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Abstract. The paper analyses the problem of aggregation of internal quality characteristics of an
information system specification language. It surveys main categories of aggregation operators,
their mathematical and behavioural properties and proposes how to aggregate quality characteristics
taking into account measurements of all lowest-level characteristics in a proper way. The paper
shows that four different kinds of dependencies can occur among characteristics of internal quality
and discusses in detail what aggregation techniques are reasonable for each case. It also describes
a heuristic for minimisation of possible deviations of measurement results obtained after using a
number of different metrics or because of the inaccuracy of used measurement techniques.
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1. Introduction

The ISO/IEC 9126 standard (ISO/IEC 9126, 1991), distinguishes three kinds of quality:
internal quality, external quality and quality in use. Internal quality describes the level to
which the product was developed following “good engineering” practices. In other words,
it evaluates the product from the point of view of developers. External quality describes
the level to which the product correctly provides the expected services. It treats the pro-
duct as “black box” and evaluates it from the point of view of potential users. Quality in
use describes the level to which a product used by particular users meets their needs to
achieve some specified goals. External quality of software in many aspects depends on
its internal quality. Sometimes it is not simple to distinguish external quality and internal
quality at all. Although in the field of Software Engineering such distinction is deeply
reasonable, because “good engineering” practices play in this field very important role,
in many other fields, including specification languages, the situation is slightly different.
To distinguish internal and external quality of a specification language is very difficult
and sometimes even impossible. In addition, there are no serious reasons to make such
distinction for specification languages. Thus, in this paper, we will distinguish only two
kinds of quality: internal quality and quality in use and use the term “internal quality” to
address both internal and external quality. We understand internal quality of a specifica-
tion language as the descriptive characteristic of a language as a product independently
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from any context of use. It means that internal quality is described by some value ob-
tained from measurements. Meanwhile, quality in use is evaluative characteristic of a
language obtained by making a judgment based on criteria that determine the worthiness
of a language for a particular project. In previous works (Caplinskaset al., 2002; Caplin-
skas and Gasperovic, 2005a) a quality model to evaluate quality in use and taxonomy of
characteristics of internal quality have been proposed. The main purpose of this paper is
to propose aggregation techniques required to calculate internal quality from the results
of measurements. Aggregation techniques are used for several purposes: to aggregate dif-
ferent sub-characteristics of internal quality; to aggregate results of several measurements
of a particular quality sub-characteristic obtained using the same metric; and to aggregate
results of measurements of a particular quality sub-characteristic obtained using several
different metrics.

In the first case the problem is to bring to light what kinds of dependencies can occur
among quality sub-characteristics in the taxonomy of characteristics of internal quality
and to decide in which way to aggregate sub-characteristics in order to take into account
all measurements in a proper way. The paper is devoted mainly to the solution of this
problem.

In last two cases the problem is to minimise possible deviations generated by short-
comings of the particular metric or by inaccuracy of the particular measurement. The
paper considers this problem too but only in a very limited extent. It does not provide
any theoretical analysis of the problem, however, it proposes some heuristic, which is
acceptable in most of practical situations.

The rest of the paper is organised as follows. Section 2 briefly surveys the theory of
aggregation. Section 3 describes possible kinds of aggregation operators. Section 4 con-
tains the main results of the paper. It analyses what kinds of dependencies among quality
sub-characteristics can occur in the taxonomy of characteristics of internal quality and for
each situation proposes methods to aggregate appropriate sub-characteristics. Section 5
proposes a heuristic to minimise deviations generated by shortcomings of the particular
metric or by inaccuracy of the particular measurement. Section 6 concludes the paper.

2. Preliminaries

Aggregation of information plays an important role in many fields. According to (De-
tyniecki, 2000) the purpose of aggregation is “the simultaneous use of different pieces of
information (provided by several sources) in order to come to a conclusion or a decision”.
More exactly, “Aggregation refers to the process of combining values (numerical or non
numerical) into a single one, so that the final result of aggregation takes into account in
a given fashion all the individual aggregated values” (Grabischet al., 1998). A number
of approaches, including rule-based approach, neuronal networks, fusion specific tech-
niques, probabilistic approach, evidence theory, possibility theory, fuzzy set approach,
and many other approaches (e.g., data aggregation approach (Adomenas and Ciucelis,
2002)), have been proposed for this aim. However, all proposed approaches are based
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at some extent on the numerical aggregation. In other words, all approaches include
aggregation of some numerical values. More generally, “the aggregation operators are
mathematical objects that have the function of reducing a set of numbers into a unique
representative (or meaningful) number” (Detyniecki, 2000). In theoretical considerations
it is assumed usually that both aggregated values and result of aggregation belong to some
finite interval, say interval [0,1], without any assumption about their nature. The choice
of the interval [0,1] is not restrictive because any interval can be transformed into this
interval using a positive linear transformationax+ b, a > 0 (Grabischet al., 1998). Then
an aggregation operator is defined as a function that assigns a real numbery (y ∈ [0, 1])
to anyn-tuple (x1, x2, . . . , xn |xi ∈ [0, 1]).

Fundamental properties of aggregation operators have been considered by (Mayor and
Trillas, 1986; Ovchinnikov, 1998; Mesiar and Komorníková, 1997; Detyniecki, 2000).
These properties can be divided into two groups: mathematical properties and behavioural
properties. To be intuitively meaningful, an aggregation operator must satisfy at least the
following axioms (Detyniecki, 2000):

Aggreg (x) = x (identity), (2.1)

Aggreg (0, . . . , 0) = 0, Aggreg (1, . . . , 1) = 1 (boundary conditions), (2.2)

Aggreg (x1, x2, . . . , xn) � Aggreg (y1, y2, . . . , yn) (monotonicity). (2.3)

if (x1, x2, . . . , xn) � (y1, y2, . . . , yn).

These axioms define fundamental mathematical properties that are inherent to any
aggregation operator.

It is proven (Detyniecki, 2000) that anyAggreg operator is continuous with respect
to each variable, associative, commutative, bisymmetric, and idempotent. However, these
properties are non-axiomatic and can be derived from the axioms (2.1), (2.2) and (2.3).
Besides, it is proven that some specific classes of aggregation operators have such mathe-
matical properties as a neutral element, an absorbent element (annihilator), compensation
(Pareto property), counterbalancement and reinforcement. Finally, some aggregation ope-
rators can be stable with respect to linear changes of measurement scale and invariant for
any bijection (e.g., in case when aggregation operator is defined as a projection).

Behavioural properties are specific for each class of aggregation operators. In other
words, each class has individual behavioural properties. In general, there exist four be-
havioural properties:

• possibility to express weights of importance on the values that are aggregated,
• possibility to express relations between the values that are aggregated,
• possibility to take into account the aims of aggregation, and
• possibility of an easy semantic interpretation (i.e., being able to relate the values

that are aggregated to the behaviour implied by aggregation operator).
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3. Aggregation Operators

There exist a great variety of aggregation operators. They can be roughly classified into
several categories (Grabischet al., 1998), each possessing distinct behaviour or semantic:
conjunctive, disjunctive, averaging (or compensative), non-compensative, and weighted
operators, according to the way the values are aggregated.

Conjunctive operators are used to aggregate values when these values are orthogonal.
The term “conjunctive” accents that, in this case, aggregation is in some way analogous
to the logical operator “and” because the resulting value is high if and only if all the
aggregated values are high. For binary operator this requirement can be expressed in the
following axiom (Grabischet al., 1998):

Aggreg (1, a) = a, ∀a ∈ [0, 1]. (3.1)

It means that for conjunctive operators 1 is a neutral element.
Important sub-category of conjunctive operators is so called triangular norms

(t-norms). Triangular norms are often denoted byT . They have been introduced by
Schweizer and Sklar (Schweizer and Sklar, 1960; 1983) to model distance in probabilistic
spaces.t-norm is a symmetric, associative, non-decreasing for any argument mapping

T : [0, 1]n → [0, 1], (3.2)

for which 1 is neutral element. In aggregation theoryt-norms are used to generalise
Boolean logical operator “and” to multi-valued logic. Fort-norms it is true that

T (x, y) � min(x, y). (3.3)

A t-norm is called strict if it is strictly increasing for any argument. Well-known exam-
ples oft-norms are operatormin(x, y) and productxy. Axiomatic of t-norms attempts
to capture the basic properties of set intersection. It is one of the main advantages of
t-norms. The main disadvantages are thatt-norms generally do not satisfy criteria (idem-
potence, compensativeness, scale invariance, etc.) required for the aggregation of values
that have different nature, for example, for the aggregation results of measurements ob-
tained using different metrics.

Disjunctive operators are dual of conjunctive operators. They are used in cases when
aggregation operator must have properties analogous to the logical operator “or” or, in
other words, when the resulting value must be high if and only if at least one of aggregated
values is high. It will be low if and only if all aggregated values are low. For binary ope-
rator this requirement can be expressed in the following axiom (Grabischet al., 1998):

Aggreg (0, a) = a, ∀a ∈ [0, 1]. (3.4)

It means that for disjunctive operators 0 is a neutral element.
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Important sub-category of disjunctive operators is so called triangular conorms (t-
conorms,s-norms). Triangular conorms are often denoted by⊥. t-conorm is a symmetric,
associative, non-decreasing for any argument mapping

⊥: [0, 1] × [0, 1] → [0, 1], (3.5)

that satisfies the axiom (3.4). In aggregation theoryt-conorms are used to generalise
Boolean logical operator “or” to multi-valued logic. Fort-conorms it is true that

⊥(x, y) � max(x, y). (3.6)

Using the construction

⊥(x, y) := 1 − T (1 − x, 1 − y) (3.7)

for anyt-normT dualt-conorm⊥ can be defined (Fullér, 2005).t-norm and at-conorm
are dual if they satisfy the DeMorgan law (Detyniecki, 2000):

¬T (x, y) = ⊥(¬x,¬ y), (3.8)

where negation usually is defined as a strong negation

¬x = 1 − x. (3.9)

Well-known examples oft-conorms are operatormax(x, y) and probabilistic addition
x+ y−xy. Axiomatic oft-conorms attempts to capture the basic properties of set union.
It is one of the main advantages oft-conorms. The main disadvantage is thatt-conorms,
similarly ast-norms cannot be used to aggregate the values of different nature.

For details of basic analytical and algebraic properties oft-norms andt-conorms see
(Klementet al., 2002).

The third category of aggregation operators is compensative operators that are neither
conjunctive nor disjunctive. They are compensative in the sense that low values are com-
pensated by high values and the result of combination is a medium value. Thus, compen-
sative operators are averaging operators. They are monotonic, idempotent and are suit-
able for combining the values of different nature. Examples of compensative operators
are mean operators1, median and order statistics2. A family of mean operators formed
by different extensions of arithmetic mean is called quasi-arithmetic means. It is defined
(Kolmogorov, 1930) as follows:

Aggreg f (x1, x2, . . . , xn) = f−1

[ n∑
i=1

1
n

f(xi)
]
, (3.10)

1Quasi-arithmetic means are idempotent, continuous, strictly monotonic, compensative and decomposable.
They may have a neutral element. Arithmetic mean has the following additional property: it is stable with
respect to linear changes of measurement scale.

2Median and statistics are idempotent, continuous, monotonic, compensative and stable with respect to
linear changes of measurement scale. They may have a neutral element. In addition, medians are associative.
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wheref is any continuous strictly monotonic function.
Conjunctive, disjunctive and compensative operators are the main categories of ag-

gregation operators. However, there exist some aggregation operators, so called non-
compensative operators, which do not belong to any of these categories. Usually, non-
compensative operators are more or less of average type. However, they may extend be-
yond minimum and maximum operators. Examples of non-compensative operators are
symmetric sum (Silvert, 1979) and compensatory operators (Zimmermann and Zysno,
1980). Symmetric sums are continuous, monotonic and commutative. Compensatory ope-
rators are a mix oft-norm andt-conorm. Such mixed operators provide a kind of compen-
sation of each other by the values that are aggregated. They have rather limited proper-
ties: continuity, monotonicity, and associativity. Some non-compensative operators have
a neutral element.

All discussed categories of aggregation operators are non-weighted or, in other words,
treat all arguments as of the same importance. However, in many cases arguments are not
of the same importance. So, in such cases, the weights of arguments must be introduced.
Generally, weights in aggregation can be necessary either from qualitative or quantitative
reasons. Qualitative reasons arise when the values that are aggregated have different im-
portance. Quantitative reasons arise in cases when the input of aggregation operator has
different frequencies or cardinalities. Introduction of weights extends non-weighted ope-
rators. For example, minimum and maximum operators have been extended by Dubois
and Prade (Dubois, 1985) to weighted minimum and weighted maximum operators:

w min
w1,...,wn

(x1, x2, . . . , xn) =
n

min
i=1

[
max(1 − wi, xi)

]
, (3.11)

w max
w1,...,wn

(x1, x2, . . . , xn) =
n

max
i=1

[
min(wi, xi)

]
, (3.12)

where weightswi � 0 for all i = 1, 2, . . . , n andmaxn
i=1(wi) = 1.

These operators can be generalised to weightedt-norm Tw and weightedt-conorm
⊥w (Moraga, 2001). Letw = [w1, w2, . . . , wn], wherewi ∈ [0, 1], 1 � i � n. Then
∀xi ∈ [0, 1], 1 � i � n

Tw(x1, . . . , xn)=T
(
⊥(x1, 1−w1),⊥(x2, 1−w2), . . . ,⊥(xn, 1−wn)

)
, (3.13)

⊥w(x1, . . . , xn) = ⊥
(
T (x1, w1), T (x2, w2), . . . , T (xn, wn)

)
. (3.14)

However, axiomatic definition oft-norms does not allow weighted aggregation. In
order to obtain a weighted extension oft-norms, some of the axiomatic requirements must
be dropped. Weighted operators by definition are not commutative, so commutativity and
associativity axioms are eliminated for them.

EXAMPLE 1. ConsiderT = xy is the probabilistic multiplication and⊥ = x + y − xy

is the probabilistic addition. Then forn = 2 the weightedt-norm and the weighted
t-conorm will be the following:

Tw(xi, yi) =
(
1 − w1(1 − x1)

)(
1 − w2(1 − x2)

)
, (3.15)
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⊥w(xi, yi) = w1x1 + w2x2 − w1w2x1x2. (3.16)

The whole family of quasi-arithmetic means (3.10) is extended by

Aggreg f (x1, x2, . . . , xn) = f−1

[ n∑
i=1

wif(xi)
]
, (3.17)

wherewi are the weights of the valuesxi.

EXAMPLE 2. Consider the arithmetic mean is extended to the weighted mean in the fol-
lowing way:

Aggreg (x1, x2, . . . , xn) =
n∑

i=1

wixi, (3.18)

where the weights are normalised so that
∑n

i=1 wi = 1.

As a natural framework for the inclusion of the behavioural properties of aggregation
operators the family of ordered weighted operators (OWA) has been proposed (Yager,
1988). OWA operators are idempotent, monotonic and commutative. They are important
because they integrate both conjunctive and disjunctive behaviour. The OWA family is
defined as follows:

Aggreg OWA(x1, x2, . . . , xn) =
n∑

i=1

wiorder (i, x1, x2, . . . , xn), (3.19)

where functionorder : {1, 2, . . . , n} × [0, 1]n → [0, 1] defines ordering of the values
x1, x2, . . . , xn in increasing order3. Thus, in OWA operator the weight is associated with
a particular ordered position of aggregate but not with a particular value (Fullér, 1996).
The main advantage of OWA operators is their versatility (Detyniecki, 2000; Grabisch
et al., 1998). In case, whenw1 = 1 and all other weights are equal to zero, OWA is
equivalent to maximum operator; in case, when onlywn = 1 and all other weights are
equal to zero it is equivalent to minimum operator. Arithmetic mean also is a particular
case of OWA operator. It is obtained when all weights are equal to1/n.

Further generalisation of average operators is so-called fuzzy integrals. It is evident
that discretisation of traditional integral (including Lebesgue integral) of a function is
a particular case of averaging operator because it represents the average value of this
function (Grabischet al., 1998; Detyniecki, 2000). Sugeno (Sugeno, 1974) and other
authors extended the notion of Lebesgue integrals by introducing the fuzzy measure that
is considered as the weight of importance of a set of the values that are aggregated. It is
defined as a mapping

m: P (V ) → [0, 1], (3.20)

3Using substitutionn − i + 1 it is possible to order the values in decreasing order.
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whereV = {v1, v2, . . . , vn} is a set of the values that are aggregated andP (V ) denotes
the power set ofV . In addition, the functionm must satisfy boundary conditions and
monotonicity axiom:

m(∅) = 0, m(V ) = 1; (3.21)

∀A, B ∈ P (V )
(
(A ⊂ B) ⇒

(
m(A) � m(B)

))
. (3.22)

Lebesgue integrals with fuzzy measure are called fuzzy integrals. Discrete fuzzy in-
tegrals can be seen as particular cases of averaging operators, too. There are two kinds
of fuzzy integrals: Sugeno integrals and Choquet integrals. The discrete Choquet integral
of valuesx1, x2, . . . , xn for the valuesV = {v1, v2, . . . , vn} that are aggregated with
respect to a fuzzy measurem is defined as follows:

Aggreg Choquet(x1, x2, . . . , xn) =
n∑

i=1

(
order (i, x1, x2, . . . , xn)

− order (i − 1, x1, x2, . . . , xn)
)
m

(
{xi, xi+1, . . . , xn}

)
, (3.23)

where it is supposed thatorder (0, x1, x2, . . . , xn) = 0.
In the case when fuzzy measurem0 = m(∅) = 0, andmi = m(S) = i for any

S ⊆ {x1, x2, . . . , xn} of the cardinalityi, the Choquet integral corresponds to the OWA
operator:

Aggreg OWA(x1, x2, . . . , xn) =
n∑

i=1

(mi − mi−1)order (i, x1, x2, . . . , xn). (3.24)

And vice versa, each OWA operator corresponds to the Choquet integral with the
measuremk =

∑n
i=k wi.

The discrete Sugeno integral of valuesx1, x2, . . . , xn for the valuesV = {v1, v2, . . . ,

vn} that are aggregated with respect to a fuzzy measurem is defined as follows:

Aggreg Sugeno =
n

max
i=1

(
min

(
order (i, x1, x2, . . . , xn)m(xi, xi+1, . . . , xn)

))
, (3.25)

where it is supposed thatorder (0, x1, x2, . . . , xn) = 0.
Sugeno integrals generalise the weighted minimum and the weighted maximum. In

the case when fuzzy measurem0 = m(∅) = 0, andmi = m(S) = i for any S ⊆
{x1, x2, . . . , xn} of the cardinalityi, the Sugeno integral corresponds to the weighted
maximum:

Aggreg max =
n

max
i=1

(
min

(
order (i, x1, x2, . . . , xn)mi

))
. (3.26)
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In the case when fuzzy measurem0 = m(∅) = 0, andmi = m(S) = i for anyS ⊆
{x1, x2, . . . , xn} of the cardinalityi, the Sugeno integral corresponds to the weighted
minimum:

Aggreg min =
n

min
i=1

(
max

(
order (i, x1, x2, . . . , xn)mi

))
. (3.27)

Choquet integrals and Sugeno integrals have been widely studied in literature and
compared to each other (see, for example (Bolanoset al., 1996)). These integrals are
complementary in the sense that Choquet integrals can be seen as a kind of average,
while Sugeno integrals can be seen as a kind of median. Thus, each integral is intended
to be used for different purposes.

4. Aggregation of Quality Characteristics

Let us consider further how to apply surveyed above aggregation theory in order to solve
the problem of aggregation of quality characteristics of an IS specification language.

It is highly desirable that internal quality of a language will be measured using some
numerical scale. It is also preferable to use a scale of cardinal type. On the other hand,
internal quality of a language cannot be measured in any standard units, like meters or
amperes, of some measurement system. In addition, internal quality characterises the
potential applicability of a language only but says nothing about its quality in use or
about the degree to which this language satisfies the requirements of a particular project.
These are the main reasons to define internal quality of a language through the probability
that this language will satisfy the requirements of any possible project regardless of its
complexity or size (Caplinskas and Gasperovic, 2005b). If, for example, quality of some
specification language is characterised by the value 0.8, it means that this language will
be acceptable approximately for 4/5 of all imaginable projects.

The quality is described in a hierarchical way: it is decomposed into characteristics
and sub-characteristics of several levels. Each characteristic (sub-characteristic) describes
some feature of a language. Characteristics of the lowest level are described by probabil-
ities that corresponding feature of a language will be sufficient for any possible project.
So, the notion of probability allows expressing partiality that is natural for specification
languages, because almost always a language supports any particular feature at some lim-
ited extent only. Probabilities can be evaluated, for example, using some assessment case
suites, however, this paper does not address the problem how to evaluate probabilities
describing the completeness of the bottom-level features of a specification language.

The values of the characteristics of all higher levels can be calculated using some
aggregation techniques. Let us consider this problem in detail.

Let us denote the feature of the languageL described by characteristicξ by L(ξ),
the probability thatL(ξ) will be sufficient for any theoretically imaginable project by
p(ξ), the probability thatL(ξ) will become necessary for some projectP by q(ξ). Let us
discuss now the techniques to aggregate measurements of sub-characteristics.
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There are several cases and for each of them different aggregation method should be
used:

1. All sub-characteristicsξ1, ξ2, . . . , ξn of the characteristicξ are orthogonal and for
∀i ∈ [1, n] (q(ξi) = 1).

2. All sub-characteristicsξ1, ξ2, . . . , ξn of the characteristicξ are orthogonal and
there exists such subsetξ′ ⊆ {ξ1, ξ2, . . . , ξn} thatξ′ = {ξk|q(ξk) < 1}.

3. There exists some main sub-characteristic of the characteristicξ, say ξ1, in
the sense thatq(ξ1) = 1. For all other sub-characteristicsξ2, . . . , ξn is true
that q(ξi) < 1 for i ∈ [2, n] and L(ξ2) suppl L(ξ1), L(ξ3) suppl L(ξ2), . . . ,
L(ξn) suppl L(ξn−1), whereL(ξk) suppl L(ξl) means thatL(ξk) is supplemen-
tary (additional) forL(ξl).

4. All sub-characteristicsξ1, ξ2, . . . , ξn of the characteristicξ are alternative,q(ξi)<1
for anyi ∈ [1, n] and is true that:

n∑
i=1

q(ξi) = 1. (4.1)

Because the measures of sub-characteristics are probabilitiesp(ξ1), p(ξ2), . . ., p(ξn),
the measure of the characteristicξ can be regarded as compound probability and me-
thods of the probability theory can be used for aggregation. It means that probability that
L(ξ) will be sufficient for any possible projectP depends on the probability that any
L(ξi), wherei ∈ [1, n], will be sufficient for this aim. Probability theory provides two
ways to combine probabilities (Pfeiffer, 1979): multiplication rule and addition rule. We
will apply the multiplication rule to aggregate orthogonal sub-characteristics or, in other
words, in cases when features described by these sub-characteristics are used for differ-
ent aims. Addition rule will be applied to aggregate supplemental and alternative sub-
characteristics or, in other words, when features described by these sub-characteristics
are used for the same aim and compensate each other or are alternative to each other. Let
us consider now how to apply multiplication and addition rules for aggregation of quality
sub-characteristics in each of cases mentioned above. We will also check for each case
that the proposed aggregation technique is an aggregation operator and that it indeed has
the properties required in this particular case to aggregate sub-characteristics in a proper
way.

In the first case all sub-characteristics are orthogonal. If two sub-characteristicsξ1 and
ξ2 are orthogonal it means thatL(ξ1) andL(ξ2) are independent, used for different aims.
So, in the first case all characteristics are independent and will become necessary (with
the probability 1) for any possible project. Consequently, in this case the multiplication
rule can be applied directly to aggregate the sub-characteristics.

p(ξ) =
n∏

i=1

p(ξi). (4.2)

In order to illustrate the proposed aggregation techniques, we use geometric probabi-
lity. As sample space (i.e., the set of all possible values the events may assume) we use
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unitary square. Event space (i.e., the subset of the sample space consisting of events that
represent a successful outcome) is represented by the corresponding area in the unitary
square. Further we use Venn diagrams to illustrate aggregation techniques for aggregation
of some small number of sub-characteristics. Fig. 1 represents the result of aggregation
of p(ξ1) andp(ξ2) by the areap(ξ1)p(ξ2).

Statement 1. The formula(4.2)defines at-norm.

Proof. It is evident that operator
∏n

i=1 p(ξi) is aggregation operator. Satisfaction of ax-
ioms (2.1)–(2.3) follows immediately from the properties of probabilistic multiplication
operator:

• for n = 1, the formula (4.2) defines identity (i.e.,p(ξ) = p(ξ1));
• boundary conditions are satisfied: because (ifp(ξi) = 0 for anyi thenp(ξ) = 0);
if p(ξi) = 1 for anyi thenp(ξ) = 1);
• multiplication is monotonic in the interval [0,1].

It is also evident that probabilistic multiplication is symmetric, associative and that for
probabilistic multiplication 1 is the neutral element. Consequently, (4.2) defines at-norm.

Thus, the aggregation technique defined by formula (4.2) really can be applied to
aggregate orthogonal sub-characteristics in a proper way, sincet-norms are conjunctive
aggregation operators generalising Boolean logical operator “and” to multi-valued logic.

EXAMPLE 3. Internal quality of a specification languageL is defined through four char-
acteristics: functionalityξ1, reliability ξ2, usability ξ3, and efficiencyξ4. Measures of
these characteristics are probabilitiesp(ξ1), p(ξ2), p(ξ3) andp(ξ4) correspondingly. All
four characteristics are orthogonal to each other (i.e., describes the features of a language
that are used for different purposes) and the probabilitiesq(ξ1), q(ξ2), q(ξ3) andq(ξ4)
that they will become necessary for any projectP are equal to 1. Thus internal quality of
the languageL is described by the probabilityp(ξ) = p(ξ1)p(ξ2)p(ξ3)p(ξ4).

In the second case, all sub-characteristicsξ1, ξ2, . . . , ξn of the characteristicξ are also
orthogonal but there exists at least one sub-characteristicξi for which q(ξi) < 1. In this
case multiplication rule cannot be applied directly. It must be changed in the way to meet
the requirement that any featureL(ξ) must be sufficient for any particular project at the

Fig. 1. Aggregation of orthogonal quality characteristics required for any project (case 1).



530 A. Čaplinskas, J. Gasperoviˇc

same degree as its sub-featuresL(ξi) are sufficient for this project in case when these sub-
features are required for this project at all. Of course,L(ξi) is sufficient also for projects
for which it is not required. It means that multiplication rule must be modified to cover
also the projects for whichL(ξ) is not required:

p(ξ) =
n∏

i=1

(
1 − q(ξi)

(
1 − p(ξi)

))
. (4.3)

Fig. 2 represents the result of aggregation of one sub-characteristic, which is evaluated
asp(ξ1) and for whichq(ξ1) < 1. In this case aggregated characteristic is expressed by
the areap(ξ1)q(ξ1) (for the case that characteristic is indeed sufficient for any possible
project) and areasp(ξ1)(1 − q(ξ1)) and(1 − p(ξ1))(1 − q(ξ1)) (for the case, when the
characteristic is not required for this project at all). Although only one characteristic is
illustrated in Fig. 2, this principle can be generalised for any number of quality sub-
characteristics.

Statement 2. The formula(4.3)defines a weightedt-norm.

Proof. Rewrite formula (4.3) in the form

p(ξ) =
(
1 − q(ξ1)

(
1 − p(ξ1)

)(
1 − q(ξ2)

(
1 − p(ξ2)

)
. . .

(
1 − q(ξn)

(
1 − p(ξn)

)
.

DenoteT = xy and⊥ = x + y − xy. Let us use now proof by induction.
Forn = 2

p(ξ) =
(
1 − q(ξ1)

(
1 − p(ξ1)

))(
1 − q(ξ2)

(
1 − p(ξ2)

))
=

(
1 − q(ξ1) + q(ξ1)p(ξ1)

)(
1 − q(ξ2) + q(ξ2)p(ξ2)

)
=

(
1 + p(ξ1) − p(ξ1) − q(ξ1) + q(ξ1)p(ξ1)

)(
1 + p(ξ2)

− p(ξ2) − q(ξ2) + q(ξ2)p(ξ2)
)

=
(
p(ξ1) + 1 − q(ξ1) − p(ξ1)(1 − q(ξ1)

)(
p(ξ2) + 1 − q(ξ2) − p(ξ2)(1 − q(ξ2)

)
= ⊥

(
p(ξ1), 1 − q(ξ1)

)
⊥

(
p(ξ2), 1 − q(ξ2)

)
= T

(
⊥

(
p(ξ1), 1 − q(ξ1)

)
,⊥

(
p(ξ2), 1 − q(ξ2)

))
.

Fig. 2. Aggregation of orthogonal quality characteristics that are not all required for any project (case 2).
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Thus, forn = 2 the statement 2 is true.
Now suppose that the statement 2 is true forn = i. It means that forn = i

p(ξ) =
(
1 − q(ξ1)

(
1 − p(ξ1)

)(
1 − q(ξ2)

(
1 − p(ξ2)

)
. . .

(
1 − q(ξi)

(
1 − p(ξi)

)
defines weightedt-norm

T
(
⊥

(
p(ξ1), 1 − q(ξ1)

)
,⊥

(
p(ξ2), 1 − q(ξ2)

)
, . . . ,⊥

(
p(ξi), 1 − q(ξi)

))
.

For i = i + 1

p(ξ) = T
(
⊥

(
p(ξ1), 1 − q(ξ1)

)
,⊥

(
p(ξ2), 1 − q(ξ2)

)
, . . . ,

⊥
(
p(ξi), 1 − q(ξi)

))(
1 − q(ξi+1)

(
1 − p(ξi+1)

)
=

(
1 − q(ξ1)

(
1 − p(ξ1)

)(
1 − q(ξ2)

(
1 − p(ξ2)

)
. . .(

1 − q(ξi)
(
1 − p(ξi)

)
(1 − q(ξi+1)

(
1 − p(ξi+1)

)
= T

(
⊥

(
p(ξ1), 1 − q(ξ1)

)
,⊥

(
p(ξ2), 1 − q(ξ2)

)
, . . . ,

⊥
(
p(ξi), 1 − q(ξi)

)
,⊥

(
p(ξi+1), 1 − q(ξi+1)

))
.

Consequently, (4.3) defines weightedt-norm T (⊥(p(ξ1), 1 − q(ξ1)),⊥(p(ξ2), 1 −
q(ξ2)), . . . ,⊥(p(ξn), 1 − q(ξn))).

Thus, the aggregation technique defined by formula (4.3) really can be applied to
aggregate orthogonal sub-characteristics of different importance in a proper way, since
weightedt-norms are theoretically sound extension oft-norms.

EXAMPLE 4. Semantic sufficiencyξ of a specification languageL (Caplinskas and
Gasperovic, 2005b) characterises the conceptual level of the linguistic systemΦL be-
yond this language. It is the measure of the ability of languageL to specify all “things”
that might be necessary for analysis and design of any possible projectP . Semantic suffi-
ciencyξ is decomposed into ontological sufficiencyξ1 and epistemological sufficiencyξ2.
Ontological sufficiencyξ1 is characterised through the probabilityp(ξ1) that any project
P will be conceptualised successfully through categoriesαL provided by the linguistic
systemΦL. Epistemological sufficiencyξ2 characterises the ability of the linguistic sys-
temΦL to express epistemological primitives or, in other words, characterises the con-
structive power of “algebra of concepts” provided byΦL. ξ2 is characterised through the
probabilityp(ξ2) that all required conceptual structures will be modelled using constructs
of languageL. The probabilityq(ξ1) thatξ1 will become necessary for any projectP is
equal to 1 and the probabilityq(ξ2) that ξ2 will become necessary for any projectP is
less than 1. Thus the measure of semantic sufficiencyξ is described by the probability
p(ξ) = (1 − q(ξ1)(1 − p(ξ1)))(1 − q(ξ2)(1 − p(ξ1))) = p(ξ1)(1 − q(ξ2)(1 − p(ξ1))).
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In the third case sub-characteristics are supplemental to the main sub-characteristic
ξ1 or, in other words, all featuresL(ξ1), L(ξ2), . . . , L(ξn) are used for the same purpose
and supplemental features are necessary only when previous features are insufficient for
this purpose. In this case addition rule can be applied, however, it must be modified
appropriately becauseq(ξ) can be expressed throughp(ξ) in the following way:

q(ξ1) = 1,

q(ξ2) = 1 − p(ξ1),

q(ξ3) = 1 − p(ξ1) − p(ξ2)(1 − p(ξ1)),

q(ξ4) = 1 − p(ξ1) − p(ξ2) − p(ξ3)
(
1 − p(ξ1) − p(ξ2)

(
1 − p(ξ1)

))
,

. . .

q(ξn) = 1 − p(ξ1) − · · · − p(ξn−1)q(ξn−1).

Thus,

p(ξ) =
n∑

i=1

p(ξi)q(ξi) = p(ξ1) + p(ξ2)q(ξ2) + p(ξ3)q(ξ3) + · · · + p(ξn)q(ξn)

=
n∑

1�i�n

p(ξi) −
n∑

1�j<k�n

p(ξj)p(ξk) +
n∑

1�j<k<s�n

p(ξj)p(ξk)p(ξs) − · · ·

+ (−1)n−1
p(ξ1) . . . p(ξn)

=
n∑

r=1

(−1)r−1
n∑

1�j<k<s<...<r�n

p(ξ1) . . . p(ξr). (4.4)

This formula is well-known inclusion-exclusion formula (Durrett, 1993). Fig. 3 rep-
resents the result of aggregation ofp(ξ1), p(ξ2) andp(ξ3). In this case from the area
p(ξ1) + p(ξ2) + p(ξ3) it is necessary to exclude the areasp(ξ1)p(ξ3), p(ξ2)p(ξ3),
p(ξ1)p(ξ2) and to include the areap(ξ1)p(ξ2)p(ξ3), because whenn > 2 the exclusion
of the pairwise intersections is too severe, thus compensating inclusion is required.

Statement 3. The formula(4.4)definest-conorm.

Fig. 3. Aggregation of supplemental quality characteristics (case 3).
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Proof. Denote⊥ = x + y − xy. Let us use now proof by induction.
Forn = 2

p(ξ) = p(ξ1) + p(ξ2) − p(ξ1)p(ξ2) = ⊥(p(ξ1), p(ξ2)).

Thus, forn = 2 the statement 3 is true.
Now suppose that the statement 3 is true forn = m. It means that forn = m

p(ξ) = p(ξ1) + p(ξ2) − p(ξ1)p(ξ2) − · · · + (−1)m−1p(ξ1) . . . p(ξm)

definest-conorm

⊥
(
p(ξ1), p(ξ2), . . . , p(ξm)

)
.

Form = m + 1

p(ξ) = ⊥
(
p(ξ1), p(ξ2), . . . , p(ξm)

)
(−1)mp(ξ1) . . . p(ξm+1)

=
m∑

1�i�m

p(ξi) −
m∑

1�j<k�m

p(ξj)p(ξk) +
m∑

1�j<k<s�m

p(ξj)p(ξk)p(ξs) − · · ·

+ (−1)m−1
p(ξ1) . . . p(ξm) + p(ξm) −

m∑
1�i�m

p(ξi)p(ξ
m+1

)

+
m∑

1�j<k�m

p(ξj)p(ξk)p(ξm+1) −
m∑

1�j<k<s�m

p(ξj)p(ξk)p(ξs)p(ξm+1)

+ · · · + (−1)m+1
p(ξ1) . . . p(ξm)p(ξm+1)

=
m∑

1�i�m+1

p(ξi) −
m∑

1�j<k�m+1

p(ξj)p(ξk)

+
m∑

1�j<k<s�m+1

p(ξj)p(ξk)p(ξs) − · · · + (−1)
m

p(ξ1) . . . p(ξm+1)

= ⊥
(
p(ξ1), p(ξ2), . . . , p(ξm+1)

)
.

Consequently, (4.4) definest-conorm⊥(p(ξ1), p(ξ2), . . . , p(ξn)).

Thus, the aggregation technique defined by formula (4.4) really can be applied to
aggregate in a proper way such non-orthogonal sub-characteristics, for which it is true
that at least one sub-characteristic will become necessary for any possible project with the
probability 1, sincet-conorms generalise Boolean logical operator “or” to multi-valued
logic.

EXAMPLE 5. Functionalityξ of a specification languageL (Caplinskas and Gasperovic,
2005b) is defined as the existence of means required specifying functional and non-
functional properties of the subject system. Functionality has two sub-characteristics:
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suitability ξ1and flexibility ξ2. The sub-characteristicξ1 is main sub-characteristic. It
characterises how sophisticated statements about potential systems in a particular realm
a specification languageL is able to express, and at what level of granularity it can be
done. The measure ofξ1 is the probabilityp(ξ1) that any statement about any system
of a particular kind can be formulated in terms of the languageL. The probability be-
comes equal to 1, if the languageL allows formulating statements about any property
of a system in a given realm and expressing it with the needed degree of precision. The
sub-characteristicξ2 is supplemental. It describes the extent to which the language can
be adjusted to specify preliminary not intended properties. The measure ofξ2 is the pro-
bability p(ξ2) that the language L can be applied to the whole spectrum of IS-related
systems, namely, business systems (from the IS design perspective), information sys-
tems, and applications. The probabilityq(ξ2) = 1 − p(ξ1), becauseξ2 becomes nec-
essary only in cases whenL(ξ1) is not sufficient to specify the subject system. Thus,
p(ξ) = p(ξ1) + p(ξ2)q(ξ2) = p(ξ1) + p(ξ2)(1 − p(ξ1)) = p(ξ1) + p(ξ2) − p(ξ1)p(ξ2).

In the fourth case all sub-characteristicsξ1, ξ2, . . . , ξn, are alternative. It means that
there exist no main sub-characteristic or, in other words,q(ξi) < 1 for any i ∈ [1, n],
however, at least one of featuresL(ξi) must be used. Thus the condition (4.1) must
be satisfied. In this case addition rule must be changed taking into account that sub-
characteristics may duplicate each other and that the overlapping of alternative sub-
characteristics should be eliminated:

p(ξ) =
n∑

i=1

p(ξi)q(ξi) −
n∏

i=1

p(ξi)q(ξi). (4.5)

Fig. 4 represents the result of aggregation ofp(ξ1) andp(ξ2). In this case from the
areap(ξ1)q(ξ1) + p(ξ2)q(ξ2) it is necessary to exclude the areap(ξ1)q(ξ1)p(ξ2)q(ξ2).

Statement 4. The formula(4.5)defines a weightedt-conorm.

Proof. Rewrite formula (4.5) in the form

p(ξ) = q(ξ1)p(ξ1) + q(ξ2)p(ξ2) + · · · + q(ξn)p(ξn)

− q(ξ1)p(ξ1)q(ξ2)p(ξ2) . . . q(ξn)p(ξn).

Fig. 4. Aggregation of alternative quality characteristics (case 4).
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DenoteT = xy and⊥ = x + y − xy. Let us use now proof by induction.
Forn = 2

p(ξ) = q(ξ1)p(ξ1) + q(ξ2)p(ξ2) − q(ξ1)p(ξ1)q(ξ2)p(ξ2)

= ⊥
(
q(ξ1)p(ξ1), q(ξ2)p(ξ2)

)
= ⊥

(
T

(
p(ξ1), q(ξ1)

)
, T

(
p(ξ2), q(ξ2)

))
.

Thus, forn = 2 the statement 4 is true.
Now suppose that the statement 4 is true forn = i. It means that forn = i

p(ξ) = q(ξ1)p(ξ1) + q(ξ2)p(ξ2) + · · · + q(ξi)p(ξi)

− q(ξ1)p(ξ1)q(ξ2)p(ξ2) . . . q(ξi)p(ξi))

defines weightedt-conorm

⊥
(
T

(
p(ξ1), q(ξ1)

)
, T

(
p(ξ2), q(ξ2)

)
, . . . , T

(
p(ξi), q(ξi)

))
.

For i = i + 1

p(ξ) = ⊥
(
T

(
p(ξ1), q(ξ1)

)
, T

(
p(ξ2), q(ξ2)

)
, . . . , T

(
p(ξi), q(ξi)

))
q(ξ1)p(ξ1)

+ q(ξ2)p(ξ2) + · · · + q(ξi)p(ξi) + q(ξi+1)p(ξi+1)

− q(ξ1)p(ξ1)q(ξ2)p(ξ2) . . . q(ξi)p(ξi)q(ξi+1)p(ξi+1)

= ⊥
(
T

(
p(ξ1), q(ξ1)

)
, T

(
p(ξ2), q(ξ2)

)
, . . . ,T

(
p(ξi), q(ξi)

)
, T

(
p(ξi+1), q(ξi+1)

))
.

Consequently, (4.5) defines weightedt-conorm⊥(T (p(ξ1), q(ξ1)), T (p(ξ2), q(ξ2)), . . . ,
T (p(ξn), q(ξn))).

Thus, the aggregation technique defined by formula (4.5) really can be applied to
aggregate in a proper way non-orthogonal sub-characteristics of different importance,
since weightedt-conorms are theoretically sound extension oft-conorms.

EXAMPLE 6. Flexibility ξ of the languageL (Caplinskas and Gasperovic, 2005b) has
three sub-characteristics: universalityξ1, adaptabilityξ2, and extensibilityξ3. These
characteristics are alternative. Sub-characteristicξ1 characterises the degree of gener-
ality of ontological primitives beyond the languageL. The measure ofξ1 is the pro-
bability p(ξ1) that ontological primitives, provided by categoriesαL of the linguistic
systemΦL, are suitable to model concepts from the whole spectrum of subject sys-
tems. Sub-characteristicξ2 describes the ability of the languageL to configure syn-
tax and semantics to adapt it for arbitrary domain. The measure ofξ2 is the proba-
bility p(ξ2) that any required specific of domain can be introduced using adaptabil-
ity mechanisms provided by the languageL. ξ3 is closely related toξ2. Although the
featuresL(ξ2) and L(ξ1) in some sense are opposite to each other, we can consider
they as alternative, because it is possible to implement flexibility through universality
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as well as through adaptability. Sub-characteristicξ3 is the characteristics of the lan-
guage that bears on its ability to define new constructs. The measure of extensibility
ξ3 is the probabilityp(ξ3) that any required domain-specific features can be introduced
using extensibility mechanisms provided by the languageL. Both ξ2 andξ3 are impor-
tant for general-purpose languages only. If the probability thatξ1 will become neces-
sary for any projectP is q(ξ1), the probability thatξ2 will become necessary for any
project P is q(ξ2) and the probability thatξ3 will become necessary for any project
P is q(ξ3), then flexibility ξ of the languageL can be described by the probability
p(ξ) = p(ξ1)q(ξ1) + p(ξ2)q(ξ2) + p(ξ3)q(ξ3) − p(ξ1)q(ξ1)p(ξ2)q(ξ2)p(ξ3)q(ξ3).

5. Aggregation of Measurements

Usually, it is very difficult or even impossible to develop precise metrics to measure the
characteristics of internal quality of a specification language. One way to measure quality
characteristics is to use representative case suits. However, the notion of representativity
cannot be defined strictly and precisely. It is defined on an empirical basis. So, in order to
be more precise, any sub-characteristicξi of the internal quality of a language L should
be measured using a number of different metrics (case suits) and results of different mea-
surements should be aggregated. As a rule, three different case suits are used for this aim.
Ideally, all measurements should produce almost identical results because all test cases
should be debugged using a number of most popular specification languages (Z, UML,
etc.). However, when a new specification language is evaluated it may occur that it ac-
cents a feature that is secondary only in most popular languages and for this reason has
been underestimated in some test case suits. Thus, in some cases an unacceptable disper-
sion of measurement values may appear. Unacceptable dispersion can also be generated
by inaccuracy of measurements, because test cases are specified manually and, conse-
quently, measurement results can be impacted by the errors of the particular specifier.
There is no way to determine the source of dispersion. It means that in both situations the
same approach should be used to process unacceptable dispersion.

If the dispersion produces obviously meaningless results, for example, out of the in-
terval [0,1], the only way to solve this problem is to analyse all test cases, to discover
reasons of such behaviour and to improve appropriate case suit or to perform more accu-
rate measurements. However, it is very expensive solution and can be accepted in some
exceptional cases only. In most of the cases, it is preferable to minimise the dispersion in
some way or, in other words, to use appropriate weights for aggregation of measurement
values. Partially, it is because the taxonomy of characteristics encompasses fifty seven
characteristics and has five hierarchical levels and, therefore, the impact of one or even
several characteristics to the final result of aggregation is very small.

Different approaches can be used to minimise possible deviations of measurement re-
sults. Most of methods of smoothing over measurement errors are based on the assump-
tion that measurement errors are random errors and that measurements obey a normal,
or Gaussian, distribution. It means that the measurements should be distributed about the
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mean in such a manner that more measurements lie close to the mean than lie far away
from it. We also accept this assumption. However, we cannot use so called Q-tests, em-
pirical schemes that are used in statistics for testing inaccurate values (so called outliers)
in small data sets, for example, Grubbs Test (EPA, 1992), Dixon Test (EPA, 1996), or
Discordance Test (EPA, 1996), because in our case not only the deviations from Gaus-
sian distribution, but also the distribution of values at some extent is unacceptable. In
addition, the reliability of Q-tests for data sets including only three values is very low,
although theoretically all mentioned above tests can be applied for such data sets, too.
Aggregation operators with static weights (for example, Choquet integral) also cannot be
used, because they require analysis of each particular case to assign appropriate weights.
So, we propose the following heuristic, in which weights for aggregation of measurement
values are determined dynamically:

1) to calculate the arithmetic mean

M(x1, x2, . . . , xn) =
1
n

n∑
i=1

xi =
n∑

i=1

( 1
n
· xi

)
(5.1)

and the standard deviation

d =

√∑n
i=1

(
xi − M(x1, x2, . . . , xn)

)2

n
(5.2)

for the set of measurements{x1, x2, . . . , xn} of the characteristicξ;
2) to substitute the values that are out of interval[M − d; M + d] by the valueM − d

or M + d correspondingly;
3) to calculate the new arithmetic meanM1 and to take it as the value of characteris-

tic ξ.

This heuristic can be seen as a kind of combination of arithmetic and winsorised
means. It allows dynamic determining of weights and minimising of dispersion. The main
advantage of the proposed heuristic is that it can be used in all cases when the dispersion
of the values is not obviously meaningless, including cases when two measurements are
equally distant from the mean (in this case the heuristic rejects both the highest and the
lowest values) and even cases when the dispersion is at acceptable extent.

EXAMPLE 7. Ontological sufficiencyξ of a languageL was measured using metrics
µ = {m1, m2, m3}. Measurements resulted in three different results:m1(ξ) = 0.1;
m2(ξ) = 0.2; m3(ξ) = 0.9. So, the aggregation of measurements should be done in
the following way:

1. Firstly, the arithmetic mean of measurements

M =
1
3
(0.1 + 0.2 + 0.9) = 0.4
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and the standard deviation

d =

√
1
3
(
(0.1 − 0.4)2 + (0.2 − 0.4)2 + (0.9 − 0.4)2

)
= 0.3559

are calculated by the formulas (5.1) and (5.2).
2. Secondly, the value 0.9 that is out of the interval

[M − d; M + d] = [0.0441; 0.7559]

is substituted by the value 0.7559.
3. Finally, the new arithmetic mean is calculated

M1 =
1
2
(0.1 + 0.2 + 0.7559) = 0.35197

is calculated and the value 0.35197 is taken as the value of the characteristicξ.

EXAMPLE 8. Let three different measurements of the epistemological sufficiencyξ of
a languageL using metric m have given results with small dispersion:m1(ξ) = 0.81;
m2(ξ) = 0.82; m3(ξ) = 0.89. Using the proposed heuristic to aggregate measurements,
we obtain the following results:

1. The arithmetic mean

M =
1
3
(0.81 + 0.82 + 0.89) = 0.84

and the standard deviation

d =

√
1
3
(
(0.81 − 0.84)2 + (0.82 − 0.84)2 + (0.89 − 0.84)2

)
= 0.0356

are calculated by the formulas (5.1) and (5.2).
2. The value 0.89 that is out of the interval[M − d; M + d] = [0.8044; 0.8756] is
replaced by the value 0.8756.
3. New arithmetic mean

M1 =
1
3
(0.81 + 0.82 + 0.8756) = 0.8352

is calculated and the value 0.8352 is taken as the value of characteristicξ.

The presented examples demonstrate that the heuristic produces acceptable results in
the case with large dispersion as well as in case with small dispersion.
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6. Conclusions

Internal quality of a specification languageL describes the quality that is independent
from any context of use. Because of the imprecise nature of quality characteristics, it is
reasonable to define such quality as the probability that the languageL will satisfy the
requirements of any imaginable projectP . In an analogous way can be defined also all
characteristics of internal quality, including elementary ones. Because characteristics of
internal quality of the languageL form a large hierarchical structureF , it is not obvious
how to aggregate properly sub-characteristics through the whole structureF . Techniques
of aggregation depend on the kind of dependences among characteristics that are ag-
gregated. There exists four kinds of such dependencies: characteristics are orthogonal
(independent) and all are required for any project; characteristics are orthogonal but not
all are required for any project; characteristics supplement the one that is required for
any project; and none of the characteristics is required for any project. In the first case
the characteristics can be aggregated properly using a kind oft-norm, in the second case
using a kind of weightedt-norm, in the third case using a kind oft-conorm, and in the
fourth case using a kind of weightedt-conorm. In order to minimise possible deviations
generated by shortcomings of the particular metric or by inaccuracy of the particular
measurement, the mean with weights that are determined dynamically should be calcu-
lated. For this aim the paper proposes some heuristic, which can be seen as a kind of
combination of arithmetic and winsorised means.
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Informacini ↪u sistem ↪u specifikavimo kalb ↪u vidinės kokybės
charakteristik ↪u agregavimas

AlbertasČAPLINSKAS, Jelena GASPEROVIČ

Straipsnyje nagriṅejamas informacini↪u sistem↪u specifikavimo kalb↪u vidinės kokyḃes charak-
teristik ↪u agregavimo uždavinys. Trumpai apžvelgiama agregavimo teorija. Parodyta, kad tokios
charakteristikos gali b̄uti siejamos keturi↪u tip ↪u s↪aryšiais ir pasīulyta, kaip konstruoti atitinka-
mast-normas irt-konormas kokyḃes charakteristikoms agreguoti kiekvienu iš ši↪u keturi ↪u atvej↪u.
Pasīulyta euristika, taikytina agreguojant charakteristikas, kuri↪u reikšṁes gautos panaudojus nevi-
sai adekvǎcius matavimo b̄udus arba šiek tiek netikslias matavimo procedūras.


