
INFORMATICA, 2006, Vol. 17, No. 1, 3–12 3
 2006Institute of Mathematics and Informatics, Vilnius

Quantitative Evaluation of the Process of Open
Source Software Localization

Valentina DAGIEṄE, Gintautas GRIGAS
Institute of Mathematics and Informatics
Akademijos 4, 08663 Vilnius, Lithuania
e-mail: dagiene@ktl.mii.lt, grigas@ktl.mii.lt

Received: June 2005

Abstract. Localization is a complex process based on translation and adaptation of software fea-
tures. Usually localization progress is identified with the number of translated resource strings. The
paper investigates the dependency of number of translated strings to amount of human resources
used. It is shown that the number of translated strings increases much slower at the end of the work
than at beginning. The last strings are especially difficult to translate. Quantitative evaluation of
dependency between number of strings in progress and human resources is presented.

Key words: open source, localization, resource string, translation, process of evaluation.

1. Introduction

Countries and different speaking peoples are using increasingly diverse software. One of
the main problems in software adaptation for local users is localization. Localization can
not be interpreted as action of translation. Despite the fact that localization of software
is estimated by translated resource strings, translation makes up only a small part of
software localization (Esselink, 2000; O’Sullivan, 2001).

Software localization may be divided into several levels: 1) adaptation of software
to locale of the language to which it is being localized, 2) translation of the dialogs,
3) translation of software’s help and other documentation, 4) exhaustive final testing of
the localization. In this paper we consider the translation of the dialogs, in particular, the
evaluation of process of localization.

Usually localization begins with translation of the dialogs. The labour expenditure
of translators’ consumed or remaining work is identified with the number of the trans-
lated resource strings and is expressed using absolute units (turned into number of the
translated strings) or relative units (turned into percentage of translated strings). How-
ever, those who are concerned with localization clearly know that at the end of the work
number of translated strings increases much slower than at the start (Esselink, 2000). At
the beginning translator translates what he or she knows very well. Thus, further work
involves more and more difficult texts to translate. The last strings are especially diffi-
cult to translate since translator has to solve previously collected obscurities, to find and
investigate more unusual and difficult situations the application work (Grigas, 2003).



4 V. Dagienė, G. Grigas

The number of translated strings is easily measured parameter. However, in order to
use it for the evaluation of the amount of the performed work and for the realistic planning
of completion of the translation, the dependence between the number of translated strings
and the expenditure of the work, which is not linear, should be established. The obvious
way to determine such dependence is to register the translation progress data during the
whole process of localization. Such data from the sufficient number of the projects may be
used to obtain statistically reasoned result. It is, however, long and much effort requiring
work.

To get dependence here we present another method (indirect one), which uses the one
or more “snapshots” of the statistics of different software translations into many differ-
ent languages instead of progress data from long lasted time period from one or more
localization projects. In order to ensure the adequacy of such change, certain conditions
concerning the stability of the whole localization process should be fulfilled, and suf-
ficient number of data sources (localization projects) fulfilling such conditions must be
available. Fortunately, the current state of localization process of a number of open source
localization projects is such that they fulfill those conditions, and we use their data for
our analysis.

2. Theoretical Model of Localization Process

Let’s say we have a large localization project that involves the translation ofn software
components. Denote by:

• the number of untranslated components –u (untranslated),
• the number of translated components –t (translated),
• the number of components which are being translated –p (in process).

Then we haven = u + t + p.
The work is concerned to be started when the translation of at least one component

is initiated (Fig. 1, the 1st point ofu). Let’s say that all processes pass equally and the
resources of translators are limited. The number of components being translated increases
until the process saturates (Fig. 1, the 2nd point oft), i.e., all translators are working and
undertake the new component just when the translation of the previous one is completed.

After some time the moment comes when the translation of the first component is
completed (Fig. 1, the 1st point oft). Since then the number of the translated components
increases until all the components are translated (Fig. 1, the 2nd point oft).

The last graphics (p) presents the number of the components under the translation (i.e.,
in process). It remains stable for some time since the translation of the new components
is being undertaken when the translation of the previous ones is completed. However,
after certain time the moment comes (Fig. 1, the 6th point ofp), when there are no new
components left, the translation of all components is being completed and finally the
process comes to the end (the 7th point).

The interval between the 2nd and the 6th points contains large and stabile number
of the components under translation (t � 0), at least one component whose translation



Quantitative Evaluation of the Process of Open Source Software Localization 5

Fig. 1. Dependence of the components under translation (u), the translated components (t), and the components
those translations has been initiated on the time.

is not started yet (u > 0), and at least one translated component. Therefore the transla-
tion process described in this interval may be considered as run up and stable. However
this could be hold true just in the ideal case, if all the components were of the same
size and complexity. It is not so in practice. When the components are unequal the situ-
ation is much more complex: for example, if there is just one, but large and complicated
component left not translated, the beginning of its translation will be possible just when
translator with satisfactory high qualifications finishes his/her previous work and during
this period other translators will remain out of work. On the other hand, it is possible
when just at the very beginning of the translation project, even the same day, translation
of some very simple component (for example, which has just one source string) may be
completed, while the translation of all other components will still require a lot of time
to spend. Hereby another extremely strict rule of interval limitation comes: it should be
taken just such part of the process, in which any of the numbersu andt is not less thanp
(u � p & t � p, or min(u, t) � p). It concerns the interval between the 3rd and the 5th
points. We will name it by strict stability condition.

The circumstance that the translation process is stable in this interval may be judged
by the fact that the number of options of the components to translate is not less than whose
that are already being translated; thus each translator after the completion of his/her com-
ponent may choose another untranslated component appropriate for his/her skills. Ana-
logical rules could be applied for the translated components when the number of them is
not less than the number of components that are being translated.

It is not difficult to ascertain that the stable interval depends on the project size. The
bigger number of components that are being translated the longer time it takes to perform
the translation and the interval is increasing. Meanwhile dealing with smaller applications
the interval may be equal to zero. Therefore, if the stricter limitation of the interval is
applied, always remains risk of not finding program applications proper to analysis. In
such case the conditions of the limitations should be lightened ensuring at the same time



6 V. Dagienė, G. Grigas

that they provide proper stability of the process. It is not easy to do though. Nevertheless,
as we will see further, it is possible to find applications that meet such requirements.

To evaluate the stability of the software translation process we will apply ratior :

r =
min(u, t)

p
.

The previously mentioned stability condition of the translation process is met when
r � 1.

3. Data Source

To perform the analysis we have chosen versions and environments of operating system
Linux for the following reasons: 1) production and localization of open source software
is voluntary and therefore stochastic; 2) the process involves many people; 3) the data on
the localization progress are announced regularly; 4) the work amount is large and takes
time to perform; 4) the software involves large number of components. These facts let us
set the assumption of the reliability of the statistical results.

The data concerning versions and environments of the operating system Linux are
presented (Table 1).

The data is collected from the indicated sources on the 16th of April, 2005.
The strict stability condition (r � 1) was met by 15 Linux Debian localizations (Ta-

ble 2).
The summary numbers of separate localization components slightly differ. This is

because of the large size of the software and the different sets of the components to
be localized estimated by localizers into different languages. Since these numbers have
impact just on the localization selection, while the results of the analysis themselves are
formed just from the completeness level (see further chapter) of the components under
translation (p), such dispersal won’t have any significant impact on the results.

Table 1

Localizable resources of Linux system

System
Number
of strings

Number
of strings

(% over max)

Number of
components

Number of
localized
languages

Number of
analyzed
languages

Source

Linux Debian 323000 100 991 191 15 (Central, 2005)

Linux Mandriva
(previously –
Linux Mandrake)

12782 4 37 121 0 (Mandriva, 2005)

Linux KDE 113304 35 856 80 4 (KDE, 2005)

Linux Gnome 32684 10 73 92 0 (The Gnome, 2005)



Quantitative Evaluation of the Process of Open Source Software Localization 7

Table 2

Analyzed localizations of operating system Debian

Language
code

Language Untranslated,u In process,p Translated,t Ratio,r
Components

in total
u + p + t

fr French 335 260 334 1.28 929

de German 313 265 398 1.18 976

es Spanish 446 218 257 1.18 921

it Italian 521 190 196 1.03 907

nl Dutch 525 160 215 1.34 900

sv Swedish 560 132 213 1.61 905

pt-BR Portuguese (Brasil) 549 162 162 1.00 874

pl Polish 565 164 169 1.03 898

cs Czech 601 120 165 1.38 886

da Danish 605 115 160 1.39 880

hu Hungarian 632 113 121 1.07 895

ca Catalan 642 98 148 1.51 888

pt Portuguese 657 81 122 1.51 860

zh-CN Chinese 643 117 142 1.21 902

sk Slovak 658 89 142 1.60 889

Table 3

Analyzed localizations of operating system KDE

Language
code

Language Untranslated,u In process,p Translated,t Ratio,r
Components

in total
u + p + t

bg Bulgarian 205 78 576 2.6 859

nn Norvegian Nynorsk 276 223 344 1.24 843

is Icelandish 261 168 414 1.55 843

mk Macedonian 249 107 198 1.85 654

The data concerning KDE localizations are given in Table 3.
Only four KDE localizations met the strict stability condition. This is because the

system is smaller and its recourses contain three times less localizable strings than the
operating system Linux Debian (the number of components is approximately the same,
but nevertheless they are smaller). Therefore the localization process is much faster.

At the beginning ratior is small because of the small number of completed com-
ponents; when the number of translated components reaches the number of ones under
translation, the number of components that are still not undertaken to translate remains
too small. Besides we would like to point out the fact that languages that meet the strict
stability condition are used by minor number of population and probably therefore the
translations into them are performed slower: thus the process lengthens and hereby the



8 V. Dagienė, G. Grigas

assumptions to meet the stability condition emerge.
The last two systems (Mandriva and Gnome) do not contain any language that would

meet the strict stability condition. It is natural, since the number of their localizable com-
ponents is even lower.

4. Dependence Between the Localized Number of Strings and the Total Number of
all Strings in Current Localization State

The dependence may be illustrated by the example of localization of Debian system to
French (Fig. 2). We chose that language since its localization process during the exper-
iment has reach most closely to the middle, i.e., the number of strings of untranslated
components and the number of strings of translated components were almost equal (335
and 334, see Table 2).

The horizontal axis represents the declared number of localized strings, which is ex-
pressed in percentage, while vertical one shows a whole number of strings in the compo-
nents present in the current state of localization. For example, when components contain
up to 60% of translated strings, the total number of strings is approx. 7%; when compo-
nents contain up to 99% of translated strings, the total number of strings is approx. 84%.
If the localization process would be performed gradually the diagram would be linear.
The curved form of the diagram indicates that at the beginning the number of translated
strings increases very rapidly and becomes slow approaching the end.

Why the process of translation does become slower when it approaches the end? What
is preventing the translation of the software to be completely performed?

The main reason is that translator at the beginning translates what he knows best.
Latter he approaches the texts that are harder and harder to translate. It can be stated

Fig. 2. Diagram of localization of Debian system to French.



Quantitative Evaluation of the Process of Open Source Software Localization 9

that the last percent (the last strings) is the most difficult to complete. Therefore when
the translation of 90% of the strings is completed it doesn’t mean that 90% of work
is already performed. As the diagram shows, it still remains approximately half of the
strings in untranslated components of the software, i.e., it is performed approximately
just half of the job.

The distribution of the software whose translation is not completed yet brings the
serious difficulties for its user. If the meaning of the string was not clear enough to trans-
lator it will barely be clear to software user whose qualifications usually can’t compare
to the qualifications of the translator. Therefore only the complete translation has a real
value. The given diagram shows exactly the dependence of the percentage quantity of
already experienced expenditures (or expenditures that will be experienced in future) on
the percentage of the translated strings.

The expenditures of calendar time on the increment of strings resource declared in
statistics in comparison with the previous publication are equal to time period spend
between the current publication and the previous one. The concordance is obvious.

However, the rate of work expenditure is not less important. Thus we presume that
work expenditures are proportional to calendar time expenditures that are required to
perform one unity of localization, i.e., to complete the translation of recourse string in
this case. This presumption is true when work is being performed with homogeneous
intensity. We know from the experience that work of particular person and translation of
particular software very seldom happen to go evenly.

From the experience we also know that when the work approaches its end it do not
come to a stand, although the amount of the results (the number of localized strings)
decrease: remaining strings are being discussed and the situations of application perfor-
mance associated with them are being analyzed. In other words: the intensity remains.
Besides this it is worth to mention the psychological factor here: since the results are
publicly announced approaching to the end translator wishes to see the 100% guide-mark
in the summary of the results as soon as possible. It is somewhat similar to sport compe-
tition when sportsman is approaching to finish. It depends on each performer’s individual
characteristics. Therefore in case of different application or different localizer may ap-
pear certain deviations to one or another direction. However, if the sufficient number of
analyzed data is provided the deviations should disappear. Therefore, we will use the data
of both systems (Debian and KDE) and a number of languages for our analysis in order
to examine the previously mentioned presumption or – to be more specific – to get the
correlation between the calendar time and working expenditures as close as possible.

5. Summarized Results

We will provide more results of analysis to compare (Fig. 3 and Fig. 4)
We see that both dependences are similar. The points of the diagram on KDE system

are more scattered. It is, however, natural since the system is localized to much lower
number of languages that meet the strict stability condition; besides the number of lo-
calizable strings is approximately 3 times lower – the extend of works during the KDE
localization to four languages is just 1.4 larger than Debian localization to one language.



10 V. Dagienė, G. Grigas

Fig. 3. Diagram of localization of Debian system to all 15 languages presented in Table 1.

Fig. 4. Diagram of localizations of KDE system to all 4 languages presented in Table 2.

Due to the similarity of the diagrams we may conclude that the dependence between
the declared number of translated strings and total number of all strings in the current
localization state is similar in all analyzed cases. Therefore we’ll present the common
result of all languages mentioned in Table 1 and Table 2 as the generalization (Fig. 5).

The generalized results may be used as a tool for average instant calculation of work
done according to number of translated strings. For convenience of use they are presented
in table format (Table 4).



Quantitative Evaluation of the Process of Open Source Software Localization 11

Fig. 5. The generalized diagram on the localization of Debian system to 15 languages and KDE system to 4
languages.

Table 4

Quantity of translated strings (row and column captions) vs translation work done (%, rounded to integers)

0 1 2 3 4 5 6 7 8 9

00 0 0 0 0 0 0 0 0 0 0

10 0 1 1 1 1 1 1 1 1 1

20 1 2 2 2 2 2 2 2 3 3

30 3 3 3 3 4 4 4 4 4 5

40 5 5 5 6 6 6 6 7 7 7

50 8 8 8 9 9 9 10 10 10 11

60 11 12 12 13 13 14 14 15 16 17

70 18 18 19 20 21 21 22 23 24 25

80 26 27 28 29 31 32 34 35 37 39

90 42 43 46 49 51 54 58 62 68 78

Conclusions

1. The method to determine the dependence between the translated resource strings
of software which is being localized and the labour expenditures was presented; it
applies the “snapshot” of the statistics on the translations of different software into
a number of languages.

2. It was shown that long-term software translation may be switched with the “snap-
shot” of many applications that are in different state of completeness. in order to
ensure the adequacy of such change certain stability conditions during the whole
localization project should be met.

3. The results of experiment performed using described method were summarized
and presented in the table, according to which it is possible to assess the quantity
of already consumed and still required expenditure from the declared number of
localized strings (both expressed in percentage).



12 V. Dagienė, G. Grigas

References

Esselink, B. (2000).A Practical Guide to Software Localization. John Benjamins Pub., Amsterdam & Philadel-
phia.

Central Debian Translation Statistics (2005).
http://www.debian.org/international/l10n/

Grigas, G. (2003) Programinės ↪irangos vertimo↪i lietuvi ↪u kalb↪a dabartiṅe situacija, problemos ir j↪u sprendimai
(in Lithuanian, Translation of software into Lithuanian: situation, problems and their solution).Informacijos
mokslai, 26, 251–256.

KDE Internationalization Statistics.
http://i18n.kde.org/stats/

Mandriva Linux Localisation (2005).
http://www.mandrakelinux.com/l10n/teams.php3

O‘Sullivan, P. (2001).A Paradigm for Creating Multilingual Interfaces. PhD Thesis. University of Limerick.
The Gnome Translation Project (2005).

http://developer.gnome.org/projects/gtp/

V. Dagienė graduated from Vilnius University, Lithuania, in 1978, and received the PhD
in physical science, informatics from the Vytautas Magnus University, Lithuania, in 1993.
In 2005, she passed the Habilius Procedure in social sciences (educology) from the Vy-
tautas Magnus University. She has been working as a head of Informatics Methodology
Department at the Institute of Mathematics and Informatics and also as a professor at Vil-
nius University. V. Dagieṅe is an author of more than 50 textbooks in the field of informat-
ics and programming for high schools. Her main research focus is teaching informatics
and information technologies in high school. She is also engaged in programming lan-
guages, algorithms, learning Logo, problem solving, distance education, localization of
software. She takes care of informatics teaching in primary, basic, and secondary schools,
she has initiated and supervised the preparation of curricula of informatics and informa-
tion technologies. Besides she works in various expert groups and work groups of the
Ministry of Education and Science in Lithuania and abroad.

G. Grigas received the PhD degree from the Kaunas Polytechnic Institute (Kaunas,
Lithuania). His research interest include abstract date types, programming methodology
and teaching, software localization. Has puslished 35 books and about 200 scientific pa-
pers.

Atvir ↪uj ↪u program ↪u lokalizavimo eigos kiekybinis ↪ivertinimas

Valentina DAGIEṄE, Gintautas GRIGAS

↪Iprasta lokalizavimo eig↪a vertinti išverst↪u ištekli ↪u eiluči ↪u skaǐciumi. Tǎciau lokalizavimo prak-
tika rodo, kad darbo s↪anaudos paskutini↪u eiluči ↪u vertimui yra žymiai didesṅes, negu pirm↪uj ↪u. Tai
yra ḋel to, kad pabaigai lieka sunkiausiai verčiamos eiluṫes, kuri↪u prasm↪e reikia analizuoti, disku-
tuoti. Šiame straipsnyje bandoma kiekybiškai↪ivertinti sanaud↪u kiek↪i, išreikšt↪a procentais, priklau-
somai nuo išverst↪u eiluči ↪u skaǐciaus procento. Naudojamasi dideli↪u program↪u – Linux operacini↪u
sistem↪u Debian ir KDE vertim ↪u ↪i daugel↪i kalb ↪u eigos statistika. Analizei imamos tos kalbos, ver-
tim ↪u ↪i kurias procesas yra↪isibėġej↪es ir stabilus.


