

Mean stress p is calculated from equilibrium condition (6) by estimating (25) or (34)
equation, i.e.:

p =
2√
3
σM∗

i (0) +
1
3
pC∗

p

[
f2(æ) − 3DM

n + 1

]
or

p =
2√
3
σH∗

i (0) − 1
3
pC∗

p

[
f2(δH) + DH

]
.

Parameter of shear stress pC∗
p is determined from equality of these equations, then

pC∗
p =

2
√

3(γN − 1)σM∗
i (0)

f2(δH) + f2(æ) − (3DM/(n + 1) − DH)
.

Stress intensity σM
i (0) at the cross-section 0 � η � æ is determined from Eq. 6 by

estimating dependence (27). Analogically when 0 � ηH � δH from Eq. 6 by estimating
Eq. 35 is determined σH

i (0). When material H is deformed elastically (σH∗
i (1) � σH

e )
in equations of σH

y , pC∗
p and Kæ must be accepted DH = 0.

Coefficient of the contact hardening of mild metal can be determined by equation

Kæ =
p

σM
i maxKsh

, (37)

where Ksh = p/σH
i|ηH=0 is shape coefficient which depends on stress state triaxiality on

the cross-section of hard metal, which is remote from contact plane at relative distance
more than δH . At the plane deformation Ksh = 2/

√
3 and Ksh = 1 at axial symmetrical

deformation. Kæ is found due to interaction of materials H and M . This coefficient is
determined by estimating that σM

i max = σM
i|η=0(0) = σM

ic (0), then

Kœ =
1

1 − f2(0)(γN−1)
f2(δH)+DH+γN [f2(æ)−DM ]

. (38)

When it is necessary to obtain mean stresses p = p(σM
i max) maximum value of co-

efficient Kæ must be determined by Eqs. 37 and 38 by evaluatingσM
i max = σM

ut . Then
ultimate strength of welded joint with the mild flat interlayer

put = σM
ut KshKæ. (39)
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In the first approaching may be assumed γN ≈ σH
ut/σM

ut − æ(σH
ut/σM

ut − σH
e /σM

e )
and DH ≈ γe DM .

Distribution of stresses τM
xy , τH

xy, σM
x and σH

x in longitudinal direction of joint depends
on F (æ). Function F (æ) was obtained by presumption that it depends on coefficient of
mechanical heterogeneity γN , relative thicknesses æ, δH and for materials M and H is
the same. Also it was assumed that F (æ) does not depend on cross-section of welded
joint when æ = δH . These presumptions were verified by the results of experimental
investigations of mechanically heterogeneous welded specimens with rectangular, disk
and ring shape cross-sections. From results of theoretical and experimental investigations
(Bražėnas, 1995) where obtained

F (æ) = 1 + M1æn1 and F (δH) = 1 + M1δ
n1
H ,

where M1 = 6.23 + 0.758(γN − 1) and n1 = 2.53 − 0.15(γN − 1). The values of
contact hardening coefficient Kæ =

√
3p/(2σM

e ), when γN > 2 and 0.2 � æ � 0.8,
calculated from Eq. 8 showed a good agreement with the experimental data (Bakshi,
1965). Expression of F (æ), upper value of M1 and lower value of n1 were determined
by conditions (8) and (38) when γN = 3.33 (Bražėnas, 1995). Also from this condition
f2(δH) = 2.13 and δH = 1.2 are determined. This value of δH showed a good agreement
with results obtained by FEM.

Solution presented in this paper makes it possible to calculate strains in each point of
welded joint. Longitudinal strains of the base metal H

eH
y = −eH

x =
3(σH

y − σH
x )

4E
, when σH

i � σH
e ,

eH
y = −eH

x =
3(σH

y − σH
x )

4E′H , when σH
i > σH

e , (40)

and of mild metal

eM
y = −eM

x =
3(σM

y − σM
x )

4E′M , (41)

where E′H = σH
i /eH

i and E′M = σM
i /eM

i are secant modules of tensile curves.
Strain intensity at plane deformation

ei =

√
4
3
e2
y +

1
3
γ2

xy.

Cyclic stresses and strains of separate zones of welded joint are calculated referring to
V. Moskvitin theorem. In simple loading they can be calculated from the dependence of
static loading by substituting the parameters of cyclic loading diagrams instead of static
loading characteristics (Moskvitin, 1965).

At strain loading a mean longitudinal strain eym(ezm) on the relative base of defor-
mation L̄ = L/l must be known. Because solution of the problem is approximate mean
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longitudinal strain at the base deformation L̄ is calculated at the longitudinal section
ξ = ξc = 0.5. Under plane deformation a mean longitudinal strain

eym =
1
L̄

[
eH
yl(L̄ − œ − δH) +

∫ δH

0

eH
y|ξ=0.5 dηH +

∫ œ

0

eM
y|ξ=0.5 dη

]
,

when L̄ > æ + δH ,

eym =
1
L̄

[ ∫ 1.2

1.2+æ−L̄

eH
y|ξ=0.5 dηH +

∫ œ

0

eM
y|ξ=0.5 dη

]
, when L̄ � æ + δH , (42)

where eH
yl is strain of metal H at the section in which disappears interaction between M

and H materials (σH
x = 0). These integrals were calculated by numerical method.

3. Analytical Calculation of Stresses and Strains Distribution

For determination of stress strain state in welded joint the mechanical properties of M

and H materials at elasto-plastic deformation, e∗i (0), æ, δH and precision of calculations
must be known. Sufficient precision of calculations for practical requirements is 1. . .3%.

The basic parameters of calculations are γN , pC∗
p , DM , DH and n. When these pa-

rameters are known the stress strain state at any point of welded joint can be determined
by changing ξ and η(or ηH) in (16), (19), (20), (24), (27), (35), (40) and (41) equations.

When welded joint is subjected to tension may be two cases of loading: stress load-
ing (p = const) strain loading (eym = const). Therefore the approaching method for
determination of stress strain state in welded joint must be used.

Algorithm for determination of welded joint stress strain state components under
stress or strain loading is presented in Fig. 2. Where and in Fig. 3 algorithm the function
f describes dependency between stress intensity σi and strain intensity ei at elasto-plastic
deforming. For materials approximated by power function{

σi = f(ei) = eiE, when σi � σe,
σi = f(ei) = σe

(
ei

ee

)m0
, when σi > σe,

and {
ei = f(σi) = σi

E , when ei � ee,

ei = f(σi) = ee

(
σi

σe

)1/m0
, when ei > ee,

and for materials approximated linearly{
σi = f(ei) = eiE, when σi � σe,
σi = f(ei) = σe + ET (ei − ee), when σi > σe,

and {
ei = f(σi) = σi

E , when ei � ee,
ei = f(σi) = ee + σi−σe

ET
, when ei > ee,

where m0 and ET are material hardening parameters under elasto-plastic loading for
power and linear approximation respectively.
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The strain intensity e∗i (0) of first approaching in Fig. 2 item 5 may be calculate in this
manner:

for stress loading

σM∗
i (0) = p

[√3
2

− (γN − 1)f2(æ)
f2(δH) + γNf2(æ)

]
and e∗i (0) = f(σM∗

i (0));

Fig. 2. Algorithm for determination of stress strain state components in welded joint at stress or strain loading.
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for strain loading e∗i (0) =
6γNeymL

4[3(L − æ) − δH ] + 2γN (æ + δH) + γ2
N (3æ − δH)

.

Algorithm for determination of σH∗
ie (0), i.e. loading state when hard base metal H is

deformed only elastically, is presented in Fig. 3. For cyclic loading may be taken DH = 0
(Bražėnas, 1995). The stress intensity σH∗

ie (0) of first approaching in Fig. 3 item 4.2 may
be calculate in this manner:

σH∗
ie (0) =

√
(σH

e )2 − 12
[ (γe − 1)σM

e

f2(δH) + f2(æ)

]2

.

Algorithm for determination of parametre DM is presented in Fig. 4. The ∆D of
Fig. 4 item 10.9 may be calculate in this manner:

∆D =
2[σM∗

i (0) − 2eH∗
i (1)E′M (1)/(

√
3γN )]√

3pC∗
pe

sign (∆e∗).

Fig. 3. Algorithm for determination of stress intensity σH∗
ie (0).
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Algorithm for determination of parametre n is presented in Fig. 5. The ∆n of Fig. 5
item 11.8 may be calculate in this manner:

∆n = n −
lg

[ 2σM∗
i (0)/

√
3−eH∗

y (0.5)E′M (0.5)

pC∗
pDM

]
lg 0.5

.

Values of longitudinal strains in H and M materials on the contact plane of welded
joint, calculated by method presented in this work, are shown in Table 1. More accurate
solution, for the same calculation precision, is then longitudinal strains are smoothed in
three points. But in this case calculations are more complex and take more time. Therefore
it is recommended to use the constant value of parameter n (n = 2).

Distribution of stresses and longitudinal strains in H and M materials on the contact
plane of welded joint, calculated analytically, are shown in Fig. 6.

Analogical solution, when σr = σϕ, is obtained for welded joint with the mild in-
terlayer at axial symmetrical deformation. In this case co-ordinate x must be changed
by r, y – by z and differ dependencies which are connected with shape of welded joint
(Bražėnas, 1995). Algorithm of calculation at plane and axial symmetrical deformation
is the same.

Fig. 4. Algorithm for determination of DM .
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Fig. 5. Algorithm for determination of n.

Fig. 6. Distribution of stresses and longitudinal strains on the contact plane of welded joint calculated analyti-
cally, when γe = 1.2, æ = 0.8, mM

0 = 0.102, mH
0 = 0.125, p/σM

e = 1.4, n = 2.
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4. Verification of Obtained Dependencies

Because this solution is approximate the stress state components of considered welded
joint calculated by using method presented in this paper were compared with the data of
experimental investigations. Longitudinal strain distribution in its separate zones at static

Fig. 7. Analytically calculated (curves) and experimentally obtained (points) longitudinal static (k = 0) and
cyclic (k > 0) strains on the surface of the welded joint at axial symmetrical deformation when γN = 1.31,
œ = 0.82 and mean longitudinal strain ezm = 0.55%. k is number of semi-cycle.

Fig. 8. Strength comparison of welded joint with a mild interlayer calculated analytically and determined ex-
perimentally at axial symmetrical deformation. Experimental data were taken from (Bakshi, 1966).
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and cyclic elasto-plastic loading (Fig. 7) and strength of welded joint with the flat mild
interlayer (Fig. 8) calculated analytically and determined experimentally by photo elastic
coatings method showed a good agreement.

5. Conclusions

1. Solution presented in this paper enables calculate stresses and strains in the separate
zones of butt welded joint with plane mild interlayer subjected to elasto-plastic
tension (compression).

2. The strength of considered welded joint and strain distribution in its separate zones
calculated analytically by using obtained dependencies showed a good agreement
with the results of experimental investigations at static and cyclic elasto-plastic
loading. It means that functions of stress distribution and way of calculation in this
solution are chosen enough correctly.
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A. Bražėnas received PhD degree from Kaunas Polytechnic Institute in 1977 and dr. ha-
bil. from Kaunas University of Technology in 1995. Currently he is a professor at Faculty
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scientific papers.
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↪Itempim ↪u deformacij ↪u būvio komponenči ↪u nustatymas sandūrinėje
suvirintoje jungtyje su minkštu tarpsluoksniu esant tampriai
plastiniam tempimui

Algis BRAŽĖNAS, Dainius VAIČIULIS, Vytautas KLEIZA

Straipsnyje aprašyta ↪itempim ↪u deformacij ↪u būvio komponenči ↪u nustatymo metodika sandū-
rinėje suvirintoje jungtyje su minkštu plokščiu tarpsluoksniu esant tampriai plastiniam tempimui.
Pasiūlyta skersini ↪u ↪itempim ↪u pasiskirstymo funkcija išilgai minkšto tarpsluoksnio bei pateikta tam-
priai plastiškai deformuoto kieto pagrindinio metalo didžiausi ↪u ↪itempim ↪u intensyvumo apskaičia-
vimo išraiška. Kietos ir minkštos medžiag ↪u išilginiai ↪itempimai, esant tampriai plastiniam defor-
mavimui, apskaičiuojami iš j ↪u pusiausvyros s ↪alygos vidutinei išorinei apkrovai, ↪ivertinant minkšto
ir kieto metal ↪u išilgini ↪u deformacij ↪u lygyb ↪e jungties kontakto plokštumoje. Pateiktas ↪itempim ↪u de-
formacij ↪u būvio komponenči ↪u atskirose jungties zonose apskaičiavimo algoritmas ir gauti skaičia-
vimo rezultatai. Analitiškai apskaičiuotas sandūrinės suvirintos jungties su minkštu tarpsluoksniu
stiprumas ir išilgini ↪u deformacij ↪u pasiskirstymas patikrinti eksperimentiniais tyrimais.


