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Abstract. The aim of the given paper is the development of an approach for parametric identifi-
cation of Hammerstein systems with piecewise linear nonlinearities, i.e., when the saturation-like
function with unknown slopes is followed by a linear part with unknown parameters. It is shown
here that by a simple input data rearrangement and by a following data partition the problem of
identification of a nonlinear Hammerstein system could be reduced to the linear parametric esti-
mation problem. Afterwards, estimates of the unknown parameters of linear regression models are
calculated by processing respective particles of input-output data. A technique based on ordinary
least squares is proposed here for the estimation of parameters of linear and nonlinear parts of the
Hammerstein system, including the unknown threshold of the piecewise nonlinearity, too. The re-
sults of numerical simulation and identification obtained by processing observations of input-output
signals of a discrete-time Hammerstein system with a piecewise nonlinearity with positive slopes
by computer are given.
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1. Introduction

A special class of nonlinear systems applied in engineering is Hammerstein systems with
hard input nonlinearities. They, usually, consist of a static input nonlinearity and a lin-
ear dynamic system that are coupled together. Ordinary examples of hard nonlineari-
ties are the saturation, preload, relay, dead-zone, hysteresis-relay, and hysteresis non-
linearities (Bai, 2002). However, the assumptions that the nonlinearity is invertible or
linear in a small region around the origin are not satisfied for most hard nonlineari-
ties, because they cannot be described by polynomials and are noninvertible in general.
On the other hand, the Hammerstein systems are common in nonlinear control applica-
tions (Bai, 2002; Billings and Fakhouri, 1979; Glad and Ljung, 2000; Guo and Bret-
thauer, 2003; Haistet al., 1973; Hasiewisz and Mzyk, 2004; Hunter and Korenberg,
1986; Janczak, 1999; Ljung, 1999; Narendra and Gallman, 1966; Pawlak, 1991; Sjöberg
et al., 1995; Vörös, 1995; Vörös, 2003). Frequently as an input nonlinearity the piece-
wise saturation-like nonlinearity is used here, too. Assuming the nonlinearity to be piece-
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wise linear, one could let the nonlinear part of the Hammerstein system be represented
by different regression functions with some parameters, that are unknown beforehand.
In such a case, observations of the input of a Hammerstein system could be partitioned
into distinct data sets according to different descriptions. The boundaries of sets of ob-
servations depend on the value of the unknown thresholda – observations are divided
into regimes subject to whether the some observed threshold variable is smaller or larger
thana (Hansen and Seo, 2002; Roll, 2003). Therefore the problem of the identification
of unknown parameters of nonlinear and linear blocks of the Hammerstein systems could
be solved, if a simple way of partitioning the available data sets were found in the case
of unknowna. Afterwards, the estimates of parameters of regression functions could be
calculated by processing particles of observations to be determined (Pupeikis, 2005).

The next section introduces the statement of the problem to be solved. In Section 3,
we solve the problem using the data rearrangement by the following reconstruction of the
unknown intermediate signal. In Section 4, simulation results are presented. Section 5
contains conclusions.

2. Statement of the Problem

The Wiener and Hammerstein systems are subdivided into linear dynamic and nonlinear
static blocks. The Wiener system consists of a linear dynamic part followed by a static
nonlinearity (Fig. 1). The Hammerstein system (Fig. 2) could be treated as the structurally
reversed Wiener system. It consists of a static nonlinearityf(·, η) followed by a linear
partG(q−1,Θ). The linear part of the Hammerstein system is dynamic, time invariant,
causal, and stable. It can be represented by a time invariant dynamic system (LTI) with
the transfer functionG(q−1,Θ) as a rational invertible function of the form

Fig. 1. The Wiener system with the process noisev(k) and that of the measuremente(k). The linear dynamic
part G(q−1,Θ) of the Wiener system is parametrised byΘ, while the static nonlinear partf(·, η) – by η.
Signals:u(k) is input,y(k) is output,x(k) is an unmeasurable intermediate signal.

Fig. 2. The Hammerstein system with the process noisev(k) and that of the measuremente(k). The values and
notation are the same as in (Fig. 1).
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G(q−1,Θ) =
b0 + b1q

−1 + . . . + bmq−m

1 + a1q−1 + . . . + amq−m
=

B(q−1,b)
1 + A(q−1,a)

(1)

with a finite number of parameters

ΘT=(b0, b1, . . . , bm, a1, . . . , am), bT=(b0, b1, . . . , bm), aT=(a1, . . . , am), (2)

that are determined from the setΩ of permissible parameter valuesΘ. Hereq−1 is a
backward time-shift operator; the setΩ is restricted by conditions on the stability of the
respective difference equation. The output signal

y(k) =
B(q−1,b)

1 + A(q−1,a)
x(k) + e(k), (3)

is generated by the linear part of the Hammerstein system (1) as a response to the un-
known intermediate signal

x(k) = f
(
u(k), η

)
+ v(k). (4)

Here the nonlinear partf(·, η) with the vector of parametersη is a saturation-like func-
tion of the form (Roll, 2003)

f
(
u(k), η

)
=




c0 + c1u(k) if u(k) � −a,
u(k) if −a < u(k) � a,
d0 + d1u(k) if u(k) > a,

(5)

that could be partitioned into three functions. These functions are:
f{u(k;Θ), c, a} = c0 + c1u(k), f{u(k;Θ), a} = u(k), andf{u(k;Θ),d, a} =

d0 + d1u(k). The functionf{u(k;Θ), c, a} has only negative values, whenu(k) � −a,
f{u(k;Θ), a} has arbitrary positive, as well as negative values, when−a < u(k) � a,
and f{u(k;Θ),d, a} has only positive values, whenu(k) > a. Here u(k;Θ) ≡
u(k), cT = (c0, c1), c0 = −a(1 − c1), 0 < c1 < a, dT = (d0, d1), d0 = a(1 − d1), 0 <

d1 < a.
The process noisev(k) ≡ ξ(k) and the measurement noisee(k) ≡ ζ(k) are added

to an intermediate signalx(k) and the outputy(k), respectively,ξ(k), ζ(k) are mu-
tually noncorrelated sequences of independent Gaussian variables withE{ξ(k)} =
0, E{ζ(k)} = 0, E{ξ(k)ξ(k + τ)} = σ2

ξδ(τ), E{ζ(k)ζ(k + τ)} = σ2
ζδ(τ); E{·} is

a mean value,σ2
ζ , σ2

ξ are variances ofζ andξ, respectively,δ(τ) is the Kronecker delta
function.

The aim of the given paper is to estimate parameters (2) of the linear part (1), as well
as parametersη = (c0, c1, d0, d1)T and the thresholda of nonlinearity (5) by processing
N pairs of observationsu(k) andy(k) of the Hammerstein system (Fig. 2).
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3. The Data Reordering

Let us rearrange the datau(k) ∀k ∈ 1, N in an ascending order of their values. Thus,
the observations of the rearranged inputũ(k) of the Hammerstein system should be par-
titioned into three data sets: left-hand side data set (N1 samples) with values lower than
or equal to negativea, middle data set (N2 samples) with values higher than negative
a but lower or equal toa, and right-hand side data set (N3 samples) with values higher
thana. HereN = N1 + N2 + N3. From the engineering point of view it is assumed that
no less than 50% observations are concentrated on the middle-set and approximately by
25% or less on any side set. Hence, the observations of the rearranged inputũ(k) with the
highest and positive values will be concentrated on the right-hand side set, while the ob-
servations with the lowest and negative values on the left-hand side one. Thus, the middle
data set̃u(k) ∀ k ∈ N1 + 1, N2 is, really, reordered in an ascending order of their values
u(k) ∀ k ∈ 1, N with some portions of missing observations within it that belong to the
left-hand and right-hand side sets of the data.

Let us suppose now that the process noisev(k) is absent. Then the observations of the
unknown intermediate signalx(k) are coincident with the respective observations of the
middle data set̃u(k) equivalent to those input observationsu(k) that passed the piecewise
nonlinearity (5) without any processing. In such a case, one could get these observations
simply by choosing the upper interval bound lower than the 75 percentage and the lower
interval bound higher than the 25 percentage of the sampled reordered observations of
ũ(k).

Let us now partially reconstruct an unmeasurable intermediate signalx(k), choosing
in the initial order only those values ofu(k) ∀ k ∈ 1, N that are present in the middle
data set of̃u(k) ∀ k ∈ N1 + l1, N2 − l2. Herel1, l2 are some portions of observations of
the middle data set of̃u(k) ∀ k ∈ N1 + 1, N2. In such a case one could getx(k) ≡ u(k)
for k = 1+ l(k), such thatl(k) � l(k + 1), wherel(k) is a positive time-varying integer.
Really, assuming that the process noisev(k) is absent, the available sequencex(k) is
equivalent to the input sequenceu(k) but with some portions of missing observations in it
that belong to the left-hand or right-hand side sets of the rearranged data. It could be used
to calculate the estimates of parameters (2) of the transfer functionG(q,Θ) according to

Θ̂ = (X̃T X̃)−1X̃T Ỹ, (6)

if a number of equations of the initial system of linear equations

Y = XΘ, (7)

with

X =




x(m + ν) . . . x(ν) −y(m + ν) . . . −y(ν)
x(m + ν + 1) . . . x(ν + 1) −y(m + ν + 1) . . . −y(ν + 1)

...
...

...
...

x(N − 1) . . . x(N − m) −y(N − 1) . . . −y(N − m)


 , (8)
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andY = (y(m + ν + 1), y(m + ν + 2), ..., y(N))T , that correspond to the left- and
right-hand side sets of the reordered input data are rejected beforehand. Here

Θ̂T = (b̂, â)T , b̂T = (b̂0, b̂1, . . . , b̂m), âT = (â1, . . . , âm) (9)

are(2m+1)×1, (m+1)×1, m×1 vectors of the estimates of parameters (2), respectively,
X̃ is the(L−m)×(2m+1) matrix, andỸ is the(L−m−1)×1 vector that are obtained
by rejecting respective number of rows of the system (7), andL = N −N1−N3− l1− l2
is the whole number of observations of the middle data setũ(k) ∀ k ∈ N1 + l1, N2 − l2
to be processed.

Afterwards, one could completely reconstruct the unknown intermediate signal
x(k) ∀ k ∈ 1, N according to the formula

x̂(k) = G−1(q−1, Θ̂)y(k) =
1 + A(q−1, â)

B(q−1, b̂)
y(k) (10)

or the expression in an extended form

x̂(k) =
1

b̂0

y(k) +
â1

b̂0

y(k − 1) + . . . +
âm

b̂0

y(k − m)

− b̂1

b̂0

x̂(k − 1) − . . . − b̂m

b̂0

x̂(k − m), (11)

if in (1) their estimates are substituted instead of respective parameter sets (2). Herex̂(k)
is an estimate ofx(k) consisting of their reconstructed values,b̂0 �= 0.

Estimates of the parametersc0, d0 and c1, d1 are calculated by the ordinary least
squares, too. In such a case, the sums of the form

I(c0, c1) =
N1∑
i=1

[˜̂x(i) − c0 − c1ũ(i)
]2 = min!, (12)

I(d0, d1) =
N∑

j=N1+L+1

[˜̂x(j) − d0 − d1ũ(j)
]2 = min!, (13)

are to be minimized in respect of parametersc0, c1 andd0, d1, respectively, using side-
set data particles of̂x(k) and respective observations of the rearranged input signal
ũ(k). Here ˜̂x(k) are observations of the signalx̂(k) that were rearranged in accordance
with ũ(k).

The estimates of parametersc1, d1 andc0, d0 are calculated according to (Malinvaud,
1969)

ĉ1 =
∑N1

i=1
˜̂x(i)ũ(i)∑N1

i=1 ũ2(i)
, d̂1 =

∑N3
j=1

˜̂x(j)ũ(j)∑N3
j=1 ũ2(j)

, (14)

ĉ0 =
∑N1

i=1[˜̂x(i) − ĉ1ũ(i)]
N1

, d̂0 =

∑N3
j=1[˜̂x(j) − d̂1ũ(j)]

N3
, (15)
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respectively, but using side-sets data particles ofũ(k) and associated observations of the
auxiliary signalx̂(k), that are reordered in accordance withũ(k).

The estimates of the thresholda for the right-hand side and left-hand side sets are
found according to

â = d̂0/(1 − d̂1), â = ĉ0/(1 − ĉ1), (16)

respectively.
It should be noted that the simple input and associated output data reordering with a

following reconstruction of an intermediate signal that is really unknown, allow us to turn
the nonlinear problem of parametric estimation of Hammerstein systems to a linear one
where linear estimators based on the ordinary LS, are efficient. The presented algorithm
is not only adapted to the specific nonlinearity considered with a limited general interest,
– the procedure used in data reordering could be applied to robust parametric identifica-
tion of LTI dynamic systems, by processing output and noisy input observations in the
presence of lonely or patchy outliers of large magnitude. The same approach, based on
the data reordering but used for parametric identification of the Wiener system (Fig. 1)
with the nonlinearity of the form (5), is analysed in (Pupeikis, 2003). In such a case, all
observations of the input are available for processing. Therefore the FIR (finite impulse
response) model could be used to replace the initial transfer functionG(q−1,Θ) of the
linear part of the Wiener system. Thus, the dependence of some regressors on the pro-
cess output will be diminished, and the assumption that the regressors depend only on
the non-noisy input signal will be satisfied. Besides, by applying the FIR model for the
parametric identification of the Wiener system one avoids the influence of some missing
regressors, appearing in the regression matrix. This opportunity does not take place in
the Hammerstein system (Fig. 2) due to the presence of some missing observations in the
input sequence.

4. Numerical Simulation

The true non-noisy intermediate signalx(k) k = 1, N, of the Hammerstein sys-
tem (Figs. 3b, 4b) is given by

x(k) =




−0.9 + 0.1u(k) if u(k) � −1,

u(k) if −1 < u(k) � 1,
0.9 + 0.1u(k) if u(k) > 1

(17)

with the sum of sinusoids (Fig. 3a)

u(k) =
1
20

20∑
i=1

sin(iπk/10 + φi) (18)
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Fig. 3. The signals of the simulated Hammerstein system with a piecewise nonlinearity (17): inputu(k), cal-
culated by (18)(a), intermediate signalx(k) (b), inputu(k) and intermediate signalx(k) (dotted line)(c) and
outputy(k) (d).

Fig. 4. The signals of the simulated Hammerstein system with a piecewise nonlinearity (17): inputu(k) is white
Gaussian noise (a), intermediate signalx(k) (b), inputu(k) and intermediate signalx(k) (dotted line)(c) and
outputy(k) (d).

and white Gaussian noise with variance 1.7 (Fig. 4a) as inputs to the nonlinear block. Here
in (18) the stochastic variablesφk with a uniform distribution on[0, 2π] were chosen. The
true output signal (Figs. 3d, 4d) is described by

y(k) = G(q−1,Θ)x(k) =
b1q

−1

1 + a1q−1
x(k) (19)

with b1 = 0.3 anda1 = −0.5.
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Fig. 5. Samples ofu(k) (a) (see Fig. 3a) and its data sets: left (b), middle (c), right (d)(here the observations,
that belong to the other data set, are equal to zeros). Inputu(k) of the form (18).

Fig. 6. Samples of signalu(k) (a) (see Fig. 4a) and its data sets: left (b), middle (c), right (d). Inputu(k) is
white Gaussian noise.

First of all, N = 100 data points have been generated without additive process and
measurement noises (Figs. 3, 4). Afterwards, theLS problem (6) was solved, using 56
and 55 rearranged observations of the input, respectively (Figs. 5c, 6c), excluding zeros,
and associated observations of the respective outputs (Figs. 3d, 4d). The estimatex̂(k) of
the intermediate signalx(k) was reconstructed according to

x̂(k) =
1

b̂1

y(k + 1) +
â1

b̂1

y(k), (20)
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Fig. 7. The reordered in an ascending order of their values signalu(k) (a) (see Fig. 5a) and its rearranged data
sets: left (b), middle (c), right (d) (here the observations, that belong to the other data set, are equal to zeros).

Fig. 8. The reordered in an ascending order of their values signalu(k) (a) (see Fig. 6a) and its rearranged data
sets: left (b), middle (c), right (d).

replacing unknown true values of parameters by their estimates. In such a case, the esti-
mateŝb1, â1 were approximately equal to the true parameters:b1 = 0.3, a1 = 0.5. The
reconstructed versions of the intermediate signalx(k) are shown in (Figs. 9a, b).

It ought to be noted that the accuracy of estimates of the intermediate signal, cal-
culated by formula (20), for both inputs is the same, when the process- and measure-
ment noises are absent. Ifx̂(k) has been obtained, then it is simple to separate differ-
ent particles of observations ofx̂(k) that belong to the respective side-sets of reordered
u(k) (Figs. 5–8). The estimates of parametersc1, d1 andc0, d0 are calculated according to
formulas (14) and (15), respectively. In such a case, the rearranged observations ofx̂(k)
andu(k) were substituted in formulas (14) and the estimates ofc1 andd1 were deter-
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Fig. 9. The intermediate signalx(k) (continuous line), and the reconstructed versions ofx(k) (dotted line),
calculated using Eq. (11) with the sum of sinusoids (Fig. 3a) (a) and white Gaussian noise (Fig. 4a) (b).

mined:ĉ1 = d̂1 = 0.1. Then, the estimateŝc0 andd̂0 were calculated by (15). Their val-
ues are also coincidental with the values of true coefficients:ĉ0 = −0.9, while d̂0 = 0.9.
It should be noted thatN1 = 19, N3 = 23 for the periodical signal (18) (Fig. 3a) and
N1 = 25, N3 = 20 for the Gaussian white noise (Fig. 4a) were used to calculate the
estimateŝc0, ĉ1, d̂0, d̂1, respectively. The estimates of the threshold were established by
Eqs. (16). The values of estimatesâ were equal to the true valuea = 1.

In order to determine how realizations of different process- and measurement noises
affect the accuracy of estimation of unknown parameters, we have used the Monte Carlo
simulation with 10 data samples, each containing 100 pairs of input-output observations.
10 experiments with the same realization of the process noisev(k) and different real-
izations of the measurement noisee(k) with different levels of its intensity have been
carried out. The intensity of noises was assured by choosing respective signal-to-noise
ratiosSNR (the square root of the ratio of signal and noise variances). For the process
noise,SNRv was equal to 100, and for the measurement noise,SNRe: 1, 10, 100. As
inputs for all given nonlinearities the periodical signal (18) and white Gaussian noise
were chosen. In eachith experiment the estimates of parameters were calculated. During
the Monte Carlo simulation averaged values of estimates of the parameters and of the
threshold and their confidence intervals were calculated. In Tables 1 and 2, for each input
the averaged estimates of parameters and the thresholda of the simulated Hammerstein
system (Fig. 2) with the linear part (19) (b1 = 0.3; a1 = −0.5) and the piecewise nonlin-
earity (17) (c0 = −0.9, c1 = 0.1, d0 = 0.9, d1 = 0.1) with their confidence intervals are
presented. It ought to be noted that in each experiment here the value ofSNRv was fixed
and was the same, while the values ofSNRe were varying due to different realizations of
e(k). The Monte Carlo simulation (Tables 1, 2) implies that the accuracy of parametric
identification of the Hammerstein system depends on the intensity of measurement noise.
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Table 1

Averaged estimates of the parametersb1, a1, c0, c1, d0, d1, and thresholdsa, −a
with their confidence intervals. Input: the periodical signal.SNRv = 100

Estimates SNRe = 1 SNRe = 10 SNRe = 100

b̂1 0.39 ± 0.10 0.32 ± 0.03 0.3 ± 0.01

â1 −0.09 ± 0.09 −0.39 ± 0.04 −0.48 ± 0.01

ĉ0 −1.20 ± 0.39 −1.04 ± 0.09 −0.99 ± 0.03

ĉ1 0.02 ± 0.24 0.04 ± 0.07 0.06 ± 0.02

d̂0 0.19 ± 0.83 0.55 ± 0.30 0.78 ± 0.1

d̂1 0.57 ± 0.61 0.31 ± 0.21 0.15 ± 0.07

â 0.62 ± 0.83 0.57 ± 0.55 0.91 ± 0.06

−â −1.23 ± 0.36 −1.09 ± 0.08 −1.05 ± 0.02

Table 2

The values and notation are the same as in Table 1. Input – the Gaussian white noise

Estimates SNRe = 1 SNRe = 10 SNRe = 100

b̂1 0.34 ± 0.05 0.32 ± 0.01 0.3 ± 0.00

â1 −0.17 ± 0.11 −0.42 ± 0.04 −0.48 ± 0.02

ĉ0 −1.08 ± 0.51 −0.95 ± 0.16 −0.93 ± 0.05

ĉ1 0.02 ± 0.28 0.07 ± 0.08 0.07 ± 0.03

d̂0 0.94 ± 0.34 0.91 ± 0.13 0.89 ± 0.04

d̂1 0.07 ± 0.18 0.08 ± 0.07 0.09 ± 0.02

â 0.97 ± 0.22 0.98 ± 0.08 0.98 ± 0.03

−â −1.05 ± 0.25 −1 ± 0.09 −1 ± 0.03

In the absence of process and measurement noises, estimates of the parameters and
thresholds, obtained for the Hammerstein as well as Wiener systems having identical
linear and nonlinear parts, are the same as the respective true values of parameters and
thresholds, if the assumption that no less than 50% observations are concentrated on the
middle-set and approximately by 25% or less on any side set is valid. On the other hand,
in the presence of abovementioned noises, estimates of parameters of both systems are
different due to artificial correlating of process noisev(k) by the linear part of the Ham-
merstein system. In such a case, the estimates for the Wiener system are more accurate
than those derived for the Hammerstein one, especially, for intensive noises (Pupeikis,
2003).



66 R. Pupeikis

5. Conclusions

A problem of identification of Hammerstein systems having saturation-like functions
could be essentially reduced by a simple data rearrangement in an ascending order ac-
cording to their values. Thus, the available input data are partitioned into three data sets
that correspond to distinct threshold regression models. Later on the estimates of un-
known parameters of linear regression models can be calculated by processing respective
sets of the rearranged input and associated output observations. A technique, based on or-
dinaryLS, is proposed here for estimating the parameters of linear and nonlinear parts of
the Hammerstein system (Fig. 2), including the unknown threshold of the piecewise non-
linearity, too. During successive steps the unknown intermediate signal is reconstructed
and the missing values of observations of respective data particles are replaced by their
estimates. Various results of numerical simulation (Figs. 3–9), including that of Monte
Carlo (Tables 1, 2) prove the efficiency of the proposed approach for the parametric iden-
tification of Hammerstein systems.
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Apie Hameršteino sistem↪u, turin či ↪u dalimis tiesišk ↪a netiesiškum↪a su
teigiamais nuožulnumais, identifikavim ↪a

Rimantas PUPEIKIS

Straipsnyje nagriṅejamas Hameršteino sistem↪u laipsniškas dalimis tiesiško netiesiškumo su
nežinomais nuožulnumais bei nežinomu slenksčiu ir tiesiṅes dalies, aprašomos skirtumine lygtimi
su nežinomais koeficientais, junginys. Parodyta, kad pertvarkius↪iėjimo signalo steḃejimus pagal
didėjaňcias j ↪u reikšmes, galima išskirti vidurin↪e steḃejim ↪u dal↪i, atitinkaňci ↪a nestebimo tarpinio sig-
nalo steḃejimus. Pasīulytas pilno tarpinio signalo atstatymo būdas pagal↪iėjimo signalo viduriṅes
dalies ir atitinkamus iṧejimo signalo steḃejimus. Nežinom↪u tiesiṅes Hameršteino sistemos dalies
koeficient↪u ir dalimis tiesiško netiesiškumo parametr↪u bei slenkšci ↪u ↪iverčiai gaunami mažiausi↪uj ↪u
kvadrat↪u metodo algoritmais, apdorojant stebim↪u pertvarkyt↪u ↪iėjimo, iṧejimo bei atkurto tarpinio
signal↪u duomenis. Pateikti modeliavimo rezultatai.


