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Abstract. This paper investigates a variety of statistical cache-based language models built upon
three corpora: English, Lithuanian, and Lithuanian base forms. The impact of the cache size, type of
the decay function, including custom corpus derived functions, and interpolation technique (static
vs. dynamic) on the perplexity of a language model is studied. The best results are achieved by
models consisting of 3 components: standard 3-gram, decaying cache 1-gram and decaying cache
2-gram that are joined together by means of linear interpolation using the technique of dynamic
weight update. Such a model led up to 36% and 43% perplexity improvement with respect to
the 3-gram baseline for Lithuanian words and Lithuanian word base forms respectively. The best
language model of English led up to a 16% perplexity improvement. This suggests that cache-based
modeling is of greater utility for the free word order highly inflected languages.

Key words: language models,n-grams, cache models, dynamic interpolation, perplexity reduction,
inflected language, free word order language, Lithuanian.

1. Introduction

Statistical language models (LM) have become key components for large vocabulary con-
tinuous speech recognition (LVCSR) systems. These models provide prior probabilities
that are used to rate hypothesized sentences and to disambiguate their acoustical similar-
ities.

During the last few decades, much experimental work has been done in the field of sta-
tistical language modeling covering widespread world languages such as English, French,
and German. The most popular modeling techniques developed for those languages are
known asn-grams. Althoughn-grams have shown a good performance, they are far from
optimal because of false word independency assumption.

Lithuanian language modeling has started since 2002. Lithuanian has free word order
and is highly inflected, i.e., new words are easily formed by inflectional affixation. These
properties of a language result in difficulties of statistical modeling known as huge vocab-
ulary size, model sparseness, high perplexity, and a high out-of-vocabulary (OOV) word
rate. The attempts to overcome the abovementioned difficulties of Lithuanian included
word parsing into stems and endings (Vaičiūnas and Raškinis, 2003) as well as class-
based modeling and modeling by morphological decomposition (Vaičiūnas and Raškinis,



112 A. Vaičiūnas, G. Raškinis

2004). In this paper, we investigate an alternative cache-based modeling. To our knowl-
edge, the cache-based modeling of highly inflected free word order languages has not
been attempted. The cache-based models presented in this paper are interesting in two
respects. They are able to adapt dynamically to the text under investigation and they have
the potential of catching dependencies spanning longer word sequences thann-grams
do. The impact of the model architecture, cache size, type of the decay function, includ-
ing custom corpus derived functions, and interpolation technique (static vs. dynamic) on
the perplexity of a language model is studied. Cache language models of Lithuanian are
compared to the corresponding English ones.

2. Related Work

Cache-basedn-gram model for linguistic applications was first introduced by Kuhn and
De Mori, (1988, 1990). It can be thought of as a usualn-gram Markov model trained on
a relatively short history of recent words of some particular wordwi.

Let wi be thei−th word of a text and leth = wi−K , . . . , wi−1 denote the cache or
history ofwi, whereK is the size of the cache.

Let C(h) � K be the number of words withinh belonging to the chosen vocabula-
ry V .

Let C(wi, h) be the number of occurrences of a wordwi within h.
Let C(wi−1, wi, h) be the number of word pairswi−1, wi within h.
Finally, letI(condition) denote the indicator function taking the value 1 ifcondition

is true and 0 otherwise.
Then, the conditional probabilities of 1-gram and 2-gram cache language models can

be estimated by formulas (1) and (2) respectively:

P̂H(wi|h) =
C(wi, h)

C(h)
=

∑i−1
j=i−K I(wi = wj)∑i−1
j=i−K I(wj ∈ V )

, (1)

P̂H2(wi|wi−1, h) =
C(wi−1wi, h)
C(wi−1, h)

=

∑i−2
j=i−K I(wi−1 = wj ∧ wi = wj+1)∑i−2

j=i−K I(wi−1 = wj)
. (2)

Conditional probabilities of a 3-gram cache LM can be estimated in a similar way.
Jelineket al. (1991) showed that 2-gram and 3-gram cache outperformed 1-gram cache
in terms of LM perplexity1. Rosenfeld (1996) and Goodman (2001) reported just minor
improvements of 3-gram cache over the 2-gram cache. Nevertheless, 1-gram cache lan-
guage models are often used because of the problem of LM sparseness arising due to the
limited cache sizeK.

Clarkson and Robinson (1997) suggested an improvement to (1) and (2) based on the
experimental evidence that the probability of a word reoccurrence in a text exponentially

1Perplexity refers to how many different equally probable words a statistical LM expects to appear in
average for a particular type of a context. It is estimated on the test subset of the corpora.
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decays as the distance to that word increases. Otherwise stated, recent wordswj have
greater influence on probability distribution of the current wordwi. The influence dimin-
ishes as the distancei− j increases. The decay cache is used to model this phenomenon:

P̂d(H)(wi|h) =

∑i−1
j=i−K [I(wi = wj) · d(i − j)]∑i−1

j=i−K d(i − j)
, (3)

P̂d(H2)(wi|wi−1,h) =

∑i−2
j=i−K [I(wi−1 = wj ∧ wi = wj+1) · d(i − j)]∑i−2

j=i−K [I(wi−1 = wj) · d(i − j)]
, (4)

whered(x) is the decay function that tends to zero as the distancex increases. Two
exponentially decaying functions are often used:d(x) = e−bx andd(x) = ae−bx+c. The
decay speedb as well as parametersa andc are chosen experimentally or estimated by
approximating the function of word reoccurrence, i.e., the actual histogram of distances
between the two consecutive repetitions of the same word.

Because of a very limited cache size standalone cache models (1)–(4) are sparse and
should be used in combination withn-gram models built upon larger text corpora. Lin-
ear interpolation is the most popular method of such combination (Jelineket al., 1991;
Iyer and Ostendorf, 1999; Clarkson, 1999; Tillmann and Ney, 1996). 1-gram and 2-
gram cache models can be linearly interpolated with the standard word 3-gram model
P̂W 3(wi|wi−2, wi−1) in a way shown below:

P̂W 3+H(wi|wi−2, wi−1) = λ · P̂W 3(wi|wi−2, wi−1)

+ (1 − λ) · P̂H(wi|h), 0 � λ � 1, (5)

P̂W 3+H+H2(wi|wi−2, wi−1) = λW 3 P̂W 3(wi|wi−2, wi−1)

+ λH P̂H(wi|h) + λH2 P̂H2(wi|wi−1, h), (6)

0 � λW 3 , λH , λH2 � 1, λW 3 + λH + λH2 = 1,

Here,λ′s are interpolation weights optimized on the validation corpus.
Sometimes conditional interpolation formula is used (Goodman, 2001):

P̂W 3+H+[H2](wi|wi−2, wi−1)=

{
P̂W 3+H+H2(wi|wi−2, wi−1), if wi−1 ∈ h,

P̂W 3+H(wi|wi−2, wi−1), otherwise.
(7)

Besides the standard word 3-gram models, cache models can be interpolated with
class-based, skip, sentence mixture models (Goodman, 2001), topic mixture models
(Kneser and Steinbiss, 1993; Iyer and Ostendorf, 1999), and trigger pair models (Till-
mann and Ney, 1996).

Models (5)–(7) are based on the static interpolation weightsλM . Dynamic model
interpolation weightsλM (i, hD) can also be used (Kneser and Steinbiss, 1993). The basic
idea of this approach is that if the cache-hit2 is small in recent history the weight of the
general 3-gram component should be increased and vice versa.

2The percentage of wordswi of the test corpus such thatC(wi, h) > 0.
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Dynamic weights may be adapted on a word by word basis by optimizing perplexity
on the recent word historyhD = wi−D, . . . , wi−1:

P̂W 3⊕H⊕H2(wi|wi−2, wi−1) = λW 3(i, hD)P̂W 3(wi|wi−2, wi−1)

+ λH(i, hD)P̂H(wi|h) + λH2(i, hD)P̂H2(wi|wi−1, h), (8)

whereλW 3(i, hD)+λH(i, hD)+λH2(i, hD) = 1 for all i, andD represents the length of
an empirically chosen word history. TheλM (i, hD) can be estimated by an expectation
maximization algorithm (see (Kneser and Steinbiss, 1993; Martinet al., 1997) or (Gotoh
and Renals, 1997)) before estimating the combined probability estimate (8). Dynamic in-
terpolation was previously introduced in topic mixture models of highly inflected Slove-
nian (Maucec and Kacic, 2001) and Finish (Siivolaet al., 2001). Some other attempts to
avoid using static interpolation weights include the definition of interpolation weights as
the function of a cache sizeK (Goodman, 2001) and the use of distinct weightsλ(i) for
classes of topic-specific and general purpose words (Federico and Bertoldi, 2001; Gotoh
and Renals, 1997; Martinet al., 1997; Seymoreet al., 1998).

There is no consensus about the efficiency of the cache-based LM embedded in a
speech recognition system. Jelineket al. (1991), Rosenfeld (1996), Tillmann and Ney
(1996) reported WER3 reduction, while Clarkson (1999) and Goodman (2001) reported
WER degradation due to the use of a cache-based LM. In all those cases, the perplexity
of the cache-based LM was significantly better than the perplexity of a word 3-gram LM.

3. Resources and Tools

Our investigations were based on three corpora. The main corpus was the Lithuanian
text corpus compiled by the Center of Computational Linguistics at Vytautas Magnus
University (Marcinkevǐcieṅe, 2000) containing 84 202 576 word tokens (henceforth LT
corpus). This corpus represented a great variety of genres and topics of the present day
written Lithuanian. It was used for the investigation of cache based language modeling
phenomena of inflected Lithuanian. Two auxiliary corpora were the corpus of Lithuanian
base forms (LTBF) and “The Sunday Times” English corpus of the year 1995 (EN). The
LTBF corpus was derived from the LT corpus by replacing each word with its base form4.
Auxiliary corpora served for inflected/non-inflected and Lithuanian/English comparison
purposes.

All corpora were divided into training, validation and test subsets constituting 98%,
1%, and 1% of the original corpora respectively. The same proportions of text genres were
kept within all subsets. We used some text clearing: punctuation was removed, numbers
and out-of-vocabulary (OOV) words (i.e., words found in the test subset but absent from
the vocabularyV ) where replaced by tags〈num〉 and〈oov〉, respectively.

3Word Error Rate is the standard measure of accuracy of a speech recognition system.
4Base forms (the infinitive for verbs, the singular nominative case for nouns, etc.) were obtained with the

morphological lemmatizer of Lithuanian (Zinkevičius, 2000). In case of morphological ambiguity, the first base
form out of the list of possible base forms was selected.
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Table 1

Summary of corpora characteristics

Word tokens
Corpus

Word types
(vocabulary)

Articles
Average words

per articletraining validation testing

LT 1158k
84 202 k 853 k 713 k 1996 42185

LTBF 371k

EN 235k 40 525 k 409 k 400 k 91167 445

Majority of our investigations were carried out using locally developed cache-based
language modeling tools. Simplen-grams were built using CMU-Cambridge Statistical
Language Modeling Toolkit (Clarkson and Rosenfeld, 1997) that was extended to handle
vocabularies of more than 65k words.

4. Experimental Results

We have investigated cache-based models in order of increasing complexity. First, the
simple 1-gram cache, 1-gram decaying cache, and 1-gram decaying cache using dynamic
weight adaptation were investigated. Thereafter, the best performing 1-gram cache mod-
els were complemented with the components of 2-gram cache, 2-gram decaying cache,
and 2-gram decaying cache using dynamic weight adaptation. Throughout all experi-
ments, cache-based LMs were compared on the basis of perplexity and perplexity im-
provement with respect to the baseline. The results are briefly summarized in the Table 2.
More detailed description of our investigations is presented in the subsections that follow.

Table 2

Summary of cache-based language modeling experiments

Language model LT, 1157k LTBF, 371k EN, 235k

Perplexity

P̂W3 (3-gram baseline, Kneser-Ney) 1027.21 451.27 259.46

Perplexity improvement, %

P̂W3+H (+1-gram cache) 24.72 30.64 12.24

P̂W3+d(H) (+1-gram decaying cache) 28.20 34.24 13.49

P̂W3⊕d(H) (+ dynamic weight adaptation) 29.62 35.94 13.71

P̂W3+d(H)+[H2] (+2-gram cache, static weights) 33.51 39.55 15.69

P̂W3+d(H)+[d(H2)] (+2-gram decaying cache) 33.32 40.13 16.02

P̂W3⊕d(H)⊕[d(H2)] (+ dynamic weight adaptation) 36.21 43.03 16.20
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Table 3

Perplexities and OOV rates of 3-gram language models obtained with Kneser-Ney and Good-Turing smoothing
techniques

Perplexity ofP̂W3

Corpus
Vocabulary

size
OOV, %

Kneser-Ney
smoothing

Good-Turing
smoothing

LT 1157k 1027.21 1117.42 1.73

LTBF 371k 451.27 478.68 1.15

EN 235k 259.46 276.76 0.31

All experiments were carried out without cache flushing5, as we wanted to investigate
the ability of LMs to adapt to the changes in text topics. OOV handling was realized
in the following way: terms of typêP (〈oov〉|h) and P̂ (〈oov〉|wi, h) were skipped, but
P̂ (wi|〈oov〉, h), were included into perplexity calculations.

4.1. Choice of the Baseline Language Model

We have chosen the conventional word-based 3-gramP̂W 3(wi|wi−2, wi−1) including all
singleton 3-grams and smoothed using Kneser-Ney (Kneser and Ney, 1995) smoothing
technique as our baseline model. Kneser-Ney smoothing systematically outperformed
Katz backoff technique (Jelinek, 2001) coupled with Good-Turing smoothing (see Ta-
ble 3).

4.2. 1-gram Cache-based Models

We have constructed a series of 1-gram cache-based modelsP̂W 3+H for cache sizesK
ranging from 50 to 1000. Perplexity improvement and cache hit for eachK was mea-
sured. The obtained results are summarized by Fig. 1 and Fig. 2.

1-gram cache-based model significantly improved perplexity with respect to baseline
P̂W 3 by 12% (EN), 25% (LT) and 31% (LTBF). Perplexity improvement showed similar
cache size dependency curves for both languages. The best improvements were achieved
at K = 300 (EN and LTBF) andK = 500 (LT). Cache hit estimates confirmed our in-
tuition that Lithuanian words were less used by the cache because of a bigger inflected
vocabulary. Cache hit curve for LTBF was similar to that of EN, but the perplexity im-
provement for EN was much lower.

4.3. 1-gram Decaying Cache-based Models

We have investigated 1-gram cache-based modelsP̂W 3+d(H) with four types of decay
functions.

5The term “cache flushing” means that all words are removed from the cache at the end of an article.
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Fig. 1. Impact of the 1-gram cache size on the perplexity improvement.

Fig. 2. Impact of the 1-gram cache size on the cache hit.

Exponential decay function d exp
b (x) = e−bx.

Linear decay function6 d linear
a (x) = max(a − x, 0).

Gamma-like decay function7 dgamma
a;b (x) = xa−1e−bx.

Corpus-derived decay functiondcorpus
o (x) =

∑N
i=x+1 I(wi = wi−x

∧Occ(i, x) = o).

(9)

(10)

(11)

(12)

Here,N is the size of thecorpusand Occ(i, x) =
∑i−1

j=i−x+1 I(wi = wj). The
expression(wi = wi−x ∧ Occ(i, x) = o) is true if and only ifwi = wi−x and there
is exactlyo occurrences of the same word in betweenwi andwi−x. Thus, the functions
dcorpus
0 (x) anddcorpus

1 (x) represent respectively the histograms of distances between
two consecutive and two next to consecutive repetitions of the same word8.

6The linear decay function was included for comparison purposes only.
7The popular exponential decay function has maximum at the position one. But this contradicts empirical

data as identical words rarely follow one another. Empirical evidence suggests that the probability of the word
to reoccur grows from the start and then starts decaying after some position.

8In all decaying cache experiments, we used a discrete array implementation for storing function values.
The maximum cache sizeK was truncated atK = 1000 for speed-up purposes. The values ofd(K) are
relative small forK > 1000.
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Optimum parameters for the decay functions (9, 11) were found experimentally, by
optimizing perplexity on the validation data set. Corpus-derived decay functions were
individually estimated on training subsets of LT, LTBF and EN corpora. Adding decay
to 1-gram cache resulted in an improvement of about 3.5% for Lithuanian and 1.3% for
English models.

The optimum cache size and decay speed were inversely related. Thus, slower decay-
ing functions were used for the LT task as it had longer caches. It is interesting to note
thatdexp

0.01(x) was one of the best decay functions for EN corpus and actually had a decay
speed different from the decay speed of the distribution of word reoccurrencesdEN

0 (x)
(Fig. 3a, 3d). Nevertheless, taking into account the second reoccurrence of the word could
be of some help for both languages (Table 4, last line). It is also interesting to note that

Fig. 3. Sample decay functions normalized by dividing by the maximum.

Table 4

Perplexity improvements obtained with various decay function types of 1-gram cache

Perplexity ofP̂W3+d(H)
Decay function,d(x)

LT (1157k) LTBF (371k) EN (235k)

None (best cache size) 773.31 (500) 313.00 (300) 227.71 (300)

dlinear
500 (x) 757.52 305.20 225.90

dexp
0.015(x) 756.83 302.84 225.79

dexp
0.01(x) 746.70 299.23 224.60

dexp
0.005(x) 742.13 299.15 224.99

dexp
0.0025(x) 750.90 305.06 227.40

dgamma
1.05;0.005(x) 743.22 299.88 225.19

dgamma
1.10;0.01(x) 746.23 299.25 224.47

dcorpus
0 (x) 737.56 296.07 225.17

dcorpus
0 (x) + dcorpus

1 (x) 737.49 296.14 224.46
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the distribution of word reoccurrencesdEN
0 (x) anddLT

0 (x) of English and Lithuanian
appeared to be very similar. This distribution seems to be a language independent param-
eter.

4.4. 2-gram Cache-based Models

We have constructed a series of 2-gram cache-based modelsP̂W 3+d(H)+[H2](7) for cache

sizesK ranging from 50 to 50000. 2-gram cache-based modelP̂W 3+d(H)+[H2] signifi-

cantly outperformed 1-gram modelP̂W 3+d(H) (havingd(x) = dcorpus
0 (x) + dcorpus

1 (x))
by 5% (LT, LTBF), and 2% (EN). The optimumK value was about 30000, 2000 and 500
words for LT, LTBF and EN corpora respectively. Important differences in optimumK

values could be explained by the fact that the average article size is more than 40k words
in LT and only 445 words in EN corpus.

Adding decay to the cache 2-gram improved LTBF and EN models, but not the LT
model (Table 5). This can be explained by the fact that decay functions used “truncated”
cache size ofK = 1000, much less than the optimum cache size for LT models. Corpus
derived decay functions analogous to (12) seem to be best suited for Lithuanian corpora
and exponential decay works best for the English corpus.

An interesting fact is that 2-gram cache hit on LTBF and even on LT was larger than
on EN texts (see Fig. 4). This can probably explain why 2-gram cache improves English
LMs not as much as Lithuanian LMs.

4.5. Dynamic Adaptation of Component Weights

We have constructed a series of 1-gram and 2-gram cache-based models of type
P̂W 3⊕d(H) and P̂W 3⊕d(H)⊕[d(H2)](8) for D ranging from 20 to 500. As it was ex-
pected, dynamic weight adaptation outperformed static weight optimization. The model

Table 5

Perplexity improvements obtained with various decay function types of 2-gram cache

Perplexity ofP̂W3+d(H)+[d2(H2)]
Decay function,d(x)

LT (1157k) LTBF (371k) EN (235k)

None (best cache size) 683.04(30000) 272.81 (2000) 218.76 (500)

dlinear
1000 (x) 687.06 271.32 218.22

dexp
0.015(x) 688.71 272.30 218.23

dexp
0.01(x) 687.01 271.29 217.88

dexp
0.005(x) 685.48 270.51 217.67

dexp
0.0025(x) 686.10 270.79 217.99

dgamma
1.05;0.005(x) 685.55 270.54 217.69

dgamma
1.10;0.01(x) 686.85 271.29 217.83

dcorpus
0 (x) 685.11 270.28 217.76

dcorpus
0 (x) + dcorpus

1 (x) 684.97 270.19 217.89



120 A. Vaičiūnas, G. Raškinis

Fig. 4. Impact of the 2-gram cache size on the cache hit.

Fig. 5. Impact of the size of interpolation optimization historyD on the perplexity of̂PW3⊕d(H).

P̂W 3⊕d(H)⊕[d(H2)] added about 3% (LT, LTBF) and 0.2% (EN) of improvement. Tiny im-
provement of LMs built over EN corpus was probably due to the shortness of EN articles.
The 2-gram cache component of EN models had its utility as well as its average weight
reduced. Thus, weight adaptation procedure could bring little gain over static weights.
In contrary, 2-gram cache component was extremely useful for some articles of LT and
LTBF corpora. In this case, the dynamic weight adaptation boosted LM performance.

Though short interpolation optimization historieshD had the potential of better adap-
tation to the changes in article or text topic, there were no perplexity improvements for
short histories (D < 50 words) because of small reliability of such short histories. The
optimum history size was found to beD = 200 for both 1-gram and 2-gram models for
all three corpora. The perplexity grew slowly forD > 200 (see Fig. 5).

It is interesting to note that LMs using dynamic weight adaptation had different aver-
age component weights for texts belonging to different stylistic categories (Table 6). For
instance, legal documents had averageλH2(i, hD) = 0.2 indicating repeated usage of
word-pair collocations.



Cache-based Statistical Language Models of English and Highly Inflected Lithuanian121

Table 6

Average weights of̂PW3⊕d(H)⊕d(H2) components per text category of LT corpus

Average weights of̂PW3⊕d(H)⊕[d(H2)](8) components
Text category

λW3 (i, hD) λH(i, hD) λH2 (i, hD)

National newspapers 0.88 0.11 0.01

Translated philosophy 0.70 0.23 0.07

Legal documents 0.75 0.05 0.20

4.6. Other Approaches Related Cache-based Modeling

Rosenfeld (1996) found that the reduction of the perplexity could be achieved by using
the cache for rare words only. Such cache usage appeared not to be useful to Lithuanian.
However, we found that some perplexity reduction could be gained by omitting certain
“unpromising” words of the validation corpus from the cache (boosting the probabilities
of remaining words). The unpromising words were defined as those having average prob-
ability estimate given bŷPW 3+H lower thanP̂W 3 , i.e., wordsw havingperf(w) less than
some negative constant, where

perf(w) =
NV al∑
i=1

(
log2 P̂W 3+H(wi|wi−2, wi−1)

− log2 P̂W 3(wi|wi−2, wi−1)
)
· I(wi = w)

and the sum is over validation corpus. This approach resulted in some though negligible
improvement.

5. Conclusions

In this paper, we described a number of experiments with the cache-based LMs of Lithua-
nian and English. Our work confirmed that significant reduction of perplexity (43.03%,
36.21% and 16.20% for LTBF, LT, and EN corpora respectively) could be achieved by the
use of the cache-based modeling. Improvements over the baseline are higher than twice
for Lithuanian with respect to English. English 3-gram baseline model performs relatively
well and is hard to improve as English has a strict word order. Simplistic claim that “worse
models can be better improved” cannot explain this difference. Actually, we repeated the
whole set of experiments by replacing Kneser-Ney smoothed 3-grams with worse Good-
Turing smoothed 3-grams. Perplexity improvement obtained with those worse models
was the same as with the better ones through the whole set of experiments. This suggests
that cache-based modeling brings more benefits to the free word order languages by being
capable of capturing some dependencies that lie besides the strict word order.
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Cache improved LMs of Lithuanian word base forms (LTBF) better than LMs of
Lithuanian words (LT). This suggests that additional efficiency can be brought into lan-
guage modeling of Lithuanian by methods that are able to cope with the highly inflected
nature of Lithuanian.

The impact of different modeling techniques had similar tendencies in case of both
languages. Adding 1-gram cache component to the 3-gram model brought the greatest
part of improvement. Additional improvement was gained by adding a 2-gram cache
component, by selecting an appropriate decay function, and by replacing static compo-
nent interpolation weights with the procedure of dynamic weight update.

It was found that optimal decaying function differs from the distribution of the dis-
tances of the word reoccurrence, in general. However it is possible to construct better
decay functions by analyzing longer relations, for example distribution of the distance to
the second reoccurrence. It appeared that the best 1-gram cache size is independent of
language, i.e., it is the same for EN and LTBF tasks. Experiments confirmed that longer
cache size should be used in the 2-gram cache case. These last findings should be regarded
with care because of the differences in article size in Lithuanian and English corpora.

This research confirms that cache-based modeling significantly improves LM perple-
xity. Our next task is to integrate them into a speech recognition system ant to investigate
their impact on a speech recognition accuracy.

References

Clarkson, P. (1999).Adaptation of Statistical Language Models for Automatic Speech Recognition. PhD thesis,
Cambridge University Engineering Department, Cambridge.

Clarkson, P., and R. Rosenfeld (1997). Statistical language modeling using the CMU-Cambridge Toolkit. In
Proceedings of 5th European Conference on Speech Communication and Technology. pp. 2707–2710.

Clarkson, P., and A. Robinson (1997). Language model adaptation using mixtures and an exponentially decay-
ing cache. InProceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing.
pp. 799–802.

Federico, M., and N. Bertoldi (2001). Broadcast news LM adaptation using contemporary texts. InProceedings
of 7th European Conference on Speech Communication and Technology, vol. A42. pp. 239–242.

Gildea, D., and T. Hofmann (1999). Topic-based language models using EM. InProceedings of 6th European
Conference on Speech Communication and Technology. pp. 2167–2170.

Goodman, J.T. (2001). A bit of progress in language modeling.Computer Speech and Language, 15(4), 403–
434.

Gotoh, Y., and S. Renals (1997). Document space models using latent semantic analysis. InProceedings of 5th
European Conference on Speech Communication and Technology. pp. 1443–1446.

Iyer, R., and M. Ostendorf (1999). Modeling long distance dependence in language: topic mixture vs. dynamic
cache models. InProceedings of the IEEE Transactions on Speech and Audio Processing IEEE-SAP, vol. 7.
pp. 30–39.

Jelinek, F. (2001).Statistical Methods for Speech Recognition. Massachusetts Institute of Technology, Cam-
bridge.

Jelinek, F., B. Merialdo, S. Roukos and M. Strauss (1991). A dynamic LM for speech recognition. InProceed-
ings of the ARPA Workshop on Speech and Natural Language. pp. 293–295.

Kneser, R., and H. Ney (1995). Improved backing-off form-gram language modeling. InProceedings of Inter-
national Conference on Acoustics, Speech and Signal Processing. pp. 181–184.

Kneser, R., and V. Steinbiss (1993). On the dynamic adaptation of stochastic language models. InProceedings
of International Conference on Acoustics, Speech and Signal Processing. pp. 586–589.



Cache-based Statistical Language Models of English and Highly Inflected Lithuanian123

Kuhn, R. (1988). Speech recognition and the frequency of recently used words: a modified Markov model for
natural language. InProceedings of 12th International Conference on Computational Linguistics. pp. 348–
350.

Kuhn, R., and R. De Mori (1990). A cache-based natural language model for speech recognition.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 12(6), 570–583.
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Statistiniai kalbos modeliai, naudojantys trumpalaik ↪e atmint ↪i, angl ↪u
ir lietuvi ↪u kalboms

Airenas VAIČIŪNAS, Gailius RAŠKINIS

Šiame straipsnyje aprašomi statistini↪u kalbos modeli↪u, naudojaňci ↪u trumpalaik↪e atmint↪i, tyri-
mai. Modeliai ↪ivertinami naudojant tris skirtingus tekstynus: anglišk↪a, lietuvišk↪a ir lietuvišk↪a pa-
grindini ↪u form ↪u tekstyn↪a. Darbe pateikiama ši↪u modeli↪u maišaties priklausomybė nuo atminties
žodži ↪u kiekio, slopinaňcios funkcijos tipo, bei modeli↪u interpoliavimo b̄udo (statinis arba di-
naminis). Geriausi rezultatai buvo gauti naudojant dinamiškai interpoliuotus standartin↪i 3-gramos,
netolimos praeities 1-gramos ir 2-gramos (su slopinančiomis funkcijomis) modelius. Naudojant
trumpalaik̇es atminties modelius maišatis sumažėjo (lyginant su standartine 3-grama) 36% lietu-
viškam, 43% lietuviškam pagrindini↪u form ↪u bei 16% angliškam tekstynui.


