
INFORMATICA, 2006, Vol. 17, No. 1, 39–54 39
 2006Institute of Mathematics and Informatics, Vilnius

Improving the Performances of Asynchronous
Algorithms by Combining the Nogood Processors
with the Nogood Learning Techniques

Ionel MUSCALAGIU
The Faculty of Engineering of Hunedoara, The Politehnica University of Timisoara
Hunedoara, str. Revolutiei, nr. 5, Romania
e-mail: mionel@fih.utt.ro

Vladimir CRETU
Computers Science and Engineering Department Timisoara
The Politehnica University of Timisoara
Timisoara, str. V. Parvan, nr. 2, Romania
e-mail: vcretu@cs.utt.ro

Received: January 2005

Abstract. The asynchronous techniques that exist within the programming with distributed con-
straints are characterized by the occurrence of the nogood values during the search for the solution.
The nogood type messages are sent among the agents with the purpose of realizing an intelligent
backtrack and of ensuring the algorithm’s completion.

In this article we analyzed the way in which a technique of obtaining efficient nogood values
could combine with a technique of storing these values. In other words we try combining the
resolvent-based learning technique introduced by Yokoo with the nogood processor technique in
the case of asynchrounous weak-commitment search algorithm (AWCS). These techniques refer to
the possibility of obtaining efficient nogoods, respectively to the way the nogood values are stored
and the later use of information given by the nogoods in the process of selecting a new value for
the variables associated to agents. Starting from this analysis we proposed certain modifications for
the two known techniques.

We analyzed the situations in which the nogoods are distributed to more nogood processors
handed by certain agents. We proposed a solution of distributing the nogood processors to the
agents regarding the agents’ order, with the purpose of reducing the storing and searching costs.
We also analyzed the benefits the combining of nogood processor technique with the resolved-
based learning technique could bring to the enhancement of the performance of AWCS technique.
Finally, we analyzed the behavior of the techniques obtained in the case of messages filtering.

Key words: artificial intelligence, distributed programming, constraints, agents, nogood messages.

1. Introduction and Problem Statement

The constraint programming is a model of the software technologies, used to describe
and solve large classes of problems as, for instance, searching problems, combinatorial



40 I. Muscalagiu and V. Cretu

problems, planning problems, etc. A large variety of problems in the Artificial Intelli-
gence (AI) field and other domains specific to computer sciences could be regarded as a
special case of constraint programming. Lately, the AI community has shown great in-
terest towards the distributed problems that are solvable through modeling by constraints
and agents. The idea of sharing various parts of the problem among agents that act in-
dependently and that collaborate among themselves using messages, in the prospective
of gaining the solution, proved itself useful, as it conducted to obtaining a new modeling
type called Distributed Constraint Satisfaction Problem (DCSP) (Yokoo, 1998; Yokoo,
2001).

There are more complete or incomplete asynchronous searching techniques available,
for the DCSP modeling (Armstrong, 1997; Bessière, 2000; Silaghi, 2000; Yokoo, 1998)
which allow the solving of a problem in this constraint network. These techniques are
remarkable because of the diversity of applied ideas concerning the agents’ work in an
asynchronous and competitive way, but they also ensure the completeness or a better
efficiency, too.

In the distributed constraint satisfaction area, the asynchrounous weak-commitment
search algorithm (AWCS) plays a fundamental and pioneer role among algorithms for
solving the distributed CSPs. The algorithm is remarked for the suffering of an explosion
of the nogood values, but, by dynamically changing the agents’ order, it is an efficient
algorithm because of its number of cycles. There are several studies having the purpose of
enhancing the efficiency of this technique, studies that focus on enhancing the efficiency
of this technique, and on minimizing and selecting the nogood values.

The occurrence of nogood values has the effect of inducing new constraints. Nogood
values show the cause of failure and their incorporation as a new constraint will teach the
agents not to repeat the same mistake. As it is known, the constraints restrict internally or
externally the behavior of an agent, therefore the study of the constraints could offer ways
of growing the efficiency of the existent algorithms within the DCSP. As the nogoods are,
as a matter of fact, a type of dynamically generated constraints during the searching
process, which in certain situations grow explosively, it remains to be studied the way of
constructing and selecting the nogood values.

The non-restriction for recording the nogood values could become, in certain cases,
impracticable. The main reason is that the storing of nogood values excessively consumes
memory and could lead to lowering the memory that has been left. Typically, the num-
ber of nogood values grows along with the number of conflicts – in the worst case this
growth could be exponential in the number of variables. Another unpleasant effect of
storing a large number of nogood values is related to the fact that the verification of the
current associations in the list of nogood values that are stored becomes very expensive,
the searching effort removing the benefits brought by storing the nogood values. These el-
ements are analyzed as targeting to see if this nogood processor technique brings benefits
in terms of efficiency.

In (Armstrong, 1997), Armstrong builds a new asynchronous technique in which the
problem’s solution is divided into epochs. There is a central agent responsible for the
start of the searching process and a nogood processor that keeps informations on the



Improving the Performances of Asynchronous Algorithms 41

nogoods occurred.When a nogood is discovered (Armstrong, 1997), the variable assign-
ments causing it and the IDs of the agents involved are sent to the no-good processor,
which saves the nogood. Later, when an agent has found a tentative assignment for its
variables, it consults the nogood processor to make sure that its assignment along with
any known assignments of higher priority agents do not constitute a nogood.

In (Hirayama, 2000), Hirayama and Yokoo introduce the term of nogood learning or
leaning that refers to obtaining and registering nogood values. In (Hirayama, 2000) it
is presented and analyzed a schematic called “resolvent-based learning”, that applies to
the AWCS algorithm and brings good results regarding the number of necessary cycles
for problem solving, even better that the DB (Distributed Breakout) algorithm which is
considered the most efficient in the position of cycles number. The technique is based on
the constraint of a new effective nogood just by verifying a few nogood values.

In this paper it is presented a way of distributing the nogood processors and more
solution of increasing the efficiency of the AWCS technique are identified. We try to
adapt the nogood processor technique for the AWCS technique. This technique consists
in storing the nogood values and further use the information given by nogoods in the
process of selecting a new value for the variables associated to agents. In this paper it is
analyzed the distribution of nogood values to agents and the way to use the information
stored in the nogood, what we will call the nogood processor technique. We proposed a
solution of distributing nogood processors by the agents in accordance with the order of
agents, with the purpose of reducing the searching and storing costs.

This study tries to combine the versions of nogood processor with the learning tech-
niques with the purpose of finding a solution of increasing the performances of the AWCS
technique. Starting with this analysis we is proposed certain modifications for the two
known techniques. We analyzed the situations where the nogoods are distributed to more
nogood processors handed by certain agents. We analyzed the benefits that the combi-
nation of the nogood processor technique with the “resolvent-based learning” technique
could bring to enhancing the performances of the AWCS technique through a set of ex-
periments. More, we analyzed the behavior of the obtained techniques in the case of
message filtering.

2. The Framework

In order to do this analysis to the way the two storing and building nogood values tech-
niques could be combined, in this paragraph we will present some notions known from
the IT literature related to the DCSP modeling and mostly related to the asynchronous
technique, AWCS (Yokoo, 1998; Yokoo, 2001).

DEFINITION 1 (CSP model). The model based on constraints CSP-Constraint Satisfac-
tion Problem, existing for centralized architectures, consists in:

– n variablesX1, X2, Xn, whose values are taken from finite, discrete domains
D1, D2, . . . , Dn, respectively.



42 I. Muscalagiu and V. Cretu

– a set of constraints on their values.

The solution of a CSP supposes to find an association of values to all the variables so
that all the constraints should be fulfilled.

DEFINITION 2 (the DCSP model). A problem of satisfying the distributed constraints
(DCSP ) is a CSP , in which the variables and constraints are distributed among au-
tonomous agents that communicate by transmitting, messages.

DEFINITION 3 (the assignment). A pair(Xi, v) is called assignment for the variableXi,
where v is a value from theXi domain.

DEFINITION 4 (the list agent-view). The list agent-view of an agentAi is a set with the
newest assignments received by theAi agent for distinct variables.

DEFINITION 5 (the nogood list). The Nogood list is a set of assignments for distinctive
variables for which looseness was found.

Asynchronous algorithms are characterized by the agents using the messages during
the process of solution searching. Typically, we meet more types of messages, used pri-
marily to announce and change the local values attributed to the caretaking of variables.
In this category we meet ok? messages, respectively nogood messages or back messages,
used to announce the appearance of an inconsistence.

The AWCS algorithm (Yokoo, 1998) is a hybrid algorithm obtained by the combi-
nation of the asynchronous backtracking algorithm (ABT) with the weak-commitment
search algorithm (WCS), which exists for CSP. It can be considered as being an im-
proved ABT variant, but not necessarily by reducing the nogood values, but by changing
the priority order. It deliberately follows to record all the nogood values (which are fewer)
to ensure the completeness of the algorithm, but also the avoidance of some unstable sit-
uations.

The authors show in (Yokoo, 1998) that this new algorithm can be built by a dynamical
change of the priority order. The AWCS algorithm uses, like ABT, the two types of ok and
nogood messages, with the same significance. There is a major difference in the way you
treat the ok message. In case of receiving the ok message, if the agent can’t find a value
to its variable that should be consistent with the values of the variables that have a greater
priority, the agent not only creates and sends the nogood message, but also increases the
priority in order to be maximum among the neighbors.

We further present in Fig. 1 the treatment procedures for the messages existent in
(Yokoo, 1998).

For a better understanding of the way the nogood processor technique applies, we will
present more information related to the behavior of an agentAi, for the AWCS algorithm
(Yokoo, 1998). When an agentAi receives an ok? message, it updates its agent view list
and tests if a few nogood values are violated (Fig. 1, procedure check-agent-view). A very
important thing is connected to agent testing only the nogood values that have a greater



Improving the Performances of Asynchronous Algorithms 43

when received (ok?, (xj ,dj , priority)) do
add (xj ,dj , priority) to agent-view;
check-agent-view;

end do

when received (nogood, (xj , nogood)) do
add nogood to nogood-list;
when (xk,dk, priority), wherexk is not in neighbors is contained in nogood do

addxk to neighbors
add (xk,dk, priority) to agent-view;

end do
check-agent-view;

end do

procedure check-agent-view
when agent-view and current-value are not consistent do

if no value inDi is consistent with agent-view then
backtrack

else
selectd ∈ Di where agent-view and d minimizes the number of constraint
violations with lower priority agents; **
current-value←− d
send (ok?, (xi,d, priority))to neighbors

end if
end do

end procedure

procedure Backtrack
nogoods←−V/ V= inconsistent subset of agent-view
when an empty set is an element of nogoods do

broadcast to other agents that there is no solution,terminate this algorithm;
end do
when no element of nogoods is included noogod-sent do

for each V∈ nogoods do
add V to nogood-sent
for each (xj ,dj ,pj ) in V

send (nogood,xi, V ) to xj

end do
end do
Pmax ←− max(xj ,dj ,pj)∈agent−view(pj)

current-priority←− 1 + Pmax

selectd ∈ Di where agent-view and d minimizes the number of constraint
violations with lower priority agents; **
current-value←− d
send (ok?, (xi,d, priority))to neighbors

end do
end procedure

Fig. 1. The asynchronous algorithm weak-commitment search (procedures for receiving messages).



44 I. Muscalagiu and V. Cretu

priority thanxi. As a matter of fact the priority of a nogood value is defined as the lowest
priority of the nogood variables, exceptingxi. As a conclusion, a generic agentAi can
have the following behavior:

• If no higher priority nogood value is violated, it doesn’t do anything.
• If there are a few higher priority nogood values that have inconsistent values and

these values could be eliminated by changing thexi value, the agent will change
this value and will send the ok? message (Fig. 1, procedure check-agent-view). If
it has to choose between more values, it will select that value that minimizes the
inconsistencies in the inferior priority nogood values (a nogood value of inferior
priority is the one in which its priority is inferior to thexi priority).

• If a few higher priority values are inconsistent and this inconsistence can not be
eliminated, the agent creates a new nogood messages outside the agent view list
and sends a nogood message to each agent that has variables in nogood (Fig. 1,
procedure Backtrack). Than the agent increases the priority ofxi, by changing the
xi value with another value that minimizes the inconsistencies number with all
the nogood values and sent the ok? message. If the new nogood is identical to the
previous nogood value, than the agent will do nothing. This step is necessary for
assuring the completeness of the algorithm (Yokoo, 1998).

We must underline a certain behavior ofAi agent, specific to the AWCS algorithm:
when a nogood message is received, the agent adds the nogood value to its nogood group
and executes a verification of the inconsistencies for nogood. If the new nogood has
also an unknown variable, the agent needs to receive from the corresponding agent the
value of the variable that’s been cared for. Unfortunately, the information from nogood
is not completely used. It is about the case of attributing a new value for the variable
associated to the agent. It is possible that the nogood values contain a reference to this
value, that implying the attribution to have appeared more as inconsistent. The use of this
information will be the basis of the nogood processor technique construction.

3. The Technique “Resolvent-Based Learning”

The CSP modeling offers more solving techniques based on searching. These can be
enhanced by applying the loop-back techniques. They rely on using the information on
the realized search.

The nogood learning technique induced in (Hirayama, 2000) is a new method of learn-
ing the nogood values applicable to DCSP, based on adapting the loop-back techniques to
the DCSP frame. The idea is that for each possible value for the failure variable, we select
a nogood that forbids that value and than a new good is built outside the one obtained by
unifying the selected nogoods. The authors of that method compare this nogood as re-
sembling to the notion of resolvent from the propositional logic, hence the denomination
of this method: resolvent based on learning.

In order to better explain the way of functioning of this method (Yokoo, 1998) we
will consider an agentAi, with theDi domain and each value from that domain enters a



Improving the Performances of Asynchronous Algorithms 45

conflict with certain nogood values of high priority for the current agent view list. This
method brings the following behavior for theAi agent – this agent selects a nogood value
for each d∈ Di value, so:

• The agent identifies those nogoods of high priority inconsistent under the current
agent view list, and we havexi = d.

• Then, we selected the smallest of these nogoods.

Finally, the agentAi builds a new nogood by erasing all the elements includingxi

from the multitude of selected nogoods. The agent will select the lowest nogood, regarded
from the priorities’ prospective because it is desired that a new as small as possible no-
good be obtained.

4. Adapting the “Nogood Processor” Technique in the Case of AWCS Technique

In this paragraph we will present a way of distributing and applying the nogood processor
technique for the AWCS technique. We will further present the main ideas that served to
adapt the nogood processor technique for AWCS.

The nogood processor technique was introduced by Armstrong, in (Armstrong, 1997),
applied to a new technique in which the problem’s solution was divided to eras (epochs).
When a nogood is discovered (Armstrong, 1997), the variable assignments causing it and
the IDs of the agents involved are sent to the nogood processor, which saves the nogood.
Later, when an agent has found a tentative assignment for its variables, it consults the
nogood processor to make sure that its assignment along with any known assignments of
higher priority agents does not constitute a nogood.

In asynchronous weak-commitment search, the agents rediscover and store many
copies of the same nogood, one for each time a different participating agent in the nogood
had lowest priority. A nogood processor gives us the benefit of reduced storage costs (only
one copy) and reduced search time (only discovered once). The tradeoff is in additional
message passing. It could distribute the nogood processor to reduce the computation and
storage load on any particular process. In this case when an agent wants to check a col-
lection of instantiations for nogoods, it sends the set of agents involved (and the variable
assignments) to the nogood processors. The nogood processors are each responsible for
mutually exclusive partitions of the power set of the agents. Each processor checks all
subsets of the current list of agents corresponding to subsets in its piece of the partition.

The adaptation and the application of the nogood processor technique for the AWCS
technique lead to the identification of some answers to the problems occurred: how do we
store the nogood values and where, how is the storing and evaluation of nogood values
distributed? Another very important problem was to see if all agents (or a part of them)
appeal the nogood processor, so as there will be no chance that the costs necessary for
evaluating the stored nogoods would outrun the benefits brought by the nogood processor
technique.

In this paper it is considered that each agent has access to the results of its own nogood
processor or of a centralized nogood processor (typically using messages). More, each



46 I. Muscalagiu and V. Cretu

agent sends (stores) nogood values that it has received to the associated nogood processor.
Therefore, when using a single processor, the treating procedure for nogood messages
will have to store in a shared memory zone or to send the nogood values to the nogood
processor (these nogood values are stored in the nogoods-store list).

The information stored by each nogood processor will be used in searching a new
value for each variable cared for by the agent. For this, each nogood processor will verify
(asked by an agent) through its subroutine check-inconsistent-value-nogood-processor,
if the value selected by the agent had no previous existence associated with the higher
priority agents values. In Fig. 2 we have the checking routine for the inconsistence of
a new value. The appeal for the routine (check-inconsistent-value-nogood-processor) is
marked with ** in the AWCS algorithm presented in Fig. 1.

Another question needing an answer was identifying the distribution way of nogood
processors. In this paper we presented more ways of distribution for the nogood values
processors. First solution was adapting the AWCS technique so as to store in a centralized
way the nogood values (marked with AWCSnp2, basic AWCS technique will be called
AWCS1). Practically, each agent, when receiving a nogood, sends this to a centralized
nogood processor that stores it into a nogood-store list (nogood processor only saves
those new nogood values, eliminating the copies). The information will be used later
when searching for a new value. Therefore the check-agent-view procedure will select
a new value consistent with the agent view list and with the nogood list stored by the
nogood processor (the value will be selected if, complementarily, the check-inconsistent-
value-nogood-processor subroutine will return the consistent value).

The second AWCS version (called AWCSnp4), was obtained by modifying the check-
inconsistent-value-nogood-processor routine so as to verify just for the higher priority
agents, priority it had in the moment of nogood value storing. To put it differently, the
identification of the agents with higher priority towards agentAi, is not made by using
their actual priority (in current-view), but relative to the priority stored by the nogood

function check-inconsistent-value-nogood-processor [Ai]
foreach Nogood∈ nogoods-store do

foreach x∈ Nogood with the current priority from current-view
* bigger than the agent’sAi

pos←− position x inNogood
if x != item pos current-value

return consistent
endif

end do
if current-value != itemAi in nogood

return consistent
endif
end do
return inconsistent

end procedure

Fig. 2. The Procedure check-inconsistent-value-nogood-processor.



Improving the Performances of Asynchronous Algorithms 47

processor. The correspondent modification was noted with * in the verification routine.
We took into consideration the case of a sole centralized nogood processor.

The following step was distributing the nogood values to more nogood processors,
one for each agent. Practically, when receiving a nogood value, it is stored only by the
associated nogood processor. The verification was made equally, obtaining other 2 ver-
sions ( noted with AWCSnp3 and AWCSnp5), the last one uses to identify higher priority
agents by using the old priorities).

The following versions calculated were based on identifying the agents that will ap-
peal the associated nogood processors. A first version was obtained by adapting the
AWCSnp2 version so as its verification to be made by all agents, excepting the higher
priority one among the neighbors at that moment (that version it noted with AWCSnp6).

The last versions (noted with AWCSnp7 and AWCSnp8), were obtained starting from
the AWCSnp2 and AWCSnp4 versions, but the verification having been made only by the
agent with the higher priority among the neighbors (current priority in current-view, re-
spectively the old one stored). In other words, the 2 other versions of derivate techniques
were obtained by deriving the centralized nogood processor versions, in which the evalu-
ation is made only by an agent of higher priority (maximal priority) among the neighbors.

5. Combining the Nogood Processor and Nogood Learning Techniques

The combination of the 2 techniques was not made directly. It was necessary to adapt
them for obtaining a derivate technique complete and efficient.

As previously presented, the nogood learning technique intervenes when an agentAi

(with theDi domain) for each value of its domain it conflicts with a few nogood values
of higher priority for the current agent view list. As a matter of fact this is the backtrack
situation, in which we apply the Backtracking routine. Inducing the nogood processor
technique has the effect of using the information stored by each nogood processor in
the process of searching a new value for each variable taken care by the agent. For this
each nogood processor will verify when asked by an agent, by the subroutine check-
inconsistent-value-nogood-processor, if the value selected by the agent hasn’t previously
existed combined with the values of the agents of higher priority. Therefore it is possible
that when asked by the construction routine for a new nogood, for a certain value there
will not be any high priority nogood that would be inconsistent under the current agent
view list and so we will havexi = d. Therefore we will restart the process of building the
nogood values, by selecting the current agent view list for the nogood.

From the nogood processor versions proposed in previous paragraph, we chose the
distributed versions in which each agent has its own nogood processor called when se-
lecting a new value(noted with AWCSnp3 and AWCSnp5 in previous paragraph). We
proposed 2 versions, AWCS3 and AWCS4 that would combine the nogood learning tech-
nique with the 2 versions of nogood processor. The AWCS4 version is different from
AWCS3 because its verification is being made only by the agent with the higher priority
among the neighbors. Another observation related to the versions from previous para-
graph is that there will be no more supplementary applying to the nogood processors
when receiving an ok message.



48 I. Muscalagiu and V. Cretu

In the experimenting paragraph, AWCS1 will be considered as being the basic tech-
nique, and AWCS2 the version with resolvent-based learning.

6. Experimental Results

6.1. Introduction

In this paragraph we will present our experimental results, obtained by implementing and
evaluating the asynchronous techniques we introduced. In order to make such estimation,
we implemented these techniques in NetLogo 2.0, a distributed environment, using a
special language named NetLogo (see (Wilensky, 1999; MAS Netlogo Models)).

The asynchronous techniques were applied to a classical problem: the problem of
colouring a graph in the distributed versions. For the problem of graph colouring we
took into consideration two types of problems defined as in (Minton, 1992). (We kept
in mind the parametersn – number of knots/agents,k − 3 colours andm – the number
of connections between the agents). We evaluated two types of graphs: graphs with few
connections (called sparse problems, havingm = n × 2 connections) and graphs with a
special number of connections, known to be difficult problems (called difficult problems
and havingm = n × 2.7 connections). For each version we carried out a number of 100
trials, retaining the average of the measured values (for each class 10 graphs are generated
randomly, for each graph being generated 10 initial values, a total of 100 runnings).

We counted the number of messages (which means the quantity of ok and nogood
messages), the number of constraint checks and the number of cycles necessary for ob-
taining each solution. We also kept in mind the number of stored nogood values number
along with the number of comparisons made by the nogood processors. The evaluations
have been made for each technique presented.

The evaluations had certain particularities due to the NetLogo medium. The NetL-
ogo medium is a programming medium with agents that allows implementing the asyn-
chronous techniques (Wilensky, 1999; MAS Netlogo Models), but has certain partic-
ularities related to asynchronous work with agents. The agents work with the specific
command “ask”. A command like this will allow launching the work routines with the
messages. Of course, each agent works asynchronously with the messages, but at the
end of a command’s execution there is a synchronization of agents’ execution, synchro-
nization that particularizes, in a way, the implementations in use. This type of agents
work resembles the one used in (Hirayama, 2000) at the evaluation of AWCS algorithm
together with resolvent-based learning.

6.2. The Analysis of the Experimental Results in the Case of the Obtained Techniques

In Fig. 3, Fig. 4 and Fig. 5 we presented graphically the experimental results for the 4
versions of AWCS, with regard to the number of cycles, constraints and messages stream.

The first measuring unit for the analyzed asynchronous techniques performances was
the cycle. This unit allows evaluating the calculation of the global effort evaluation for



Improving the Performances of Asynchronous Algorithms 49

Fig. 3. Comparative study for AWCS versions (Distributedn-Graph-Coloring Problem) – cycles

Fig. 4. Comparative study for AWCS versions (Distributedn-Graph-Coloring Problem) – constraints checks.

a certain technique. By analyzing the graphics from the Fig. 3, where we represented
graphically the number of cycles necessary for obtaining the solution, one can notice
good performances for the versions obtained, AWCS3 and AWCS4, comparatively to the
basic version cu AWCS and the nogood learning version. The two versions had a smaller
number of cycles, compared to the other versions, for both problem classes: sparse and
difficult problems. Still it has to be remarked the most difficult problem (n = 30, m =
2.7), the best behavior the AWCS4 version had, when the manipulation of the nogood
processor was made only by the agent with the highest priority among the neighbors.

As known, the verified constraints quantity evaluates the local effort given by each
agent. In Fig. 4 we presented the comparative results for the 4 versions, results obtained
by comparing the number of verified constraints. Regarding the calculating effort, we



50 I. Muscalagiu and V. Cretu

Fig. 5. Comparative study for AWCS versions (Distributedn-Graph-Coloring Problem) – nogood and ok mes-
sages.

observe that the proposed versions, including the nogood learning version needed a larger
number of constraints. As a matter of fact the evaluated techniques assumed a far larger
local calculating effort but the number of cycles necessary for obtaining the solution was
reduced.

In the last graph (Fig. 5) we presented the experimental results and the comparative
study for the 4 versions, but with respect to the message stream. We counted the number
of messages (which means the quantity of ok and nogood messages). It must be stressed
that we counted only the nogood messages changed by agents, and we didn’t calculate
the messages necessary to send the nogood values to the nogood processors.

6.3. Analysis of the Result of the Experiments in the Case of Message Filtering

By analyzing the message queues for the asynchronous technique, we noticed a very large
quantity of redundant messages (ok messages). We have to point out to the fact that each
agent works concurrently and asynchronously, therefore in each message queue there are
more ok or nogood type messages gathered.

Starting from these observations, we have defined a simple filtering technique that
applies on the message queues (that are FIFO communication channels). When we extract
from the message queue a ok type message, this is not immediately dealt with by the
nogood routine, but verified not to be redundant or old. If one of these situations should
occur, the message is ignored by eliminating it form the message queue, otherwise the
normal routine of dealing with ok messages is used.

We further present the filtering algorithm applied for each message queue (Fig. 6).
This filtering technique, applied to certain asynchronous techniques, allows an en-

hancement of the performances of asynchronous techniques. We have also applied this
ok messages filtering method to the versions obtained here by applying the two tech-
niques. The results are presented in Fig. 7, Fig. 8 and Fig. 9.



Improving the Performances of Asynchronous Algorithms 51

Procedure OK-messages-filtering

Extract Msg(ok,xi)
If there is no other ok message in the message-queue received from xi

call the ok messages treatment procedure (ok,xi)
endif

end procedure

Fig. 6. The Procedure OK-messages-filtering.

Fig. 7. Comparative study for the AWCS versions with messages filtering (Distributedn-Graph-Coloring Prob-
lem) – cycles.

Fig. 8. Comparative study for the AWCS versions with messages filtering (Distributedn-Graph-Coloring Prob-
lem) – constraints checks.



52 I. Muscalagiu and V. Cretu

Fig. 9. Comparative study for the AWCS versions with messages filtering (Distributedn-Graph-Coloring Prob-
lem) – nogood and ok messages.

We observe the reduction of the costs when applying the filtering technique, regard-
less of what they were counted down. Messages filtering allowed reducing the number of
cycles necessary for obtaining a solution, but also reduced the messages stream, respec-
tively the number of verified constraints.

7. Conclusions

In this article we tried the adaptation of the nogood processor technique (Armstrong,
1997) and resolvent-based learning (Hirayama, 2000) for the AWCS. These techniques
refer to the possibility of obtaining effective nogoods (resolvent-based learning), and to
the way in which it is made the storing of nogood values, and later use of information
provided by the nogoods in the process of selecting a new value. Starting from these tech-
niques we propose certain modifications for the 2 known techniques, obtaining 2 derivate
techniques. The purpose of combining the two was the enhancement of the AWCS tech-
nique’s efficiency, because the techniques concentrate on minimizing and selecting the
nogood values.

The adaptation needed certain modifications to the technique of building a new no-
good value, a sort of restart of the nogood building process. We proposed a solution of
distributing the nogood processors to agents, in regard to the agents’ order, with the pur-
pose of reducing the searching and storing techniques. We experimentally analyzed the
benefits of the two techniques on the AWCS technique, by identifying few distribution
means that bring enhancements to the efficiency. We also analyzed the performances in
the case of application of the messages filtering on the analyzed versions.

We analyzed more versions obtained by distributing the nogood values to more no-
good processors for each agent. For identifying the higher priority agents we took into
account the current priority of the agent (being in current-view).

The most performing version was obtained by distributing the nogood values only to
the agent that has the highest priority among the neighbors. The evaluations have shown



Improving the Performances of Asynchronous Algorithms 53

a reduction of the messages stream, of the number of verified constraints, but also of the
number of necessary cycles for obtaining the solution. By distributing the nogood values
and the nogood processors there, along with the resolvent-based learning technique, have
been obtained enhancements of performances.

The messages filtering, applied for the proposed versions, led to reducing the costs in
finding a solution. We believe that the filtering technique must be applied in all situations,
to reduce the costs (the ones relative to the messages stream, along with the ones relative
to the number of cycles or the quantity of verified constraints).

We believe that the combination of the two techniques under the form of the two pro-
posed versions could bring important benefits to the performances of the asynchronous
techniques, leading to the reduction of the effort in finding the solution.

References

Armstrong, A., and E. Durfee (1997). Dynamic prioritization of complex agents in distributed constraint satis-
faction problems. InProceedings of the 15th IJCAI, Nagoya, Japan. pp. 620–625.

Bessière, C., A. Maestre, P. Meseguer (2000). Distributed dynamic backtracking. InProceedings of the CP’00
Workshop on Distributed Constraint Satisfaction Problems, Singapore, Thailand.

Hirayama, K., and M. Yokoo (2000). The effect of nogood learning in distributed constraint satisfaction. In
Proceedings of the 20th IEEE International Conference on Distributed Computing Systems (ICDCS-2000).
pp. 169–177.

Minton, S., M.D. Johnston, A.B. Philips and P. Laird (1992). Minimizing conflicts: a heuristic repair method
for constraint satisfaction and scheduling problems.Artificial Intelligence, 58(1–3), 161–205.

Silaghi, M.C., D. Sam-Haroud and B. Faltings (2000). Asynchronous search with aggregations. InProceedings
AAAI’00, Austin, Texas. pp. 917–922.

Yokoo, M., E.H. Durfee, T. Ishida and K. Kuwabara (1998). The distributed constraint satisfaction problem:
formalization and algorithms.IEEE Transactions on Knowledge and Data Engineering, 10(5).

Yokoo, M. (2001). Distributed Constraint Satisfaction-Foundation of Cooperation in Multi-agent Systems.
Springer.

Wilensky, U. (1999).NetLogo.
http://ccl.northwestern.edu/netlogo. Center for Connected Learning and Computer-Based
Modeling. Northwestern University, Evanston, IL.

MAS Netlogo Models.
http://ccl.northwestern.edu/netlogo/models/community/,
http://jmvidal.cse.sc.edu/netlogomas/

I. Muscalagiu is a university lecturer, Ph.D students in Computer Science at the “Po-
litehnica” University of Timisoara. His research interests include constraint programming
and multi-agent system.

V. Cretu is a professor of science computer, a head of the Department of Computer Sci-
ence and Engineering, The Politehnica University of Timisoara, Romania. His research
interests include real-time and distributed systems, design and analyze of algorithms.



54 I. Muscalagiu and V. Cretu

Asinchronini ↪u algoritm ↪u vykdymo tobulinimas derinant
neadekvǎcius procesorius su neadekvǎciais mokymo būdais

Ionel MUSCALAGIU, Vladimir CRETU

Analizuojamas b̄udas, kuriuo efektyviai tebeegzistuojanči ↪u neadekvǎci ↪u reikšmi↪u technika deri-
nama su ši↪u reikšmi↪u saugojimo technika. Kitaip sakant, bandoma suderinti sprendimais gr↪ist ↪a
mokymo b̄ud ↪a, pristatyt↪a Yokoo, su neadekvači ↪u procesori↪u technika asinchronini↪u silpnai suderi-
nam↪u paieškos algoritm↪u atveju. Sīulomas neadekvači ↪u procesori↪u paskirstymo tam tikra tvarka
tam tikriems agentams sprendimas su tikslu sumažinti saugojimo ir paieškos s↪anaudas.


