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Abstract. In this paper we consider two logics: temporal logic of common knowledge and temporal
logic of common belief. These logics involve the discrete time linear temporal logic operators
“next” and “until”. In addition the first logic contains an indexed set of unary modal operators
“agent i knows”, the second one contains an indexed set of unary modal operators “agent i believes”.
Also the first logic contains the modality of common knowledge and the second one contains the
modality of common belief. For these logics we present sequent calculi with an analytic cut rule.
The soundness and completeness for these calculi are proved.

Key words: agents, temporal logic, common knowledge, common belief, sequent calculus, analytic
cut.

1. Introduction

Temporal logics of knowledge and belief are becoming increasingly important in both
mainstream computer science and AI. In AI, temporal logics of knowledge and belief are
used as knowledge representation formalism (Catach, 1988), and may be used in the spec-
ification and verification of distributed intelligent systems (Halpern, 1987; Wooldridge,
1992) and as a subpart of logics of rational agency (Wooldridge, 1992).

In this paper we consider generalizations of the temporal logic of knowledge and
the temporal logic of belief considered in (Wooldridgeet al., 1998). We call the con-
sidered logicsCKLn, CBLn, respectively. These logics involve the discrete time linear
temporal logic operators “next” and “until”. In additionCKLn contains an indexed set
of unary modal operators “agent i knows” andCBLn contains an indexed set of unary
modal operators “agent i believes” that allow to represent the information possessed by
the group of agents. These operators satisfy the analogues of the modal axiomsS5 and
KD45, respectively. These systems are widely accepted as logics of idealized knowl-
edge and idealized belief. These logics contain the modality of common knowledge and
the modality of common belief as well.

For these logics we present sequent calculi with an analytic cut rule. The soundness
and completeness for these calculi are proved. Our work uses the ideas from (Alberucci,
2002) and (Halpernet al., 2004).
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We mention some related works. The temporal logic of knowledge without common
knowledge operator is considered in (Wooldridgeet al., 1998; Dixonet al., 1998). In
(Wooldridgeet al., 1998) a tableau based decision procedure is presented for the consid-
ered logic. In (Dixonet al., 1998) a resolution-based proof system is presented which is
shown to be correct. The logic of common knowledge without temporal operators is con-
sidered in (Alberucci, 2002), where complete Tait-style sequent calculus with restricted
cut rule for the logic is presented. The paper is organized as follows. In the next section
we provide formal definitions for the logics we consider. In Section 3 we present sequent
calculi and prove the soundness theorem. In Section 4 we prove the completeness of the
presented sequent calculi.

2. Language and Semantics

To define the languageL of the logics we start from a set ofprimitive propositions
P = {p, q, . . .}, the propositional connectives ¬,∧,∨, the modalities [1], . . . , [n], the
modality E, the common knowledge (belief) modality C and thetemporal modalities:
unary operator© and a binary operatorU . If φ is a formula[i]φ says that agenti knows
(believes)φ, a formulaEφ says that every agent knows (believes)φ, a formulaCφ says
thatφ is a common knowledge (belief) of all agents, a formula©φ says thatφ is true at
the next time moment, a formulaφUψ says thatφ holds untilψ does.

In order to define semantics, we first introduce the notion of astate. It is assumed
that the world may be in any of a setS of states. We generally uses to denote a state.
The internal structure of states is not an issue in this work. As we interpretL over lin-
ear temporal structures, it is natural to introduce the notion if atimeline, representing
the history of the system. Atimeline l is an infinitely long, linear, discrete sequence of
states, indexed by natural numbers. For convenience, we define a timelinel to be a total
function l: N → S. Let T lines be the set of all timelines. Note that timelines corre-
spond to theruns of Halpern, Meyden and Vardi (Halpernet al., 2004). Apoint, p, is
pair (l, u), wherel ∈ T lines is a timeline andu ∈ N is a temporal index intol. Any
point (l, u) will uniquely identify a statel(u). Let the set of all points (overS) bePoints.
We then let an agent’s knowledge (belief) accessibility relationRi hold overPoints, i.e.,
Ri ⊆ Points×Points, for all i ∈ {1, . . . , n}. A valuation for L is a function that takes a
point and a proposition, and says whether that proposition is true or false at that point. A
valuation, π, is a functionπ: Points × P → {T, F}. We can now define models forL.

A model, M , for L, is a structureM = (TL, R1, . . . , Rn, π), where:

• TL ⊆ T lines is set of timelines;
• Ri, for all i ∈ {1, . . . , n}, is an agent accessibility relation overPoints, i.e.,

Ri ⊆Points×Points and
• π: Points × P → {T, F} is a valuation.

As usual, we define the semantics of the language via satisfaction relation “|=”. For L,
this relation holds between pairs of the form(M, (l, u)), whereM is a model and(l, u)
is a point, andL formulas.Eφ stands for[1]φ ∧ . . . ∧ [n]φ.
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• (M, (l, u)) |= p iff π(l, u)(p) = T , wherep is a primitive proposition;
• (M, (l, u)) |= ¬φ iff (M, (l, u)) �|= φ;
• (M, (l, u)) |= φ ∨ ψ iff (M, (l, u)) |= φ or (M, (l, u)) |= ψ;
• (M, (l, u)) |= φ ∧ ψ iff (M, (l, u)) |= φ and(M, (l, u)) |= ψ;
• (M, (l, u)) |= [i]φ iff ∀l′ ∈ TL, ∀v ∈ N , if ((l, u), (l′, v)) ∈ Ri, then

(M, (l′, v)) |= φ;
• (M, (l, u)) |= Cφ iff (M, (l, u)) |= Ekφ for k = 1, . . ., where

E1φ = Eφ, Ek+1φ = EEkφ;
• (M, (l, u)) |= ©φ iff (M, (l, u + 1)) |= φ;
• (M, (l, u)) |= φUψ iff ∃v ∈ N such thatv � u and(M, (l, v)) |= ψ and

∀ω ∈ N , if u � ω < v then(M, (l, ω)) |= φ

We use standard abbreviation:φ ⊃ ψ stands for¬φ ∨ ψ.
An L formulaφ is satisfiable iff there is some(M, (l, u)) such that(M, (l, u)) |= φ,

and unsatisfiable otherwise. AnL formulaφ is valid in a modelM iff (M, (l, u)) |= φ

for every point(l, u) ∈ M . If C is a class of models, thenφ is valid with respect toC iff φ

is valid in every model inC. We write|=K φ (|=B φ), if φ is valid with respect to the class
of models of logicCKLn (CBLn) . AnL modelM = (TL, R1, . . . , Rn, π) is aCKLn

(CBLn) model iff for all i ∈ {1, . . . , n}, Ri is an equivalence relation (Euclidean, serial
and transitive relation).

It is well-known that the following axioms are valid inCKLn models:
K: [i]φ ∧ [i](φ ⊃ ψ) ⊃ [i]ψ; T : [i]φ ⊃ φ; 4: [i]φ ⊃ [i][i]φ; 5: ¬[i]φ ⊃ [i]¬[i]φ, C:

Cφ ⊃ (Eφ ∧ ECφ). It is well-known that the axioms presented above except the axiom
T and the axiomD: [i]φ ⊃ ¬[i]¬φ are valid inCBLn models.

There is a graphical interpretation of the semanticsC which is useful in the sequel.
Fix a modelM . A point (l′, u′) in M is reachable from a point(l, u) if there exists
points (l0, u0), . . . , (lk, uk) such that(l, u) = (l0, u0), (l′, u′) = (lk, uk), and for all
j = 0, . . . , k − 1 there existsi such that(lj , uj)Ri(lj+1, uj+1). It can be verified the
following

Lemma 2.1. (M, (l, u) |=W Cφ iff (M, (l′, u′)) |=W φ for all points (l′, u′) reachable
from (l, u), where W ∈ {K, B}.

3. Tait-Style Sequent Calculi

In this section we introduce a Tait-style sequent calculiKT andBT for the temporal
logic of common knowledge and for the temporal logic of common belief, respectively.
The calculusKT is a reformulation of the Hilbert-type calculus presented in (Halpernet
al., 2004).

As usualp, q, . . . stand for primitive propositions and small Greek letters for arbitrary
formulas. Further, the capital Greek lettersΓ, ∆, Σ, . . . stand for finite subsets ofL for-
mulas which are calledsequents. For any sequentsΓ, ∆ and formulasα, β the sequent
Γ ∪ ∆ ∪ {α} ∪ {β} is denoted byΓ, ∆, α, β. Let Γ be the sequent{α1, . . . , αn}, we
often use the following convenient abbreviations:
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∨Γ = {α1 ∨ . . . ∨ αn}; ¬Γ = {¬α1, . . . ,¬αn}; ¬[i]Γ = {¬[i]α1, . . . ,¬[i]αn};
[i]Γ = {[i]α1, . . . , [i]αn}; ¬CΓ = {¬Cα1, . . . ,¬Cαn}.

With the help of de Morgans laws and the law of double negation we push the negation
through the propositional connectives as far as possible, i.e., ifφ is α ∧ β then¬φ is
¬α ∨ ¬β, if φ is α ∨ β, then¬φ is ¬α ∧ ¬β, if φ is ¬α, then¬φ is α.

Let us introduce the Tait-style calculusKT for the logicCKLn. All the rules are
represented as schemes.

Axiom of KT : Γ, α, ¬α

Basic inference rules ofKCT :

Γ, α, β

Γ, α ∨ β
(∨)

Γ, α Γ, β

Γ, α ∧ β
(∧),

¬CΛ,¬[i]Γ, [i]∆, α

¬CΛ,¬[i]Γ, [i]∆, [i]α, Σ
([i])

Γ,¬α

Γ,¬[i]α
(¬[i]).

C-rules ofKT :

Γ,¬Eα

Γ,¬Cα
(¬C1)

Γ,¬ECα

Γ,¬Cα
(¬C2),

¬α, Eα ∧ Eβ

¬α, Cβ,Σ
(IndC).

The rules for temporal modalities:

Γ
©Γ, Σ

(©)
Γ,©¬α

Γ,¬©α
(¬©),

Γ, φ2, φ1 ∧ ©(φ1Uφ2)
Γ, φ1Uφ2

(U)
Γ,¬φ2 Γ,¬φ1,©¬(φ1Uφ2)

Γ,¬(φ1Uφ2)
(¬U),

¬φ′,¬ψ ∧ ©φ′
¬φ′,¬(φUψ)

(IndU ).

Let us introduce the sequent calculusBT for the temporal logic of common belief
CBLn. It is obtained from the calculusKT dropping the inference rule(¬[i]) and re-
placing the basic inference rule([i]) of KT by the following rule of inference:

¬CΛ,¬Γ,¬[i]Γ, [i]∆, α

¬CΛ,¬[i]Γ, [i]∆, [i]α, Σ
([i]).

We did not introduce any cut rules since we want to distinguish our calculi with var-
ious additional cuts. Hence, we always mention explicitly which cut rules are admitted.
Let us introduce the most general cut scheme, thegeneral cut rule.

General cut:

Γ, α Γ,¬α

Γ
(G − cut).
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In this case the designated formulasα and¬α are called cut formulas of(G − cut).
Let Π be a set of formulas which are closed under negation, that is we have¬Π = Π.

ThenΠ-cuts are all cuts

Γ, α Γ,¬α

Γ
(Π − cut)

such that the cut formulaα belongs toΠ.
Let we have a rule

Γ1

Γ
or

Γ1, Γ2

Γ
.

It can be verified that if∨Γ1 is valid or∨Γ1 and∨Γ1 are valid, then∨Γ is valid. So,
by induction on the length of the proof it can be showed the following

Theorem 3.1(soundness). Let W ∈ {K, B}. If WT + (G − cut) � Γ, then |=W ∨Γ.

4. Completeness

In this section we give a sketch of completeness proof of the Tait-style calculiKT and
BT with the cut rule, where the cut formula is from some finite sets of formulas.

Now we define the Fisher–Ladner closureFL(α) of a formulaα of L. FL(α) is
defined to be the smallest set such that:α belongs toFL(α); if ¬β ∈ FL(α), then
β ∈ FL(α); if β ∨ γ ∈ FL(α), thenβ, γ ∈ FL(α); if β ∧ γ ∈ FL(α), thenβ, γ ∈
FL(α); if [i]β ∈ FL(α), thenβ ∈ FL(α); if Cβ ∈ FL(α), thenEβ, ECβ ∈ FL(α);
if ©β ∈ FL(α), thenβ ∈ FL(α); if βUγ ∈ FL(α), thenβ, γ,©(βUγ) ∈ FL(α);
FL(α) is closed under negation.

As in (Fisher and Ladner, 1979) can be verified

PROPOSITION4.1. For an arbitrary formulaα the setFL(α) is finite and contains not
more elements thanc|α|, where|α| is the length ofα.

UsingFL(α) we define setsCFLB(α) andCFLK(α) of formulas which are used as cut
formulas in our proof of completeness.

Let X be a finite set of formulas. Then we writeϕX for the a finite conjunction
formulas inX.

The setFLB(α) is defined to beFL(α) ∪ {[i][i]β, ¬[i][i]β|[i]β ∈ FL(α), 1 � i �
n} ∪ {[i]¬[i]β, ¬[i]¬[i]β|¬[i]β ∈ FL(α), 1 � i � n}. The setFLK(α) is defined to
beFL(α).

Let W ∈ {K, B}. The setC ′
FLW (α) is defined to be the set{ϕM1 ∨ . . . ∨

ϕMk
, ©(ϕM1∨. . .∨ϕMk

), [i](ϕM1∨. . .∨ϕMk
), [i]¬(ϕM1∨. . .∨ϕMk

)|M1, . . . , Mk ⊆
FLW (α), k � 1}. The closureCFLW (α) is defined to be the setC ′

FLW (α) ∪ {¬φ|φ ∈
C ′

FLW (α) }.



90 J. Sakalauskaitė

Let W ∈ {K, B}, ∆ be a set of formulas. A finite set ofL formulasΓ is ∆-consistent
if WT + (∆ − cut) �� ¬Γ. We write| �W Γ if WT + (CFLW (α) − cut) � Γ.

SupposeCL is a finite set of formulas with the property that for allφ ∈ CL, either
¬φ ∈ CL orφ is of the form¬φ′ andφ′ ∈ CL. We define anatom of CL to be a maximal
CFLW

(α)-consistent subset ofCL, whereW ∈ {K, B}.
Let W ∈ {K, B}. Let α be aCFLW

(α)-consistent formula. We begin the construc-
tion of the model ofα by first constructing apre-model MW (α), which is a structure
< SW ,→, R1, . . . Rn > consisting of a setSW of states, a binary relation→ on SW ,
and for each agenti a binary relationRi on SW . If W is K thenRi is an equivalence
relation. IfW is B thenRi is serial, transitive and Euclidean relation.

Let W ∈ {K, B}. The setSW consists of all atoms ofFLW (α). The relation→ is
defined so thatX → Y iff {φ|©(φ) ∈ X} ⊆ Y . ForW = K the relationRi is defined
so that(X, Y ) ∈ Ri iff {φ|[i]φ ∈ X} = {φ|[i]φ ∈ Y }. It follows that relationRi in
a pre-modelMW (α) is an equivalence relation. InMB(α) the relationRi is defined so
that(X, Y ) ∈ Ri iff {φ|[i]φ ∈ X} ⊆ Y .

As in (Alberucci, 2002) it can be proved

Lemma 4.1. If X ⊆ FLW (α) and X is CFLW (α)-consistent, then there exists an atom
Y of FLW (α) such that X ⊆ Y .

As in (Sakalauskaitė, 2004) it can be proved

Lemma 4.2. | � ∨Xis an atom ofFLW (α)ϕX .

Using the definition ofRi and the definition ofFLB(α) it can be verified

Lemma 4.3. Let X, Y, Z be atoms from SB .

a) for each X ∈ SB there exists Y ∈ SB such that (X, Y ) ∈ Ri;
b) if [i]β ∈ X and (X, Y ) ∈ Ri, then [i]β ∈ Y ;
c) if (X, Y ) ∈ Ri and (X, Z) ∈ Ri and [i]β ∈ Y , then β ∈ Z.

From Lemma 4.3 it follows that in a pre-modelMB(α) Ri is serial, transitive and
Euclidean relation for eachi ∈ {1, . . . , n}.

Below W ∈ {K, B} and s, t are states from a pre-modelMW (α). As in
(Sakalauskaiṫe, 2004) we can show

Lemma 4.4. If s, t are states such that (s, t) �∈ Ri, then | �W ¬ϕs, [i]¬ϕt.

Let U be a set of states. We writeϕU for disjunction of the formulasϕu for u ∈ U .
We can verify similarly as in (Sakalauskaitė, 2004).

Lemma 4.5. Let s be a state and let U be the set of states u such that s → u. Then
| �W ¬ϕs,©ϕU .
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Let W ∈ {K, B}. As in (Sakalauskaitė, 2004) it can be proved the following

Lemma 4.6. For all formulas α, β and γ, if | �W ¬α, ¬γ and | �W ¬α, ©(α ∨ (¬β ∧
¬γ)), then WT + ({©(α ∨ (¬β ∧ ¬γ))} ∪ {CFLW (α)} − cut) � ¬α, ¬(βUγ).

Define a→-sequence of states to be a (finite or infinite) sequences1, s2, . . . such that
s1 → s2 → . . ..

Let W ∈ {K, B} and s, t, s1, . . . , sn be states in a pre-modelMW (α). As in
(Sakalauskaiṫe, 2004) we can show

Lemma 4.7. a) if ©φ ∈ FLW (α), then for all states t such that s → t we have
©φ ∈ s iff φ ∈ t;

b) if [i]φ ∈ FLW (α), then ¬[i]φ ∈ s iff there is some state t such that sRit and
¬φ ∈ t;

c) if φ1Uφ2 ∈ FLW (α), then φ1Uφ2 ∈ s iff there exists a →-sequence
s = s0 → s1 → . . . → sn, where n � 0 such that φ2 ∈ sn and φ1 ∈ sk for all
k < n.

We use Lemmas 4.5, 4.6 to prove the “if” part of the item c) of Lemma 4.7.

Lemma 4.8. If Cφ ∈ FLW (α), then ¬Cφ ∈ s iff there is a state t reachable from s such
that ¬φ ∈ t.

Proof. We prove the lemma in the caseW = B. The proof of the lemma in the case
W = K is similar. We prove “only if” direction by contradiction. Let¬φ ∈ t ands =
s0Ri1s1 . . . sk−1Rik

sk = t. LetCφ ∈ s. By the rule(¬C1) it follows that| � ¬Cφ, Eφ.
Thus[1]φ, . . . , [n]φ ∈ s. Similarly by the rule(¬C2) we have[1]Cφ, . . . , [n]Cφ ∈ s. By
induction on k we get the following fact: ifCφ ∈ s0, thenφ ∈ sk, k � 1. Thus we get a
contradiction.

We prove the converse by contradiction. Suppose that no state containing¬φ is reach-
able froms by the relationsRi. Let V be the set of states reachable froms. Thenφ ∈ v

for eachv ∈ V . Thus | �B ¬ϕV , φ (1). Using Lemmas 4.2, 4.4 we can show that
| �B ¬ϕV , [i]ϕV (2). From (1) and (2) we can show that| �B ¬ϕV , [i]ϕV ∧ [i]φ. This
implies| �B ¬ϕV , EϕV ∧ Eφ. Then by (IndC ) we get| �B ¬ϕV , Cφ (3).

It can be verified using the rule(IndC) that | �B ¬Eφ,¬CEφ, Cφ. Thus, from the
assumption that| �B ¬ϕs,¬Cφ we get| �B ¬ϕs,¬Eφ,¬ECφ. Since s is a maximal
CFLW

(α)-consistent subset ofFLB(α) it follows | �B ¬ϕs,¬Eφ or | �B ¬ϕs,¬ECφ.
Thus there existsi such that| �B ¬ϕs,¬[i]φ or | �B ¬ϕs,¬[i]Cφ. By the item b) of the
Lemma 4.7 there exists a statet such thatsRit and¬φ ∈ t or ¬Cφ ∈ t. Sincet ∈ V

this contradicts to (1) and (3).

We say that an infinite→-sequence of states(s0, s1, . . .) , is acceptable if for all
n � 0, if φ1Uφ2 ∈ sn, then there existsm � n such thatφ2 ∈ sm andφ1 ∈ sk for all
n � k < m. Using part c) of Lemma 4.7 we can show
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Lemma 4.9. Every finite →-sequence of states can be extended to an infinite acceptable
sequence.

A canonical model for α is a tuple(R, R1, . . . , Rn, π), whereR is a set of all accept-
able sequences of states from the pre-modelMW (α); Ri is a binary relation on points in
R such that((r, n), (r′, n′)) ∈ Ri if (r(n), r′(n′)) ∈ Ri, whereRi is from the pre-model
MW (α); π(r, n)(p) = T iff p ∈ r(n). The following theorem gives a sufficient condition
for a formula in the Fisher–Ladner closure to hold at a point in the canonical model. Let
W ∈ {K, B}.

Theorem 4.1. If I is the canonical model for α, φ is in the closure FLW (α), then
(I, (r, n)) |=W φ if and only if φ ∈ r(n).

Proof. Proof is carried on by induction on the complexity ofφ using Lemmas 4.7, 4.8,
4.9.

COROLLARY 4.1. If I = (R, R1, . . . , Rn, π) is a canonical model forα, (r, n) is a
point ofI such thatα ∈ r(n), then(I, (r, n)) |=W α.

Let α beCFLW (α)-consistent formula. Lets ∈ SW be a state such thatα ∈ s. Such a
state must exist as it follows from Lemma 4.1. By Lemma 4.9 there exists an acceptable
sequencer = s0, s1, . . . with s = s0. Corollary 4.1 implies that(I, (r, 0)) |=W α. This
establishes the following completeness theorem of the calculiKT + (CFLK

(α) − cut),
BT + (CFLB

(α) − cut).

Theorem 4.2(completeness). Let α be a valid formula of the language L with respect
to the models of the logic CKLn (CBLn). Then KT + (CFLK(α) − cut) � α (BT +
(CFLB(α) − cut) � α).
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Sekvenciniai skaǐciavimai bendro žinojimo ir tik ėjimo logikoms

Jūraṫe SAKALAUSKAITĖ

Nagriṅejamos bendro žinojimo ir tik̇ejimo laiko logikos. Šioms logikoms pateikti sekvenciniai
skaǐciavimai, kuriuose pj̄uvio formul̇e yra apribota.↪Irodytas ši↪u skaǐciavim ↪u neprieštaringumas ir
pilnumas. Pilnumo↪irodymas yra semantinis.


