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Abstract. This paper presents an application of the Hilbert–Huang transform (HHT) and ensem-
ble correlation for detection of the transient evoked otoacoustic emissions (TEOAEs), and high
resolution time–frequency mapping. The HHT provides a powerful tool for nonlinear analysis of
nonstationary signals such as TEOAEs. Since the HHT itself does not distinguish between sig-
nal and noise it was used with ensemble correlation to extract information about intervals with
correlated activity. The combination of methods produced good results for both tasks TEOAE de-
tection and time–frequency mapping. The resulting detection performance, using the mean hearing
threshold as audiological separation criterion, was a specificity of 81% at a sensitivity of 90% to be
compared to 65% with the traditional wave reproducibility detection criterion. High resolution time
frequency mapping predicted in more than 70% of the cases hearing loss at a specific frequency in
cases of ski-sloping audiograms. The present m ethod does not require a priori information on the
signal and may, with minor changes, be successfully applied to analysis of other types of repetitive
signals such as evoked potentials.

Key words: otoacoustic emission detection, Hilbert–Huang transform, time–frequency mapping
and feature extraction.

1. Introduction

An otoacoustic emission (OAE) is a tiny acoustic signal recorded in the outer ear canal in
response to acoustic stimulus. Different studies have shown that OAE can be generated in
subjects with hearing levels better than 20–40dBHL (Prieve, 1996; Stenklev and Laukli,
2003; Colletet al., 1991; Bertoli and Probst, 1997). An otoacoustic emission evoked by
a short acoustic stimulus is called transient evoked otoacoustic emission (TEOAE). The
response of the ear to a transient stimulus is usually recorded 2.5–20 ms post-stimulus.
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Transient evoked otoacoustic emissions contain information about a large part of
cochlea. The presence of TEOAEs indicate that the preneural cochlear receptor and mid-
dle ear mechanisms are able to respond to sound in a normal way (Kempet al., 1990).
Since TEOAEs reflect the cochlea condition, usually absent for a hearing loss of approx-
imately 30dBHL or more, they have the potential to be used for objective assessment
of hearing function in large populations for screening purposes (Sokol and Hyde, 2002),
monitoring influence of noise exposure (Smeatham, 2002) or ototoxic drugs on the hea-
ring system (McFadden and Pasanen, 1994).

Many studies have reported similar results about the time–frequency structure of
TEOAE signals: high frequency components are usually located in the part closer to
the stimulus, while low frequency components appear later in the signal and last longer
(Kempet al., 1990; Avanet al., 1993; Whiteheadet al., 1995). This time–frequency pat-
tern may be explained by the tonotopic frequency analysis of the human cochlea.

Attempts have been made to estimate pure tone hearing thresholds from OAE sig-
nal (Waalet al., 2002; Dietl and Weiss, 2004; Gorgaet al., 2003). However, the use of
TEOAEs for estimation of hearing thresholds is not yet proved in practice because of
the large signal variability of similar ears (Robinette, 2003). One reason for the variabi-
lity is due to excessive noise left after conventional signal processing, e.g., synchronous
averaging.

Further improvement of the signal-to-noise ratio (SNR) is possible by exploiting the
relative separation between noise and TEOAE signal components in the time–frequency
plane. The TEOAE signal is a highly nonstationary, multicomponent signal, whose fre-
quency content varies considerably over time. It has been shown in previous studies that
time windowing (Whiteheadet al., 1995) and band-pass filtering (Gorgaet al., 1993), or,
better, both of these techniques (Janušauskaset al., 2001) help to improve the TEOAE
signal estimate. These studies use ad hoc defined fixed bandpass filters in order to split
the signal in a few frequency ranges, and ad hoc defined time windows for windowing
the filtered signal components. These approaches represent a rough estimation of the
underlying TEOAE signal location in time frequency plane. We introduced in a recent
paper certain adaptivity using the ensemble correlation (EC) technique for defining loca-
tion and duration of time windows (Janušauskaset al., 2002). As a result, the equivalent
time–frequency mask becomes more exact and tailored to the underlying TEOAE signal.
However, frequency axis division into fixed octave sub-bands is not adequate to the most
probable location of the TEOAE components, and noise, could thus remain in the TEOAE
estimate. A recent study went further by introducing adaptivity in the division of the fre-
quency axis (Marozaset al., 2004). The wavelet packet transform was used to adaptively
divide the frequency axis into sub-bands. Time windowing of each frequency compo-
nent was accomplished using a technique similar to the one presented in (Janušauskas
et al., 2002). The wavelet packet transform, however, is only semi-adaptive in defining
the frequency axis division since it must adhere to a grid defined by the signal sampling
frequency and the level of resolution. The fully adaptive frequency axis division into sub-
bands is provided by signal dependent decomposition methods. This makes it possible
to precisely extract the location of signal components in the time–frequency plane with
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the desired resolution. One such method is the so-called Hilbert–Huang transform (HHT)
(Huanget al., 1998), which decomposes the signal into narrow band components. These
components are called empirical mode decomposition (EMD) following by calculation of
the traditional analytical Hilbert spectrum for each of the extracted components. Finally,
the resulting spectra are mapped onto the time–frequency plane with a desirable resolu-
tion. The Hilbert–Huang transform has been successfully used in several applications for
nonstationary signal analysis (Echavariaet al., 2001; Chau-Hueiet al., 2002).

This article has the following structure. In Section 2 we provide a description of the
implemented method with a short theoretical background of the Hilbert–Huang decompo-
sition and the ensemble correlation method, being the main components of the proposed
TEOAE detection and time–frequency mapping method. The method itself is described
in Subsection 2.3. Subsection 2.4 describes the database of TEOAE signals. Results and
discussion are found in Sections 3 and 4, respectively.

2. Materials and Methods

2.1. Empirical Mode Decomposition

Empirical mode decomposition is a novel method for non-linear and non-stationary data
analysis (Huanget al., 1998; Magrin-Chagnolleau and Baraniuk, 1999). This method de-
composes the original time series into “monocomponent functions” called intrinsic mode
functions, suitable for defining meaningful instantaneous frequency calculation using the
Hilbert transform (Huanget al., 1998). An intrinsic mode function (IMF) is, by definition,
a function that satisfies two conditions:

• the function should be symmetric in time, and the number of extrema and zero
crossings must be equal, or at most differ by one;

• the mean value of the envelope, defined by the local maxima and envelope defined
by a local minima must be zero at any function point.

This means that the IMF it is obtained by locally eliminating the superposition of dif-
ferent frequency and amplitude waves, and eliminating signal asymmetries with respect
to the zero level. This is done by using the EMD technique, which decomposes the signal
into IMFs with an iterative procedure consisting of extrema identification and “sifting”
steps, explained below.

Let the original signals(t) be the input to the sifting process. The signalsi,k(t) defines
a component of the sifting process, which for the first iteration iss1,1(t) = s(t). The
sifting process consists of the following steps:

1. First, local minima and maxima are extracted fromsi,k(t).
2. Lower and upper envelopes are created by interpolation ofsi,k(t) between local

maxima and minima.
3. The mean valuemi,k(t) of the resulting upper and lower envelopes is calculated

for each signal point.
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4. The resultingmi,k(t) is subtracted from the signalsi,k(t) so that the next compo-
nent of the sifting process is defined by:

si,k+1(t) = si,k(t) − mi,k(t). (1)

5. The componentsi,k+1(t) is checked against the IMF criteria and, if not met, the
sifting process (1–4 steps) is repeated withk = k + 1.

6. The above steps are repeated until the resulting signal meets IMF criteria and,
consequently is IMFci(t). To speed up the procedure, a second condition for the
signal to be IMF is relaxed when the standard deviationSD, computed from two
consecutive sifting is less than 0.2–0.3:

SD =
T∑

t=0

[ |si,k−1(t) − si,k(t)|2
s2

i,k−1(t)

]
< 0.2. (2)

The next sifting process starts after subtraction of the extracted IMFci(t) from signal
si,k(t), and the resulting signalri(t) is input to the successive sifting process:

ri(t) = si,k(t) − ci(t), (3)

si+1,k(t) = ri(t), (4)

wherek = 1.
The sifting process is repeated until all, or the required number of IMFs, are extracted

from the signal. In the first case the sifting process is terminated when the residualrN (t)
of the sifting process has less than 3 extrema.

The original signals(t) can be expressed as a sum of extracted IMFsci(t) and the
residual of the sifting processrN (t):

s(t) =
N∑

i=1

ci(t) + rN (t). (5)

Physically, the empirical mode decomposition process can be understood as a step-
by-step extraction of thelocally highest frequency oscillation of the signal progressively
forming low-pass intrinsic mode components (Fig. 1).

2.2. Time–Frequency Signal Representation in Terms of Hilbert Spectrum

The Hilbert spectrum and the instantaneous frequency is meaningful in the physical sense
only whenx(t) is a monocomponent (“narrow band” at any time instance) signal (Huang
et al., 1998; Kizhneret al., 2004). Intrinsic mode functions satisfy this condition, by
calculation of Hilbert amplitudes and instantaneous frequencies for each IMF separately,
producing an analytical time–frequency representation of the signal.
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Fig. 1. Signal decomposition into intrinsic mode components.

The signals(t) may be expressed in terms of analytical amplitudesAi(t) and instan-
taneous frequencieswi(t) (Huanget al., 1998; Kizhneret al., 2004):

s(t) = Real
{

ΣN
i=1Ai(t)e

j
∫

wi(t) dt
}

, (6)

wi(t) =
dθi(t)

dt
, (7)

whereAi(t) and θi(t) denote the Hilbert transform modulus and phase, respectively,
obtained by applying the Hilbert transform on the IMFci(t).

A time–frequency signal representation, or a nominal Hilbert spectrum, is constructed
by aggregating instantaneous frequencies and corresponding amplitudes of IMFs into de-
fined frequency bins, displayed in a three dimensional time, frequency and Hilbert am-
plitude space. The Hilbert amplitude represent the square root of the local signal energy.
Another representation of Hilbert spectrum is the two dimensional view called marginal
Hilbert spectrum, obtained by summing up the amplitudes along the frequency bin time
lines and displaying it in amplitude–frequency plane.

2.3. Algorithm of the Method

The present method for detection of otoacoustic emission and time–frequency mapping
consists of two main branches related to detection and visualization of the signal, see
Fig. 2.

Detectionis based on weighting of OAE signal sub-averages by ensemble correla-
tion (EC) function and successive cross-correlation decision parameter calculation. The
ensemble correlation function itself is a one-weight filter which weights each sample
of the averaged signal in relation to the correlation across ensemble of signal realiza-
tions (Atarius and Sörnmo, 1995; Janušauskaset al., 2002). Information contained in the
EC function allows analysis of signal time intervals with a high SNR.
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Fig. 2. Block diagram of the method.

Fig. 3. Normalized averages of the marginal Hilbert spectra of 1000 normal hearing subjects for first four
intrinsic mode components.

The first step in OAE detection is to enhance the SNR by sub-averaging the raw
TEOAE ensemble intoN averages consisting of non-overlapping responses. The num-
ber of sub-averages should be chosen large enough for EC function calculation, while
small enough for reaching acceptable SNR in each subaverage. In the present method the
number of sub-averages was set to 12.

Each subaverage was decomposed into IMFs (Fig. 2), having have variable, signal
dependent spectral content. Experiments, however, showed that the frequency range of
interest (0.6–6 kHz) is mostly covered by the first four IMFs (Fig. 3). Thus, only these
four were used for further computations.

According to the algorithm, the corresponding IMFs were averaged into two non-
overlapping sub-averages for each of the 4 IMFs. Signal regions weighted by EC values
larger than 0.6, as calculated for each set of components, were used for crosscorrelation
coefficient calculation. A restriction of 2 ms minimum length of the overall correlated ac-
tivity was added to avoid short term correlated noise. In the case when correlated activity
was shorter than 2 ms, crosscorrelation coefficient without using EC function weighting
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was calculated.
Different detection parameters were investigated and the most successful ones were

chosen for further investigation:

1) an average of the four crosscorrelation coefficients as calculated from IMFs 1–4
subaverages, labeledccc14;

2) an average of three crosscorrelation coefficients as calculated from IMFs 1–3
subaverages, labeledccc13;

3) combined detection parameter: TEOAE was detected when at least two crosscor-
relation coefficients, as calculated from IMFs 1–3 subaverages, exceeded criterion
value, labeledpass13;

4) Wave reproducibility is used in the ILO (Otodynamic Inc) commercial TEOAE
recording and analysis equipment, and is calculated as the crosscorrelation coeffi-
cient between two subaverges, labeledcccilo.

Estimation of the time–frequency OAE spectrumis based on the calculation of instan-
taneous frequencies for the first four IMFs using the Hilbert transform, with the following
formation of time–frequency spectra, and displaying only high SNR spectral components.

First, all TEOAE signal realizations from the chosen record were averaged for SNR
enhancement. The averaged signal was then decomposed into four IMFs (Fig. 2). Next,
the Hilbert analytical amplitudes and instantaneous frequencies were calculated for these
components. The nominal Hilbert spectrum was formed by aggregating instantaneous
frequencies and corresponding amplitudes into 100 Hz frequency bins. Signal parts from
the time regions weighted by ensemble correlation function values lower than 0.6 were
excluded from the spectra. A contour plot of amplitudes higher than 0.15 from the maxi-
mum amplitude level was presented.

2.4. Database

A database with raw TEOAE signals was used for evaluation of the present method,
consisting of more than 10000 TEOAE records from adult subjects recorded in an attenu-
ation booth or in a relatively quiet room (Engdahl, 2002; Engdahl and Tambs, 2002). The
database contains TEOAE signals from adults with an average age of 49 years (standard
deviation 16 years) ranging from 20 to 96 years. All signals were linked to audiograms
and other audiological data. The average mean hearing level of the subjects was 16dBHL

(standard deviation 15dBHL) ranging from−10 to 114dBHL.
Signals were recorded by the ILO92 commercial equipment and stored before soft-

ware processing. Each TEOAE signal ensemble consisted of every response to a four
click stimulus train prior to averaging and filtering. Every signal was bandlimited to
600Hz–6kHz and windowed between 2.5–20 ms post-stimulus time.

For the method evaluation the database of TEOAE responses were divided into “nor-
mal hearing” (NH) and “hearing impaired” (HI) groups. An audiological separation crite-
rion for NH and HI subjects was set to a mean hearing level of 30dBHL calculated from
hearing thresholds at 500Hz, 1kHz, 2kHz and 4kHz. Such a separation resulted in 4228
subjects classified as normal hearing and 761 as hearing impaired. It was assumed that
NH subjects should have TEOAE while HI should not.



32 A. Janušauskas, V. Marozas, A. Lukoševiˇcius, L. Sörnmo

Approximately 50% of the database, with TEOAEs recorded from the right ears, were
used for method development, while the other 50% (left ear records) was used for calcu-
lation of results.

To investigate possibility of the method to predict hearing loss at a specific frequency,
the “sloping hearing loss” group was formed of 400 TEOAE responses from subjects with
sloping hearing loss (hearing level better than 20dBHL at 1kHz and worse than 35dBHL

at 4kHz).

3. Results

The present method was applied to the TEOAE database for objective separation of “nor-
mal hearing” (NH) and “hearing impaired” (HI) subjects, as described above. Receiver
operating characteristics were calculated for different detection criteria (Fig. 4), as spec-
ified in Section 2.3.

At a detection specificity of 90%, “ccc14” decision parameter, which uses four first
IMFs, gave the best results in terms of sensitivity, however, “ccc13” and “pass13” that
uses the three first IMFs gave similar performance (Table 1). All the decision parameters
performed significantly better than did the traditional “cccilo” decision parameter.

The possibility to predict hearing loss at a specific frequency was also investigated
using signals from subjects with sloping hearing loss as described in Section 2.4. In a

Fig. 4. Receiver operating characteristics for different TEOAE detection criteria:ccc13 (solid line), ccc14
(dotted),cccilo (dashed) andpass13 (solid dotted).

Table 1

TEOAE detection results

Decision parameter Specificity at 90% sensitivity

ccc13 79.97

ccc14 80.88

pass13 80.42

cccilo 65.43
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number of cases it was found that OAE signal time–frequency distribution can predict
high frequency hearing loss; this could be observed both in individual cases and in ave-
rage (Fig. 5). The receiver operating characteristic was calculated forccc1detection pa-
rameter, the crosscorrelation coefficient of the first IMF component sub-averages, versus
the hearing level at 4kHz.

In this case prediction was lower than overall mean hearing level prediction of the
method. The sensitivity at 90% specificity was 70.09% to be compared with 80.88%
when detecting mean hearing level usingccc14(see Fig. 5).

The same results could be observed in individual signal cases as well. Usually the
Hilbert spectrum corresponded quite well to subject’s audiogram. Normal hearing sub-
jects had a richer spectral content than had subjects with sloping hearing loss (Figs. 6
and 7). In Fig. 6, OAE spectrum had strong high frequency components up to 6 ms
post stimulus time while components in the frequency range 600Hz–2kHz were present
throughout the recording. In Fig. 7, the subject with a high frequency hearing loss exhib-

Fig. 5. Receiver operating characteristic showing the capability to predict high frequency hearing loss, using
ccc1 (dashed line). The ROC for overall TEOAE detection criterionccc14 (solid line) is given for the compar-
ison.

Fig. 6. TEOAE IMFs (two sub-averages) and nominal Hilbert spectrum from a normal hearing subject.
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Fig. 7. TEOAE IMFs (two sub-averages) and nominal Hilbert spectrum from a subject with sloping hearing
loss.

ited almost no OAE high frequency components extracted by the present method, while
the lower frequencies were present throughout the recording. This corresponds to the sub-
ject’s audiogram with hearing levels better than 30dBHL at frequencies up to 2kHz, and
worse than 35dBHL at higher frequencies.

The results from hearing impaired subjects were not shown since they usually exhib-
ited a very narrow time–frequency range, or no signal components were detected because
of low ensemble correlation.

4. Discussion and Conclusions

The introduced method provided us with an accurate equivalent time–frequency mask, to
regain the TEOAE signal from noise, and resulted in high TEOAE signal detection per-
formance on a database of almost 5000 TEOAE signals. The HHT-based high resolution
time–frequency distributions of TEOAE signals revealed fine time–frequency properties
of these signals.

Our implementation of the HHT differs slightly from the original one presented by
N. Huang (Huanget al., 1998). Usually cubic spline interpolation technique is used in the
EMD, however, it was found that piecewise cubic Hermite interpolation is more suitable
for this application. Empirical mode decomposition using Hermite polynomials resulted
in more IMFs, but the IMFs had more reiterate frequency content when compared to
spline interpolation technique (Kizhneret al., 2004). The frequency resolution of nominal
Hilbert spectra was set to 100Hz, and only normalized signal components that exceeded
a level of 0.15 were included in the spectra. Such an artificial amplitude and frequency
resolution reduction was found to be useful for investigation of signal trends. The use of a
higher resolution would result in masking of general trends by accidentally picking noise
or tiny signal ripple.

The HHT was found able to extract signal specific time–frequency features. Signals
recorded from normal hearing subjects usually had a typical “boomerang” shape time–
frequency distribution (Fig. 8), while subjects with high frequency hearing loss had flat-
tened spectra (Fig. 9).
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Fig. 8. Average of nominal Hilbert spectra of 1500 good quality normal hearing subjects. Contour plot.

Fig. 9. Average of nominal Hilbert spectra of 400 subjects with sloping high frequency hearing loss. Contour
plot.

The present method was found useful for TEOAE signal detection. All decision pa-
rameters resulted in higher detection rates than did the traditional crosscorrelation coeffi-
cient as used, e.g., in commercial ILO OAE recording and analysis equipment. A number
of other decision parameters were investigated during the present study. The use of other
IMF combinations or parameters that included signal energy, however, provided worse
results. The preference to use decision parameters that do not take energy into account is
confirmed by another study (Marozaset al., 2004). The use of only the first four IMFs
could be explained by the fact that the TEOAE signal was filtered between 600Hz and
6kHz and the audiological criterion, mean hearing threshold, was traditionally calculated
as an average of pure tone hearing thresholds at 0.5kHz–4kHz. It was shown that, in
average, the first four IMFs cover this frequency range (Fig. 3) and higher IMFs rapidly
decreases in amplitude (Fig. 1) adding no significant information.

A high detection rate (Figs. 4,5, Table 1) and a capability to extract time–frequency
features corresponding to other audiological data (Figs. 6–10) suggest that method is able
to extract true TEOAE signal features from the recorded signal.

Methods using a priori knowledge about TEOAE latency properties may have higher
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Fig. 10. TEOAE IMFs (two sub-averages) and nominal Hilbert spectrum from normal hearing subject. High
frequency OAE present throughout all the signal duration.

detection quality (Janušauskaset al., 2001; Janušauskaset al., 2002). The most important
result of this study is, however, the correct estimation of very subtle time–frequency fea-
tures of an individual TEOAE signal while the detection part of the method, which uses
the same principles as time–frequency mapping part proves reliability of the results.

The fact that the present method does not use a priori knowledge on signal properties
is an advantage which makes it versatile and directly applicable to both children and
adult TEOAE data with quite different latency patterns. For the same reasons the method
is easily applicable to other types of repetitive signals, e.g., evoked potentials.

The method was found useful for both detection and investigation purposes. As de-
scribed above, the TEOAE frequency content can sometimes predict high frequency hea-
ring loss (Fig. 7). The signal pattern itself may vary considerably from subject to subject
(compare Figs. 6 and 10). Extraction of tiny signal features could be useful for TEOAE
phenomenon investigation, modeling and extracting of the new OAE signal and OAE
phenomenon features.

In its current form, the method is only suitable for off-line analysis, since it is
time consuming and requires significant computational power. The development of a
hardware-based HHT calculation equipment may, however, remove this drawback and
widen its application area (Kizhneret al., 2004).
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Otoakustinės emisijos signal↪u atpažinimas ir skleidimas laiko
ir dažnio plokštumoje Hilberto–Huango trasnformacijos pagalba

Artūras JANUŠAUSKAS, Vaidotas MAROZAS, Ar̄unas LUKOŠEVǏCIUS,
Leif SÖRNMO

Straipsnyje pristatyta nauja metodika, skirta impulsu sukeltos otoakustinės emisijos atpažini-
mui ir skleidimui laikas–dažnis plokštumoje. Metodika pagr↪ista pažangia Hilberto–Huango trans-
formacija ir ansamblio koreliacijos metodu. Hilberto–Huango transformacija yra naujas galin-
gas signal↪u apdorojimo ↪irankis, skirtas netiesinei nestacionari↪u signal↪u analizei, koks yra ir
otoakustiṅes emisijos signalas. Hilberto–Huango transformacija neskiria signalo nuo triukšmo,
todėl ši transformacija yra naudojama kartu su ansamblio koreliacijos metodu, signalo interval↪u su
aukštu signalo ir triukšmo santykiu išskyrimui. Ši↪u metod↪u kombinacija pateik̇e labai gerus rezul-
tatus kiek otoakustiṅes emisijos atpažinimo, tiek ir skleidimo laikas–dažnis plokštumoje prasme.
Klinikiniu kriterijumi naudojant 30 dBHL vidutin↪i klausos slenkst↪i metodo atpažinimo tikslumas
buvo 81% teisingai atpažint↪u gerai girdiňci ↪uj ↪u signal↪u, esant 90% neprigirdinči ↪uj ↪u atpažinimui.
Aukšto skiriamumo signalo atvaizdavimas laiko ir dažnio plokštumoje leido nustatyti 70% aukšt↪u
dažni↪u klausos netekimo atvej↪u. Naudojamas metodas nenaudoja jokios išankstinės informacijos
apie signal↪a ir toḋel, padarius minimalius pakeitimus, gali būti taikomas ir kitiems signalams,
kuriems naudojamas sinchroninis vidurkinimas.


