
INFORMATICA, 2006, Vol. 17, No. 1, 95–110 95
 2006Institute of Mathematics and Informatics, Vilnius

Scheduling Trajectories on a Planar Surface with
Moving Obstacles

Emmanuel STEFANAKIS
Spade Team, Institut Autonome Intelligente Systeme
Fraunhofer-Gesellschaft, Sankt Augustin, Germany
e-mail: stefanak@dbnet.ece.ntua.gr

Received: September 2004

Abstract. An algorithm for scheduling the trajectory of a point object, which moves on a plane
surface comprising a set of moving obstacles, is introduced. Different quantitative criteria may
be met by the schedule, e.g., the course connecting two individual locations being the shortest
in length, the least expensive, the fastest as regard to its duration, etc. A prototype system that
implements the algorithm is presented. Several example scenarios are also discussed.

Key words: spatio-temporal modeling, graphs, trajectory schedule, optimum paths, moving
objects.

1. Introduction

Thescheduling of an object (e.g., a vessel) trajectoryis a common problem in human nav-
igation and appears very often in applications such as Cartography, Logistics, Robotics
and Geographic Information Systems (GIS). Moving between two physical locations can
be, basically, accomplished based on various alternative schedules. Each schedule can be
characterized and quantitatively described by some objective criteria. For instance, we
may look for – to name a few:

� the shortest, longest, fastest, or least expensive trajectory connecting the two loca-
tions,

� a trajectory that departs from the start location at timets, and arrives at destination
at timetd,

� a trajectory, which further adds to the previous one the constraint to cross an inter-
mediate location at timeti and reside there for the time interval [ti, tj].

Obviously, there are three additionalparametersthat should be clarified, before we
browse for the trajectory that meets the criteria above. These describe (a) thedimensions
of the spacewhere movement takes place, (b) theconstraints of movement, and (c) the
dynamic nature of spacein time.

As for the space, all intermediate locations that compose the trajectory (including start
and destination locations) belong to a space that may have – depending on the applica-
tion – one, two, two and a half (for curved surfaces, like the earth) or three dimensions

96 E. Stefanakis

in general. In this study, we limit the discussion on movements in a two-dimensional
(plane) surface. All concepts can be readily extended and applied to spaces of higher
dimensionality (Stefanakis and Kavouras, 1995; Styliadiset al., 2003).

As for the constraints of movement, the trajectory connecting two physical locations
may be limited to the chains of an existing linear network or not. In the former case,
graph theory can be applied to simulate the movement (Johnson, 1977; Gibbons, 1985;
Sedgewick, 1990; Rich and Knight, 1991; Russell and Norvig, 1995). In the latter case,
where the movement is not confined to a linear network, existing raster-based (Warntz,
1961; Lindgren, 1967; Goodchild, 1977; Churchet al., 1992; Van Bemmelenet al., 1993;
Douglas, 1994ab) or vector-based (Mitchel and Papadimitriou, 1991) approaches may
be applied. In this study, we examine trajectories in space, and we apply an approach,
recently introduced by Stefanakis and Kavouras (1995, 2002). This algorithm is based on
the degeneration of the space under study into a network, which can be simulated by a
weighted graph, so that algorithms of graph theory and artificial intelligence can be easily
adopted to indicate the optimum path(s) for the desired trip.

Finally, as for the dynamic nature of space in time, there are two alternatives. In the
first alternative, the space is static, in the sense that the cost of movement per unit of
movement (e.g., one meter) remains unchanged over time everywhere in space. In the
second alternative, the cost of movement changes over time. The cost of movement is
described through a (spatial)cost model(Stefanakis and Kavouras, 2002). Obviously,
time is a parameter of the cost model. In this study, we examine a simple scenario, where
the cost model applies the function ofEuclidean distance. That is, the cost of movement
(cAB) from a locationA(xA, yA) to a locationB(xB , yB) is equal to

cAB =
√

(xA − xB)2 + (yA − yB)2.

Additionally, we assume that the space comprises a set ofmoving obstacles, which
constraint the access to specific regions (covered by the obstacles) during specific tempo-
ral intervals.

A real world application that may be supported by the configuration of our study is
the scheduling of the sea course for a boat in a relatively small region of the earth (in
order to satisfy the condition of planarity). The course is constrained by a set of static
obstacles, i.e., the islands and continents; and by a set of moving obstacles, i.e., the other
vessels.

The discussion is organized as follows. Section 2 describes the algorithm for schedul-
ing the trajectory of an object in a dynamic space with obstacles. Section 3 presents a
prototype system which implements the algorithm and several example scenarios gener-
ated by the system. Finally, Section 4 concludes the discussion and proposes some hints
for future research.

2. The Algorithm

Assume a two-dimensional plane surfaceS (Fig. 1). For simplicity reasons, the surface
is orthogonal – with its borders parallel to theX, Y -axes – and described through two

Scheduling Trajectories on a Planar Surface with Moving Obstacles 97

Fig. 1. The space-time.

pairs of (x, y) coordinates, the lower left (or south west –XLL, YLL) and the upper
right (or north east –XUR, YUR) corners. The space is considered during a temporal
interval [Tfrom, Tto], defined by a pair of time instances, theTfrom andTto, whereTto is
subsequent toTfrom. We call this period of time asspace life. Hence, aspatio-temporal
cube Cdefined by the triples (XLL, YLL, Tfrom) and (XUR, YUR, Tto) is considered.

The surfaceS comprises a set of moving obstacles (MO). In other words, a set of
objects, which are moving in the spatio-temporal cubeC. Each obstacleMOi has a
circular shape with a radiusri, and carries out a straight route with a constant velocityvi.
Specifically, each obstacleMOi is defined by the following set of parameters:

(ri, xfrom−i, yfrom−i, tfrom−i, xto−i, yto−i, tto−i),

where the triples(xfrom−i, yfrom−i, tfrom−i) and (xto−i, yto−i, tto−i) correspond to
the starting and ending locations of the obstacleMOi in space-time.

Fig. 2 presents an example obstacleMOi with radiusri on surfaceS (a projective
view), which travels from pointA(xA, yA) to pointB(xB , yB), during the temporal in-
terval [tA−i, tB−i] . The object velocity is constant and equal to

vi =

√
(xA − xB)2 + (yA − yB)2

(tB−i − tA−i)
.

What we are looking for is the schedule (if any) of a point object, which moves on
the surfaceS and its course: (a) connects two specific locations in space, (b) falls inside
the spatio-temporal cubeC, (c) satisfies the schedule criteria, and (d) does not hit any
moving object.

In order to accomplish this task, we adopt the approach introduced by Stefanakis
and Kavouras (1995, 2002) – which supports the navigation in a static space based on
quantitative criteria – and extend it here so that it may be applicable to a dynamic space.
As stated previously, the discussion is limited to a plane surface, which comprises a set
of moving obstacles of circular shape. The schedule refers to a point object, which moves

98 E. Stefanakis

Fig. 2. An example of a moving obstacle.

on this surface and does not hit any moving obstacle at any time. Notice that obstacles
size may be enlarged appropriately to include the moving object size – if the latter is not
a point object – and/or the security distance (buffer zone) between the point object and
the obstacles themselves (to avoid collision).

The algorithm consists of the five steps, which are described in the following Subsec-
tions:

1. Establishment of a network in space.
2. Formulation of the travel cost model.
3. Computation of the temporal intervals during which nodes and edges are not ac-

cessible.
4. Solving the network.
5. Determination of the schedule.

2.1. Establishment of a Network in Space

The inconvenience of movement in space is the infinite number of spots (i.e., point lo-
cations or nodes), involved in the determination of a path. The proposed solution (Ste-
fanakis and Kavouras 1995, 2002) to overcome this problem is based on the technique
of discretization of space.Discretization(Laurini and Thompson, 1992; Worboys, 1995)
is the process of partitioning the continuous space into a finite number of disjoint areas
or volumes (cells), whose union results in the space. By representing each of these cells
with one node (e.g., its center point), a finite set of nodes is generated.

Obviously, the number of nodes depends on the size of the cell. If these nodes are
interconnected through edges, a linear network is established, and appropriate algorithms
available in graph theory and artificial intelligence can be applied to support the naviga-
tion. How nodes are interconnected is related to the degrees of freedom characterizing
the movement. In this study we adopt a common scheme, which is based on theregular
grid tessellation. More details can be found in (Stefanakis and Kavouras, 2002).

Specifically, a regular grid is superimposed on the plane surface. A network node is
then located on the centroid of each cell (Fig. 3). Then, network edges are established to
connect the network nodes. These edges are driven from the regular grid as follows. Each

Scheduling Trajectories on a Planar Surface with Moving Obstacles 99

Fig. 3. Establishing the network nodes. The space (a), the tessellation superimposed on the space (b), and the
resulting nodes (c).

Fig. 4. Types of cell neighbors in a regular grid.

cell has three types of neighbor cells (Fig. 4): (a)direct, i.e., neighbors with shared edges;
(b) indirect, i.e., neighbors with common vertices; and (c)remoteneighbors. The level of
proximity to the cell of reference characterizes remote neighbors.

For instance, level-one (level-two) remote neighbors are the cells, which are direct or
indirect neighbors of the direct or indirect neighbors of the cell of reference (of the level-
one remote neighbors of the cell of reference). Interconnecting the direct neighbors leads
to a set of four directions of movement from each node (rook’s moveis allowed – Fig. 5a).
Interconnecting the indirect neighbors adds another set of four directions (queen’s move
is allowed – Fig. 5b). Interconnecting the level-one remote neighbors adds another set of

Fig. 5. Four (a), eight (b) and sixteen (c) directions of movement.

100 E. Stefanakis

eight directions of movement (queen’s+knight’s movesare allowed – Fig. 5c). An exhaus-
tive network would interconnect all direct, indirect and remote (of any level) neighbors.

2.2. Formulation of the Travel Cost Model

The travel cost modelassigns weights to the edges of the network established in the
previous step. Its form depends on both the space under study and the application needs.
Some representative examples of travel cost models are:

� the model ofdistance(assign the overall distance),
� the model oftime(assign the overall time),
� the model ofexpenses(assign the overall expenses),
� the model ofrisk (assign a measure for the overall risk).

In each case the space under study consists of areas that are characterized by a weight,
which indicates the cost of movement across them per unit of movement; and depends
on the travel cost model in use. A detailed analysis is can be found in (Stefanakis and
Kavouras, 2002).

In this paper we consider the cost model ofEuclidean distanceof the two nodes
connected by the edge of reference. More sophisticated models can be easily applied.

2.3. Computation of the Temporal Intervals During which Nodes and Edges are not
Accessible

After the network has been established, the obstacles are considered in order to compute
all those temporal intervals during which nodes and edges are not accessible. This in-
formation is needed when the network is solved in Step 4, so that the schedule for the
moving object is determined in Step 5.

All nodes and edges locations are compared against all moving obstacles locations
in time. At the end of this comparison, each individual node and edge of the network is
assigned a list of temporal intervals during which it is not accessible, because an obstacle
intersects it.

Fig. 6 presents an example of two nodesA, B and the edgeA_B connecting them.
An obstacle moves from pointK to point L. As it is shown, the obstacle covers node
A during the temporal interval [t2, t3] and intersects the edgeA_B during the temporal
interval [t2, t4]. During these temporal intervals the corresponding node and edge are not
accessible.

2.4. Solving the Network

After the completion of the previous step, each individual node and edge of the network
is assigned a list of those temporal intervals during which it is not accessible. In this step
the actual solving of the network is performed. For this reason, appropriate algorithms
available in graph theory and artificial intelligence can be applied. In our study we make
use ofFord’s algorithm(Ford and Fulkerson, 1962).

Scheduling Trajectories on a Planar Surface with Moving Obstacles 101

Fig. 6. An example of a moving object (a), and the temporal intervals during which nodesA,B and edgeA_B
are not accessible (b).

Provided a graphG(N, E) (whereN , E the sets of nodes and edges constituting
the graph respectively), andc(m,n) the cost of traversing the edgem_n, starting from
nodem and ending to noden, Ford suggests the following algorithm to find the minimum
accumulated cost of each network noden (denoted byC[n]) for the trip from a start
nodeno:

begin
C[no] ←0;
for each n∈N − {no} do C[n] ← ∞;
while there is an edge (m,n) such that

C[n] > C[m] + c(m, n) do
C[n] ← C[m] + c(m,n)

end

The complexity of Ford’s algorithm depends on the number of both the nodes and
edges of the network and is equal toO(|N ||E|).

In this study, we extend Ford’s algorithm to solve the spatio-temporal network. By
executing the algorithm, each node of the network is assigned a list of temporal intervals,
during which the node is accessible from the moving object with the minimum accu-
mulated cost for the trip from the start nodeno. We call these intervals asaccessible
temporal intervals. Obviously, the temporal intervals during which nodes and edges are
not accessible (computed in the previous step) are taken into account.

Fig. 7 presents the idea through a simplified example. The network (part of) consists of
four successive nodes, which are connected through three edges (Fig. 7a). The temporal
interval during which the network is considered is [0, 200] (time units). We call this
period of time asnetwork life. The moving object departs from node 1 (start node) at
time 10. The duration and cost of traversing each edge of the network are constant during
the network life (Fig. 7b). However, these nodes and edges are not always accessible.
Moving obstacles may constraint the traversing during some temporal intervals. These
non-accessible temporal intervals have been computed in the previous step (Fig. 7c).

102 E. Stefanakis

Fig. 7. A simplified scenario.

Scheduling Trajectories on a Planar Surface with Moving Obstacles 103

Provided that the trip starts at time 10, the moving object can reside at node 1 during
part or the whole interval defined by time 10 and the next time when instance node 1 is not
accessible. Therefore, the accessible temporal interval for the moving object at node 1 is
[10, 30] (Fig. 7d,c). The accumulated cost for node 1 is equal to 0 and there is no previous
node.

Considering the movement along the edge 1_2, the following apply. The moving ob-
ject may depart from node 1 at any time during the interval [10, 30]. The edge 1_2 is
accessible all the time (Fig. 7c). Provided that the duration of traversing edge 1_2 is
equal to 20, node 2 can be reached at any time during the interval [30, 50]. Node 2 is ac-
cessible all this period. The accumulated cost at node 2 will be 0+ 8 = 8. Additionally,
the moving object may reside at node 2 until the next time instance when the node is not
accessible. Therefore, the accessible temporal interval for the moving object at node 2 is
extended to[30, 170] (Fig. 7e).

Considering the movement along the edge 2_3, the following apply. The moving ob-
ject may depart from node 2 at any time during the interval [30, 170]. The edge 2_3 is
accessible all the time (Fig. 7c). Provided that the duration of traversing edge 2_3 is equal
to 10, node 3 can be reached at any time during the interval [40, 180]. The accumulated
cost at node 3 will be 8+ 14= 22. However, node 3 is not accessible during the interval
[170, 190]. Therefore, the accessible temporal interval for the moving object at node 3 is
reduced to[40, 170] (Fig. 7f).

Considering the movement along the edge 3_4, the following apply. The moving ob-
ject may depart from node 3 at any time during the interval [40, 170]. The edge 3_4 is
accessible all the time (Fig. 7c). Provided that the duration of traversing the edge 3_4 is
equal to 20, node 4 can be reached at any time during the interval [60, 190]. The accu-
mulated cost at node 4 will be 22+ 21 = 43. However, node 4 is not accessible during
the interval [100, 120]. Therefore, the object may depart from node 3 during the intervals
[40, 100–20] (or [40, 80]) and [120, 170] (in here we assume that departure from a node
is not allowed when the edge to traverse and the opposite edge node are not accessible).
This results in the accessible temporal interval for the moving object at node 4 beingsplit
to [60, 100] and [120, 190] (Fig. 7g). Additionally, the latter is extended to [120, 200],
based on the previous discussion.

All accessible temporal intervals and accumulated costs of the nodes at the example
in Fig. 7 are subject to change during the iterative execution of Ford’s algorithm and the
consideration of other nodes and edges in a more complex network. Fig. 8 provides an
example of such a change. One node and two edges are added at the network in Fig. 7, i.e.,
node 5, edge 1_5 and edge 5_3. Node 5 is accessible all the time during the network life;
as well as edge 5_3. On the other hand, edge 1_5 is not accessible during the temporal
interval [0, 20] (Fig. 8a).

Fig. 8b shows the accessible temporal interval for node 5. The moving object may
depart from node 1 at any time during the interval [10, 30]. However, edge 1_5 is not
accessible during the interval [0, 20]. Hence, the object must wait at node 1 untilt = 20.
Provided that the duration to traverse the edge is equal to 20, node 5 can be reached at
any time during the interval [40, 50]. This interval is extended appropriately (to the end
of the network life), since node 5 is always accessible.

104 E. Stefanakis

Fig. 8. A more complex network.

Node 2 remains unchanged (Fig. 7e). Node 3 is now accessible from both nodes 2
and 5. New accessible temporal intervals for the moving object at node 3 are computed
by considering the edge 5_3. These are intersected to the ones shown in Fig. 7f. The
intervals with the minimum accumulated cost dominate. The result of the intersection is
shown in Fig. 8c. Notice that, in the new network, node 3 can be accessed from node 2
for the temporal interval [40, 70], with an accumulated cost of 22; and node 3 for the
temporal interval [70, 170] and [190, 200] with an accumulated cost of 12.

Node 4 is assigned new accessible temporal intervals according to the new state of
node 3. As shown in Fig. 8d, three accessible temporal intervals are assigned to node 4:
[60, 90], [90, 100] and [120, 200], with accumulated costs of 43, 33 and 33, respectively.

Scheduling Trajectories on a Planar Surface with Moving Obstacles 105

2.5. Determination of the Schedule

After the network has been solved, the schedule for the moving object can be determined,
taking into consideration the criteria of movement. Specifically, the previous step has
generated for each network nodej (wherej = 1, 2, . . . , N) a set ofn consecutive and
disjoint temporal intervals, during which nodej is accessible (reachable) by the moving
object. Each of these intervals[tji−from, tji−to] (wherei = 1, 2, . . . , n) has assigned the
accumulated cost of movement for the trip from the start nodes (cji) and the correspon-
ding previous node(pji), i.e.,

nodej:
{
[tj1−from, tj1−to, cj1, pj1], [tj2−from, tj2−to, cj2, pj2],

[tj3−from, tj3−to, cj3, pj3], . . . , [tjn−from, tjn−to, cjn, pjn]
}
.

For example node 4 at the simplified network of Fig. 8 has been assigned the following
set of temporal intervals:

node 4:
{

[60, 90, 43, 3], [90, 100, 33, 3], [120, 200, 33, 3]
}

.

The set of temporal intervals can be exploited appropriately to determine the schedule.
The next paragraphs describe some common scenarios.

In order to schedule theminimum cost trip, we choose the temporal intervali at the
destination noded with the minimumcdi value. Then, we add to the empty stackT –
describing the trip – the following triplet:

< tdi−from, cdi, locd >,

wherelocd is the location of the destination node. The process is applied recursively to
the nodepdi, etc., until start nodes is reached. The triplets atT describe the movement of
the object. Notice that the cost assigned to the edges of the network may be their length or
the expenses to traverse them (e.g., expressed in petrol consumption), etc. In the former
case, the shortest in length trip is scheduled. In the latter case, the least expensive trip is
scheduled.

At the example of Fig. 8, assuming that node 4 is the destination node, if we look for
the minimum cost trip (the lowest accumulated cost at node 4), we choose:

< node 4, accumulated_cost= 33, arrival_at 90, previous_node 3>

Then recursively we choose:

< node 3, accumulated_cost= 12, arrival_at 90− 20= 70, previous_node 5>,
< node 5, accumulated_cost= 5, arrival_at 70−30= 40, previous_node 1>,
< node 1, accumulated_cost= 0, arrival_at 40−20= 20, previous_node n/a>.

Therefore the minimum cost path is: 4− 3− 5− 1, with accumulated cost at node 4
equal to 33, departure from node 1 att = 20 and arrival at node 4 att = 70.

106 E. Stefanakis

In order to schedule thefastest trip, we choose the first temporal interval assigned
to the destination noded. Then we add to an empty stackT – describing the trip – the
following triplet:

< td1−from, cd1, locd > .

The process is applied recursively to the nodepd1, etc., until start nodes is reached.
The triplets atT describe the movement of the object.

At the example of Fig. 8, assuming that node 4 is the destination node, if we look for
the fastest trip (node 4 is reached the earliest possible), we choose:

< node 4, accumulated_cost= 43, arrival_at 60, previous_node 3>.

Then recursively we choose:

< node 3, accumulated_cost= 22, arrival_at 60− 20= 40, previous_node 2>,
< node 2, accumulated_cost= 8, arrival_at 40− 10= 30, previous_node 1>,
< node 1, accumulated_cost= 0, arrival_at 30− 20= 10, previous_node n/a>.

Therefore the minimum cost path is: 4− 3− 2− 1, with accumulated cost at node 4
equal to 43, departure from node 1 att = 10 and arrival at node 4 att = 60.

In order to schedule thetrip that takes the moving object at destination at timeta, we
choose the temporal intervalk, assigned to the destination node, which contains timeta
(i.e., ta ∈ [tdk−from, tdk−to]) Then we add to an empty stackT – describing the trip –
the following triplet:

< ta, cdk, locd > .

The process is applied recursively to the nodepdk, etc., until start nodes is reached.
The triplets atT describe the movement of the object.

3. Prototype System and Example Scenarios

A prototype system has been developed in Java to implement the algorithm described
in the previous Section. Fig. 9 presents the interface of the system. What is shown is
the snapshot of the situation at time 114 (for a network life of [0, 400]). Four moving
obstacles are alive then. The current location of the moving object is at pointc. Start and
destination nodes are marked withs andd respectively.

Fig. 10 shows the values of the parameters that are read by the system for the example
in Fig. 9. The spatio-temporal cube is defined by the triplet (0, 0, 0) and (1000, 1000, 400).
Cell size is equal to 100× 100 (Fig. 3), and 16 directions of movement are considered
(Fig. 5c). Start and destination points are located at (0, 400) and (1000, 100) respectively.
Their closest network nodes are considered as start and destination nodes (see Fig. 10).
The start time for the trip is equal to 0. The velocity of the moving object is constant and
equal to 5 distance_units/time_units. The system is asked to compute only the minimum

Scheduling Trajectories on a Planar Surface with Moving Obstacles 107

Fig. 9. The interface of the system.

cost schedule. Eight moving obstacles are considered. The first of them (id= 1) has a
radius of 60 units, and moves from point (0, 300) to point (300, 300) during the temporal
interval [0, 60]. The costs assigned to the edges of the network are equal to their length
(Euclidean distance).

Fig. 11 presents three schedules for the moving object based on different criteria. With
the parameter values listed in Fig. 10, the system is asked to simulate the courses of the
moving object which satisfy:

� CourseM : the minimum cost trip (i.e., the minimum length trip; given that our
cost model is based on the distance measure).

� CourseF : the fastest cost trip (i.e., the trip that takes the moving object at destina-
tion node at the earliest possible).

� CourseA: the arrive at 260 trip (i.e., the trip that takes the moving object at desti-
nation node at time 260).

Table 1 presents the courses computed by the system. Each course is described by a
set of records:

< (x,y)c[ta, td] >,

where(x, y) are the coordinates of the nodes composing the course (grid coordinates),c

the accumulated cost at the node (for the trip from the start node),ta the time of arrival
at the node, andtd the time of departure from the node.

108 E. Stefanakis

SPACE <XLL YLL XUR YUR>:
0. 0. 1000. 1000.
TIME <from to granularity>:
0. 400. 1.
NODES <\#inX \#inY>:
100. 100.
DIRECTIONS 4, 8, 16, 32... etc.:
16
START / DESTINATION POINTS <Xstart Ystart Tstart Xdest Ydest>:
0. 400. 0. 1000. 100.
VELOCITY (DISTANCE UNITS / TIME UNITS):
5.
SHOW <MINCOST FASTEST ARRIVE_AT time> PATHS: (0=false, 1=true)
1 0 0 260.
MOVING OBSTACLES <ID BUFFER \{Xi Yi Ti\}>:
1 60. 0. 300. 0. 300. 300. 60.
2 60. 300. 300. 60. 100. 0. 90.
3 100. 600. 0. 30. 0. 600. 200.
4 50. 500. 100. 300. 800. 200. 400.
5 70. 750. 750. 100. 750. 750. 300.
6 20. 600. 600. 50. 500. 600. 150.
7 80. 800. 0. 150. 800. 800. 250.
8 100. 700. 700. 100. 600. 0. 250.

Fig. 10. The list of parameter values.

Fig. 11. Three schedules for the moving object based on different criteria.

Scheduling Trajectories on a Planar Surface with Moving Obstacles 109

Table 1

Three courses descriptions for the moving object in Fig. 11

Min Cost Trip Fastest Trip Arrive at 260 trip

(1, 5) 0 [0, 0]; (1, 5) 0 [0, 0]; (1, 5) 0 [0, 0];

(2, 5) 100 [20, 20]; (2, 5) 100 [20, 20]; (2, 5) 100 [20, 20];

(3, 5) 200 [40, 40]; (3, 5) 200 [40, 40]; (3, 5) 200 [40, 40];

(5, 4) 423 [84, 218]; (4, 5) 300 [60, 60]; (5, 4) 423 [84, 84];

(7, 3) 647 [262, 262]; (6, 4) 523 [104, 104]; (6, 3) 565 [112, 112];

(8, 3) 747 [282, 282]; (7, 4) 623 [124, 124]; (7, 2) 706 [140, 165];

(10, 2) 970 [326, 400]; (8, 4) 723 [144, 144]; (8, 1) 847 [193, 216];

(9, 4) 823 [164, 164]; (10, 2) 1071 [260, 400];

(10, 4) 923 [184, 184];

(10, 3) 1023 [204, 204];

(10, 2) 1123 [224, 400];

Summary: Summary: Summary:

Nodes: 7 Nodes: 11 Nodes: 8

Acc. Cost 970 Acc. Cost 1123 Acc. Cost 1071

Arrival at: 326 Arrival at: 224 Arrival at: 260

4. Conclusion

This paper introduces an algorithm for scheduling the trajectory of a point object, which
moves on a plane surface comprising of moving obstacles. The schedule may be based on
various quantitative criteria, e.g., minimum cost course, fastest course, arrive at specific
time course, etc. A prototype system that implements the algorithm has been developed
and tested through different scenarios.

Future research directions include: (a) the optimal scheduling of trajectories for a set
of moving points (notice that in this case, each moving point constitute an additional
obstacle to all other points); (b) the consideration of dynamic travel cost models (subsec-
tion 2.2), and (c) the optimization of the algorithm.

Acknowledgments

This work has been done while the author was at the Institut Autonome Intelligente Sys-
teme, Fraunhofer Gesellschaft, Germany, supported by an ERCIM fellowship.

References

Church, R.L., S.R. Loban and K. Lombard (1992). An interface for exploring spatial alternatives for a corridor
location problems.Computers and Geosciences, 18, 1095–1105.

Douglas, D.H. (1994a). Least-cost path in GIS using an accumulated cost surface and slopelines.Cartograph-
ica, 31(3), 37–51.

110 E. Stefanakis

Douglas, D.H. (1994b). The parsimonious path based on the implicit geometry in gridded data and on a proper
slope line generated from it. InProceedings of the 6th International Symposium on Spatial Data Handling.
Edinburgh, Scotland. pp. 1133–1140.

Ford, L.R., and D.R. Fulkerson (1962).Flows in Networks. Princeton Univ. Press.
Gibbons, A. (1985).Algorithmic Graph Theory. Cambridge University Press.
Goodchild, M.F. (1977). An evaluation of lattice solutions to the problem of corridor location.Environment and

Planning A, 9, 727–738.
Johnson, D.B. (1977). Efficient algorithms for shortest paths in sparse networks.Journal of the Association of

Computing Machinery, 24, 1–13.
Laurini, R., and D. Thompson (1992).Fundamentals of Spatial Information Systems. Academic Press Ltd.
Lindgren, E.S. (1967). Proposed solution for the minimum path problem.Harvard Papers in Theoretical Geog-

raphy, Geography and the Properties of Surfaces Series, 4.
Mitchell, J.S.B., and C.H. Papadimitriou (1991). The weighted region problem: finding shortest paths through

a weighted planar subdivision.Journal of the Association for Computing Machinery, 38, 18–73.
Rich, E., and K. Knight (1991).Artificial Intelligence. McGraw-Hill.
Russell, S.J., and P. Norvig (1995).Artificial Intelligence: A Modern Approach. Prentice Hall.
Sedgewick, R. (1990).Algorithms. Addison-Wesley.
Stefanakis, E., and M. Kavouras (1995). On the determination of the optimum path in space. In A. Frank and

W. Kuhn (Eds.),Spatial Information Theory: A Theoretical Basis for GIS(COSIT 95). Springer-Verlag.
pp. 241–257.

Stefanakis, E., and M. Kavouras (2002). Navigating in space under constraints.International Journal of Pure
and Applied Mathematics(IJPAM), 1(1), 71–93.

Styliadis, A.D., P.G. Patias and N.C. Zestas (2003). 3-D Computer modeling with intra-component, geometric,
quality and topological constraints.Informatica, 14(3), 375–392.

Van Bemmelen, J., W. Quak, M. Van Hekken and P. van Oosterom (1993). Vector vs. raster-based algorithms
for cross country movement planning. InProceedings of the AutoCarto 11. Minneapolis. pp. 304–317.

Warntz, W. (1961). Transatlantic flights and pressure patterns.The Geographical Review, 51, 187–212.
Worboys, M.F. (1995).GIS: A Computing Perspective. Taylor & Francis.

E. Stefanakisholds a dipl. eng. (1992) in surveying engineering from the National Tech-
nical University of Athens, Greece; an MScE degree (1994) in geodesy and geomatics
engineering from the University of New Brunswick, Canada; and a PhD degree (1997) in
electrical and computer engineering from the National Technical University of Athens,
Greece. Since 1992, he has been involved in several research projects funded mostly by
the E.U. In 2000, he joined the Department of Geography at Harokopio University of
Athens, as a professor. He has reviewed many articles for scientific journals and confer-
ences, while he served as a member of organizing, program and scientific committees in
international conferences related to geoinformatics. His research interests include geo-
graphic information systems, spatial decision support systems, knowledge and database
systems, cartography, geovisualization, and Web technology. He has over 30 articles in
international journals and conferences in the above areas.

Trajektorij ↪u planavimas plokš̌ciame paviršiuje su judaňciomis
kli ūtimis

Emmanuel STEFANAKIS

Siūlomas taško, judančio plokš̌ciame paviršiuje su judančiomis kliūtimis, trajektorijos plana-
vimo algoritmas. Skirtingi kiekybiniai kriterijai turi b̄uti patenkinti, pavyzdžiui dvi individualias
vietas jungiantis kursas turi b̄uti trumpiausias, pigiausias, greičiausias ir panašiai. Yra pristatytas
algoritm↪a realizuojaňcios sistemos prototipas. Keli pavyzdiniai scenarijai yra aptariami.

