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Abstract. The aim of this paper is to demonstrate that the techniques of Computer Aided Geomet-
ric Design such as spatial rational curves and surfaces could be applied to Kinematics, Computer
Animation and Robotics. For this purpose we represent a method which utilizes a special class of
rational curves called Rational Frenet–Serret (RF) curves for robot trajectory planning. RF curves
distinguished by the property that the motion of their Frenet–Serret frame is rational. We describe
an algorithm for interpolation of positions by a rational Frenet–Serret motion. Further more we
present an algorithm for tracking the constructed RF motion to achieve the desired velocity distri-
bution profile of robot arm.
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1. Introduction

In recent years, it has been realized that the methods of Computer Aided Geometric De-
sign (CAGD) provide elegant tools for various tasks in Computer Graphics, Robotics and
Kinematics, especially for the design of rigid body motions. One of the first contribu-
tions to this research area was the spherical generalization of the de Casteljau algorithm
introduced by Shoemake (1985) in order to interpolate the orientations of a moving ob-
ject. Among others, Ge and Ravani (1991; 1994) and Park and Ravani (1995) presented
methods for constructing so-called Bézier motions by generalizing the subdivision algo-
rithm of Bernstein-Bézier curves. Furthermore, this concept has been extended to other
areas such as spatial kinematics or robotics by introducing so-called rational spline mo-
tions. Rational spline motions are characterized by the property that the trajectories of the
points of the moving object are rational spline curves, i.e., the trajectories are NURBS
(non-uniform rational B-spline) curves (Farin, 1993).

NURBS curves and surfaces became an industrial standard (STEP) for the data ex-
change between CAD systems. The main advantage of this approach is the data confor-
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mity to state of the art CAD systems, which allows straightforward data transfer from
CAM to CAD systems. Therefore, the programming and control of robots could be done
by using of CAD data. In general, these data specify the desired trajectory of end-effector
but not the orientation. In our approach by using Frenet–Serret Frame we also specify the
desired orientation of end-effector to perform specific tasks such as arc welding, spray
painting and scanning of surfaces with robot equipment.

Rational motions can be said to be the direct generalization of rational curves to kine-
matics. They are defined by the property, that the trajectories of the points of the moving
object(s) are (piecewise) rational curves. Therefore we can apply the algorithms of CAGD
directly to these curves.

Using this approach the design of a Cartesian motion of an end-effector is usually
done by specifying a set of key control configurations which are interpolated or approxi-
mated. In interpolation, the curve passes through each control point and in approximation
the curve only passes through the end-points. The other control points exert a “pull”. So
the intermediate points in approximation simply have some influence on the shape of the
curve.

The first who applied rational motions to motion design were Ge and Ravani (1991,
1994). Their interpolation algorithm is based on rational dual quaternion curves. Another
contribution has been given by Johnstoneet al. (1995) who used normalized rational
quaternion curves in order to interpolate orientations of a moving object for animation.

In this paper we discuss a special class of rational motions called Rational Frenet–
Serret (RF) (Ravani and Meghdari, 2004a; Ravani and Meghdari, 2004b) and apply this
type of rational motions to robot trajectory planning. In application requiring control of
the orientation of a rigid body, as its center of mass executes a given path, alignment
of body’s principal axes with the Frenet–Serret frame at each point appear to be the
solution. For this purpose we derive a general formula for RF curves and by using this
representation the motion of end-effector in 3D space will be achieved.

Our work also analyzes the RF motion of robot arm considering the desired velocity of
tool center point (TCP) and the angular velocity of end-effector which user specifies and
computes the points which the motion should be accelerated or slowed down to realize
the velocity profile. We show that the arc length of this motion can be approximated with
sufficient accuracy in real time to achieve the desired distribution velocity. This enables
us to increase the flexibility and continuity of RF motions.

This paper is organized as follows: first we are going to introduce basic notations
and review some fundamentals in spatial kinematics and the theory of rational motions.
In Section 3 we review the concept of Frenet–Serret Frame and investigate and attain a
few properties of RF curves and derive a general representation formula for RF curves.
Next in Section 4 we present the motion tracking algorithm for RF curves by computing
the intermediate positions and corresponding velocities to achieve the velocity profile. In
Section 5 we give a detailed procedure for application of RF curves in robot trajectory
planning. Finally, we finish with concluded remarks and future works.
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2. Basic Notations

In the sequel we describe the pointsp in 3-space with the help of homogeneous coordi-
natesp = (p0, p1, p2, p3)T ∈ R4\{(0, 0, 0, 0)T }. For points not at infinity, i.e.,p0 �= 0,
the corresponding inhomogeneous Cartesian coordinates arep̄ = (p̄1, p̄2, p̄3)T ∈ R3 of
the every pointp from p̄i = pi/p0 wherei = 1, 2, 3. The homogeneous coordinate vec-
torsp andλp describe the same point for any constant factorλ �= 0. By analogously we
are going to use homogeneous plane coordinatesP ∗ for the description of planes. A point
P lies in the planeP ∗ if < P, P ∗ >= 0, where<> denote the canonical scalar product
in R3 or R4.

Consider two coinciding coordinate system in Euclidean 3D-space, the fixed coordi-

nate systemE3 (“world coordinate”) and the moving coordinate system
�

E 3. Both co-
ordinate systems are associated with right-handed Cartesian coordinates frames. Frame
is an affine extension of a basis: Requires a vector basis plus a pointO (the origin):
F = (�v1, �v2, ..., �vn, O). Points can be described in either coordinate system. We denote
the fixed coordinates of a point byp or p̄, and the moving coordinates bŷp or ˆ̄p respec-
tively. In order to convert moving coordinates into fixed coordinates we have to apply the
coordinate transformation that mapŝE3 intoE3. Using homogeneous coordinates, this
transformation can be represented by a4 × 4 matrix:

M =




0 0 0 v0

r1,1 r1,2 r1,3 v1

r2,1 r2,2 r2,3 v2

r3,1 r3,2 r3,3 v3


 =




0 0 0 v0

v1

R v2

v3


 , v0 �= 0, (1)

where the3 × 3 submatrixR = (ri,j)i,j=1,2,3 satisfies the orthogonality conditions

R.RT = v2
0I3 and det(R) > 0.

A continuous one-parameter set of positions of
�

E 3 defines a motionM = M(t)
where the parametert is assumed to be the time. If all element functions ofM = M(t)
are polynomials of degreen, the motionM is said to be a rational motion of degreen. In

this case, all points trajectoriesp(t) = M(t).
�
p are rational curves of general degreen.

Applying dual quaternion calculus one can prove that every rational motion of degreen

can be written

M =




0 0 0 v̄0(d2
0 + d2

1 + d2
2 + d2

3)
v1

v̄0D v2

v3


 (2)
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with the dual quaternionD = (d0, d)T and

D =




d2
0 + d2

1 −2d0d3 2d0d2

−d2
2 − d2

3 +2d1d2 +2d1d3

2d0d3 d2
0 − d2

1 −2d0d1

+2d1d2 +d2
2 − d2

3 +2d2d3

−2d0d2 2d0d1 d2
0 − d2

1

+2d1d3 +2d2d3 −d2
2 + d2

3




. (3)

Here v̄0, v = (v1, v2, v3)T andD are polynomials of degreen − 2k, n andk, respec-
tively, where0 � 2k � n. The four parametersd0, . . . , d3 are Euler’s parameters of the
rotational partD of the motion (Bottema, 1979).

The design of rational motions is done most efficiently by computing polynomials
v̄0, v, D that match certain prescribed constraints. The B-Spline representation ofM can
be obtained by inserting them into (2). In this case the motionM is expressed by the help
of Bernstein polynomials of degreen:

M(t) =
n∑

i=0

Bn
i (t)Ai, (4)

where with Bernstein polynomialsBn
i (t) =

(
n
i

)
(1−t)n−iti andAi are the control points.

Considering�v(t) = (1/v0(t))(v1(t)v2(t)v3(t))T as the translational vector of the
trajectoryM(t), the velocity of TCP with respect tot results from

�v(t) = −v0/v2
0 + �v′/v0 (5)

the prime denotes the derivative with respect to parametert.
Note that Eq. 3 is the classical representation of rotation matrixR(t) with help of

Euler parameters. As an abbreviation, the four Euler parameters of the rotation matrix
R(t) are collected in four-dimensional Euler Vector:

d̃(t) =
(
d0(t)d1(t)d2(t)d3(t)

)T
. (6)

The first derivatived̃′(t) = (d′0(t)d
′
1(t)d

′
2(t)d

′
3(t))

T of this vector with respect tot
called the Euler velocity of the motion. The corresponding angular velocity of the end-
effector is

�ω(t) = (2/d̃T d̃)(�d × �d′ − d′0
�d + d0

�d′) (7)

with �d(t) = (d1(t)d2(t)d3(t))T .
In Section 4 we will apply a reparameterizationt = t(τ) of the motion in order to

realize the desired distribution of the velocity for RF motions.
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3. Rational Frenet–Serret Motion

We discuss a special class of rational motions for which the moving object stays fixed
with respect to the Frenet–Serret frame of a given curve. We present the concept of
Frenet–Serret frame in CAGD and derive the general representation formula for RF
curves. We finish this section by implementation the algorithm with output results.

3.1. Frenet–Serret Frame

At each point of a regular space curve, the Frenet–Serret frame defines an orthonormal
basis of vectors inR3 aligned with the local intrinsic curve geometry (see Fig. 1). The
elements of this basis are the curve tangent vector, normal vector and binormal vector.
Without loss of generality we may assume that describers the point path of the origin
of the moving coordinate system. Let us further assume that is a twisted curve without
inflection points and with proper parameterization, i.e.,‖ċ× c̈‖ �= 0, ‖ċ‖ �= 0 under these
assumptions, the motion of the Frenet–Serret frame is given by

F =
(

0 0 0 1
t n b c

)
(8)

with

t =
ċ

‖ċ‖ , n =
(ċ × c̈)
‖ċ × c̈‖ × t, b = t × n. (9)

In other word we can express the Frenet–Serret formula by


 ṫ

ṅ

ḃ


 =


 0 κ 0
−κ 0 τ

0 τ 0





 t

n

b


 , (10)

Fig. 1. The fixed frame and the moving frame attached to the rigid body.
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Fig. 2. The curvature plot (left) and a porcupine plot of a cubic B-spline curve (right).

whereκ is curvature (see Fig. 2) andτ is torsion: a plane curve is completely deter-
mined by a single real valued function, thecurvature, and a space curve is completely
determined by two real valued functions, thecurvature andtorsion.

3.2. RF Motion Construction

In the sequel we will call a motion of type (8) the Frenet–Serret motion ofc(t). Taking
(8) under consideration it is obvious that the Frenet–Serret motion of a rational curve in
general will not be rational. We therefore want to characterize those curvesc(t) whose
Frenet–Serret motion (8) is rational. Without loss of generality we may assume thatc(t)
has sufficient differentiability.

At each point of the curve withc′ × c′′ �= 0, the osculating, normal and rectifying
planes are spanned by the pair of vectors,(n, b) and(b, t) respectively.

DEFINITION 1. A curve whose Frenet–Serret motion is rational is called a Rational
Frenet–Serret curve (RF curve).

Theorem 2. A curve c(t) with nonvanishing curvature κ(t) is an RF curve if and only
if c(t) is rational and has rational speed v(t) = ‖ċ(t)‖ and rational curvature κ(t).

Proof. The unit vector, the principal normal vector and the binormal vector ofc(t) satisfy
the Frenet–Serret equations:

d
ds

ṫ = κn,
d
ds

ṅ = −κt + τb,
d
ds

ḃ = −τn, (11)

wheres denotes the arc length ofc(t). Rewriting (11) with respect to arbitrary curve
parametert immediately proves the claimed conditions.

A curve with rational speedv(t) is called a rational Pythagorean Hodograph (PH)
curve. Such curves has been investigated in a sequence of papers by Farouki and Sakkalis
citer10,r11, Farouki and Pottmann (1996) and Pottmann (1995). Obviously every RF
curve is a rational PH curve. On the other hand every planar rational PH curves has
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rational curvature, which simply yields: A planar curvec(t) is an RF curve if and only if it
is a traditional PH curve. In space however, there exist rational PH curves with nonrational
curvature. Ifκ is rational we immediately obtain that the curve defined by the unit tangent
vector ofc(t) has to be a rational PH curve as well.

For presenting a general formula for RF curves, we consider a rational curvec(t) and
its tangent surfaceΦ which is enveloped by the set of osculating planes ofc(t). The curve
c(t) is called the line of regression ofΦ. Using homogeneous plane coordinates forΦ we
obtain the so-called the dual representationc∗(t) of c(t) (see, e.g., (Pottmann, 1994)),
which reads

c∗ =
(
− < b, c >, b

)T
. (12)

Instead of computing a general representation formula of the point set directly, we
focus on the dual form (12) of an RF curve.

Theorem 3. Let c(t) be an RF curve and c∗(t) is dual representation. Then there exist
three pairs (a, b), (e, f) and (g, h) of polynomials such that

C∗ =




g(x2
0 + x2

1 + x2
2)

2hx0x1

2hx0x2

h(x2
0 − x2

1 − x2
2)


 ,

x0 = (a2 + b2)(ȧb − aḃ)f2,

x1 =
1
2
(a2 − b2)(ėf − eḟ) − (aȧ − bḃ)ef,

x2 = (ȧb − aḃ)ef − ab(ėf − eḟ).

(13)

Proof. According to Farouki and Pottmann (1996) each planner rational PH curve with
homogenous coordinates(x0, x1, x2)T has a representation of the type (13). Eq. 13 fi-
nally results fromc∗ = (g, hb)T by applying the stereographic projection onto the unit
sphere.

A parametric representation of the point setc(t) can be obtained by calculating the
intersection point ofc∗(t) and the first and second derivative planeċ∗(t), c̈∗(t). This yield

c(t) = c∗(t) × ċ∗(t) × c̈∗(t). (14)

Theorem 3 together with (14) provides a straightforward method for designing RF
curves. In Fig. 3 you see RF curves for designing a Cartesian motion of an end-effector.

Fig. 3. Control points and rational b-spline curve (left) and equivalent RF curve with Frenet–Serret frame (right).
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Fig. 4. (a) Control points and rational b-spline curve with inflection points (right view). (b) Perspective and
zoom view in inflection point which direction of frame changes.

In Fig. 4 RF curves with some inflection points is shown. In this case the orientation of
Frenet–Serret frame does not remain constant based on the curvature changes. For resol-
ving this issue we should develop rotation minimizing frame on RF curves to minimize
the angular velocity which is a different contribution of authors.

4. Tracking RF Motion

In this section by applying reparameterization of motion parameter, we will achieve the
desired distribution of the velocity. For the ease of presentation we concentrate on trape-
zoidal velocity profile which is a piecewise constant and linear velocity distribution. This
method easily can be applied to more general velocity profiles. In our scheme we do not
consider robot dynamics because the limitation factor in the robot velocity is the process
(such as arc welding, clueing, spray painting) and robot dynamics has minor effects and
importance.

4.1. Reparameterization of Motion

For tracking the constructed RF motion by the end-effector of the robot, we have to ge-
nerate a sequence of positionsm(t(k)), m(t(k+1)), . . . according to a certain time cycle
∆τ for each segment of the path. We consider the segment end positionsp1, . . . , pN are
specified by user. In Fig. 5 we show an example for the tracking of RF motion with 7
taught points. In our method using the motion parametert as the time would cause an
undesired distribution of velocity along the path in general. Therefore we have to apply
an appropriate repararneterizationt = t(τ) (which is assumed to be continuously differ-
entiable) relating the motion parametert to the timeτ . The reparameterization function
t(τ) is monotonically increasing and it satisfiest(0) = t0, i.e., the start pointP1 corre-
sponds to the timeτ = 0. In our discussion the velocities and accelerations with respect
to the real time parameterτwill be marked by an asterisk∗.

Resulting from the reparameterization, the absolute valuev∗(τ) of the velocity of the
TCP is

v∗(τ) =
∥∥∥ d

dτ
m(t(τ))

∥∥∥ =
∥∥m′(t(τ))

∥∥.ṫ(τ), (15)
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Fig. 5. (a) 7 taught positions in space, (b) constructed motion of end-effector based on the taught points.

where the dot indicates the derivative with respect to the timeτ . Similarly, the absolute
valueω∗(τ) of the angular velocity of the end-effector is

ω∗(τ) =
∥∥�ω(t(τ))

∥∥.ṫ(τ), (16)

where the vector�ω(t) is defined as in the (7).
The reparameterization has to produce an almost trapezoidal velocity distribution:

segments with constant speed are joined by segments with linearly varying speed distri-
bution (e.g., Fig. 8b).

The user of the robot can either specify the desired velocity of the TCP or the de-
sired angular velocity of the end-effector. For most segments the user should specify the
velocity of the TCP because this is the more intuitive measure of the robot speed. But
the velocity control by the angular velocity has to be used for motion segments with a
constant TCP when only the end-effector rotates around its TCP’s Frenet–Serret frame.
Analogously, the speed control by the velocity of the TCP has to he used for motion
segments with constant rotational part. In order to observe if the user specified speed are
realistic we check one segment in advance. We do not perform global check to keep the
local property of the tracking algorithm.

Considerith segmentti � t(τ) < ti+1 of the RF motioni = 1, . . . , N − 1. If
the motion speed is controlled by the TCP, then the user specifies the desired absolute
valuesv∗i,seg > 0 andv∗i+1,loc � 0 of the velocity of the TCP in the internal part of
the segment and at the segment end pointPi+1. Otherwise, the user specifies the desired
absolute valuesω∗

i,seg > 0 andω∗
i+1,loc � 0 of the angular velocity of the end-effector

in the internal part of the segment and at the segment end pointPi+1, respectively. If the
user does not specify a value for one of the mentioned velocities the scheme keeps the
previous values.

We denote byt(k) the parameter value after thek th time cycle,t(k) = t(k.∆τ).
In addition to the specified velocities and angular velocities, the user should choose the
maximal and minimal parameter step size∆tmax and∆tmin which are upper and lower
bounds of the differencest(k+1) − t(k) between adjacent parameter values. With smaller
bounds the tracking algorithm passes more intermediate positions, so it increases the ac-
curacy of algorithm. Moreover the user have to choose the maximal absolute valuesa∗

max
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andα∗
max of the tangential components of the acceleration and of the angular accelera-

tion. We compute the sequence of positions such that the velocities always satisfy

∣∣∣ d
dτ

v∗(τ)| � a∗
max and

∣∣∣ d
dτ

ω∗(τ)
∣∣∣ � α∗

max. (17)

The values ofa∗
max andα∗

max are related to the actuator acceleration limits of the robot
joints dynamics.

In order to realize the desired distribution of the velocities, we have to determine the
positions where the robot motion must be accelerated or slowed down. As we consider
only the tangential components of the acceleration of the TCP and of the angular acceler-
ation of the end-effector, these positions depend only on the arc length of the trajectories.
Unfortunately it is generally impossible to compute the exact arc length of a RF curve. As
numerical integrations are too expensive for real-time calculations we use lower bounds
for the arc length.

4.2. Velocity Distribution Profile

We give an outline algorithm for one time cycle of path generation. The parameter value
t(k) and the corresponding position of the end-effectorm(t(k)) are assumed to be known.
According to the specified robot speed we should compute the next parameter value
t(k+1) and the resulting position of the end-effectorm(t(k+1)).

For this purpose first we estimate the real velocityv∗k−1,real of the TCP in the previous
time cycle:

v∗k−1,real = (1/∆τ).
∥∥m(t(k)) − m(t(k−1))

∥∥. (18)

For the first time cycle(k = 0) we setv∗−1,real = 0.
The desired velocity of TCPv∗k,spec, in the next time cycle is determined based on

the user-specified velocitiesv∗i,seg and v∗i+1,loc. If the distance ofm(t(k)) to the seg-
ment end pointPi+1 is small enough, then the motion must be accelerated or slowed
down in order to realize the specified velocityv∗i+1,loc at Pi+1 (Fig. 6). More precisely,

if the inequalityv∗k−1,real > v∗i+1,loc and‖m(t(k)) − Pi+1‖ � 1/2a∗
max((v

∗
k−1,real)

2 −
(v∗i+1,loc)

2) hold, then we should slow down the motion. Hence, we set

v∗k,spec = max
{
v∗k−1,real − a∗

max.∆τ, v∗i+1,loc

}
. (19)

But, if the inequalityv∗k−1,real < v∗i+1,loc and‖m(t(k))− Pi+1‖ � 1/2a∗
max((v∗i+1,loc)

2

− (v∗k−1,real)
2) hold, then we should accelerate the motion:

v∗k,spec = min
{
v∗k−1,real + a∗

max.∆τ, v∗i+1,loc

}
. (20)

These computations are based on the fact that the distance‖m(t(k))−Pi+1‖ is the lower
bound for the arc length of the trajectory of the TCP between the pointsm(t(k)) and
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m(ti+1) = Pi+1 (see Fig. 6). In order to obtain tighter lower bounds for the arc length,
one may inscribe a polygon to the spline curve to approximate the arc length of trajectory
with sufficient accuracy.

If v∗k,spec neither results from (19) nor (20), then we try to realize the desired veloc-
ity v∗i,seg which has been specified by the user for the internal part of the segment. If
v∗k−1,real > v∗i,seg holds, then we slow down the robot motion,

v∗k,spec = max
{
v∗k−1,real − a∗

max.∆τ, v∗i,seg

}
, (21)

otherwise we accelerate the motion,

v∗k,spec = min
{
v∗k−1,real + a∗

max.∆τ, v∗i,seg

}
. (22)

For computing the next position first we should derive the next parameter valuet(k+1)

and based on this parameter we compute the corresponding position of the end-effector.
The parameter valuet(k+1) should satisfy

∥∥m(t(k+1)) − m(t(k))
∥∥ = ∆τ.v∗k,spec. (23)

This non-linear equation fort(k+1) is solved approximately by use of Regula falsi
method. Let∆t(k) = t(k+1) − t(k). As an initial guess for this difference we choose

∆t
(k)
0 = min

{
∆τ.

v∗k,spec

‖m′(t(k))‖ , ∆tmax

}
. (24)

Then we apply one step of the Regula falsi method:

∆t
(k)
j+1 = min

{ ∆t
(k)
j .∆τ.v∗k,spec

‖m(t(k)) − m(t(k) + ∆t
(k)
j )‖

, ∆tmax

}
(j = 0, 1, 2). (25)

Fig. 6. Tracking on segment betweenPi andPi+1.
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The accuracy should be sufficient for robot control; otherwise we may iterate the Regula
falsi. We compute the next parameter value

t(k+1) = min
{

t(k) + max
{
∆t

(k)
3 , ∆tmin

}
, tN

}
. (26)

If t(k+1) � ti+1 holds, then we have to increment the current segment numberi. The
tracking of RF motion is completed fori = N−1. Now we compute the positionm(t(k))
of the TCP and the corresponding rotation matrixR(t(k)) from Eqs. 1, 3 and 4 (for more
information see (Hoschek and Lasser, 1993)).

If the control of the robot speed is based on the specified angular velocitiesω∗
i,seg

and ω∗
i+1,loc of the end-effetor, then the next position of the end-efector results from

an algorithm which is completely analogous to the previous one. Instead of the motion
m(t(k)) and its derivativem′(t(k)) of the TCP, one has to use the normalized Euler vec-

Fig. 7. Pseudo code for tracking motion algorithm.

Fig. 8. (a) Motion of robot arm based on the desired positions. (b) Velocity profile in different motion segments.
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tor (‖d̃(t(k))‖)−1.d̃(t(k)) and its derivative with respect tot. Additionally, the distance
‖m(t(k)) − Pi+1‖ between two adjacent positions of the TCP must be replaced by the
angle2 arccos((‖d̃(t(k))‖)−1.d̃(t(k))T q̃i+1) of the corresponding rotationR(t(k)).

Outline algorithm for tracking method has been presented in Fig. 7. In Fig. 8.a, seven
taught positions have been drawn. These 6 motion segments should be tracked by differ-
ent velocities of TCP. We show the velocity distribution profile in Fig. 8.b

5. RF Curves Application

In the following we want to develop a procedure for the automated design of rational
Frenet–Serret motions that describe the Cartesian space trajectory of a robot’s end- effec-
tor. We assume that the motion is implicitly described by the task level considerations,
such that the trajectory of the tool center point is a given curvec(t) and the direction of the
z-axis of the hand coordinate system is described by a vector fieldn(t). Furthermore we
assume thatn is normalized, i.e.,‖n(t)‖ = 1 ∀t. In arc welding, for example,c(t) would
be the seam andn(t) a vector field related to the relative positions of the electrode with
respect to the bead of weld. In applications that deal with the scanning of surfaces such
as in aircraft inspection on the other hand,c(t) would be a known curve on the surface
that has to be scanned andn(t) the corresponding unit normal vector to the surface.

First we observe thatc(t) has to be a RF curve if we want to achieve a rational robot
trajectory. It is therefore necessary to approximate the tool center point path by a RF
curvec(t). Then the orientation of the vectors in Frenet–Serret frame specify the exact
path and direction of end-effector. For this reason we employ the following procedure:

1. Specifying a set of key control configurations which are interpolated (for end
points) and approximated (for other control points or intermediate points). End
points have a special concept in robot trajectory planning. It shows the start and
goal positions.

2. Designing a rational Frenet–Serret curve based on (14).
3. Achieving a spatial frame (Frenet–Serret frame) for each point on a trajectory. By

means of this frame the direction of tool center point of a robot in space could be

Fig. 9. Spatial rational motion of degree 9 (left); continuous motion of teapot along a designed trajectory (right).
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easily determined. In fact each orthogonal vector(t, n, b) has a special meaning
(subsection 3.1).

In addition to robot end effector motion design, RF curves have another important ap-
plication in computer animation specially in key frame interpolation to compute a smooth
motion which interpolates or approximates the given positions, such that chosen feature
points of the moving system run on smooth paths (Fig. 9).

6. Conclusion and Future Works

In this paper, we have used RF curves to design robot trajectories in the Cartesian space
and have obtained the velocity profile for robot arm motion considering user requirements
for desired velocity and positions. Furthermore, the paper showed in various examples
that RF curves can be applied successfully to any design algorithm that is based on a spine
curve. We presented this method have several advantages compared to the traditional
methods including: ease of programming (less teach points are necessary), flexible robot
motion design considering rational frames and faster optimization of robot program.

We finish this paper by pointing to some topics for further research:

• Obstacle avoidance in trajectory planning with RF curves.
• Taking the optimization of RF motions with robot dynamics into account to mini-

mize time or energy functions.
• Advanced CAD/CAM interfaces. By applying the rational motion techniques it is

possible to use more sophisticated geometric models.
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Racionali ↪uj ↪u Frenet–Serret kreivi ↪u panaudojimas roboto rankos
judesio planavimui

Reza RAVANI, Ali MEGHDARI

Šio straipsnio tikslas yra pademonstruoti, kad kompiuterinis geometrinis projektavimas panau-
dojant erdvines racionali↪asias kreives ir paviršius gali b̄uti panaudotas kinematikoje, kompiu-
terinėje animacijoje ir robotikoje. Šiam tikslui pristatomas racionali↪asias Frenet–Serret kreives
naudojantis roboto trajektorijos planavimo metodas. Šios kreivės išsiskiria tuo, kad j↪u Frenet–Serret
rėmai yra racional̄us. Straipsnyje apib̄udinamas pozicij↪u interpoliavimo racionaliuoju Frenet–Serret
judėjimu algoritmas. Taip pat pristatomas tokio judėjimo sekimo algoritmas roboto rankos norimo
judėjimo pasiskirstymo užtikrinimui.


