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Abstract. Due to high nonlinearities and time-varying dynamics of today’s control systems fuzzy
learning controllers find appliance in practice. The present paper proposes a method for the syn-
thesis of the learning fuzzy controllers where an expert knowledge about a process is applied to
form a learning mechanism that is used to acquire information for the knowledge base of the main
fuzzy controller. According to the proposed method an expert knowledge is used to describe how
the controller should learn to control rather than to control the process. The results of experiments
on heating system and level/pressure system prove the practical relevance of the design strategy of
a learning fuzzy controller.

Key words: fuzzy control, nonlinear control, learning control, level control, pressure control,
temperature control.

1. Introduction

With the increase of the computation power the more complex control algorithms can
now be applied to today’s highly nonlinear, sometimes even not well explored systems
that are affected by unexpected internal or external disturbances, to systems whose dy-
namics is changing in time. Fuzzy logics (Zadeh, 1965) led to new approaches of non-
linear control algorithms where linguistic rules, expert knowledge determine the control
strategies. Knowledge about the control system becomes the key think in effectiveness of
fuzzy controllers. But the problem is that an expert knowledge available at the time of the
synthesis of a fuzzy controller often is imprecise and sometimes much differs from actual
situation so controller has to be tuned later anyway. Besides, fuzzy controllers have many
parameters that have to be carefully adjusted to get sufficient performance. In cases when
system identification is not used this should be done experimentally and takes plenty of
time.

In this article an approach when expert knowledge is used for the synthesis of con-
troller’s learning and adaptation algorithms, their rule bases and the controller’s structure
rather then the rule base of the fuzzy controller is presented. This design strategy provides
the fuzzy controllers with higher flexibility and versatility especially in the cases when the
same controllers control the similar plants in different environment. Such systems might
be for example heating-cooling systems where pipes have similar configuration but differ
in size, houses are in different geographic locations. Learning and adaptation algorithms
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are capable to learn many parameters of fuzzy controller and save time for their adjust-
ment. The performance of the proposed learning fuzzy controller is demonstrated in the
practical experiments on heating system and level/pressure system.

The article is divided into three parts. The first part is the description of the structure
and the synthesis of learning fuzzy controller. The two other parts show the application
of the proposed fuzzy controller in real world nonlinear control problems: heating system
control and level-pressure control systems.

2. Fuzzy Controller

Closed loop fuzzy control systems are analyzed in this article. The aim is to synthesize
a learning fuzzy controller that is capable to identify and to learn the characteristics of a
nonlinear plant and to used that knowledge to control that plant at various different oper-
ating modes. For this purpose a fuzzy controller composed of a knowledge base, learning
mechanism and performance analysis unit is proposed (Fig. 1). Even if a large amount of
expert knowledge about the process is presented, the synthesis of a tolerable fuzzy con-
troller for this process in most cases is a challenging task due to many parameters in fuzzy
controller. As research and experiments show that an expert knowledge in most cases has
to be tuned in order to reach the desired performance of a controller. In order to effec-
tively select the correct values for these parameters, adaptation and learning mechanisms
have to be considered.

The proposed learning fuzzy controller differs from other learning fuzzy controllers
in that it’s knowledge base has not only the rule bases of the control algorithm but also
the controller’s scaling gains, the rule base generation data. Controller’s learning mech-
anism is composed so that each data base in the controller’s knowledge base has a sep-
arate learning algorithm in the learning mechanism and all together is capable to learn

Fig. 1. Learning fuzzy control scheme.
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controller’s knowledge base. This saves time for the selection and adjustment of many
controller parameters.

A fuzzy controller is easier to teach if the fuzzification, inference and defuzzification
mechanisms are dependent on coefficients, for example: scaling gains, centers of input
membership functions, learning rates, rule base synthesis data, and so on. This data can
be stored in the controller’s knowledge base, which is on line adjusted by the learning
mechanism, Fig. 1.

2.1. Rule Base and Inference Mechanism

As an expert knowledge is more convenient to represent withMamdani type fuzzy struc-
tures (Mamdani, 1974) then withTakagi-Sugeno type structures (Takagi, 1985; Abonyi,
2003), theMamdani type fuzzy rule bases with the rules like

IF (x1 is A1i) AND . . . AND (xm is Ami) THEN yi is Yi, (1)

are used throughout this paper.Takagi-Sugeno fuzzy rules are more effective when pa-
rameter identification algorithms are used but not in this case. Every rule is presented
by a conjunction (MIN operator) and the aggregation of the rules by a disjunction (MAX
operator) (Chen, 2001; Cox, 1994). Triangular fuzzification and center of gravity defuzzi-
fication on implied fuzzy sets, calculated according to formula
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are used for the calculation of crisp outputs (Passino, 1998), whereR is the number of
rules,bq

i is the center of area of the membership function, associated with the implied
fuzzy setBi

q for theith rule and integral, denoting an area under a membership function.
The rules in the controller’s rule base are synthesized online from the rule base gen-

eration data which is stored in the knowledge base (Liutkevičius, 2003). This form of
rules’ generation reduces the number of rules in the controller’s rule base and simplifies
a learning process as only the rules’ data but not the whole rule base has to be learnt. If
controller uses several fuzzy decision making systems for input preprocessing, the rule
bases of these systems might also be stored in the knowledge base and can be adjusted
by the learning mechanism.

2.2. Knowledge Base

The essential thing during the synthesis of the fuzzy controller is to make the performance
of the control algorithm be dependable on parameters that can be stored in the controller’s
knowledge base and can be adjusted later by controller’s learning mechanism. Knowledge
base can contain the information about the scaling gains of the universes of discourses of
the controller’s linguistic input and output variables, data bases for the on-line generation
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of control rules in fuzzy controller’s rule base, learning rates, rule bases for inputs’ pre-
processing fuzzy decision making systems and other information concerning the use of
data in the rules. At the start up of such type fuzzy controller it knows nothing about how
to control the plant because its knowledge base is empty or is set to some presumptive
values, so it must take some time to learn the knowledge base. Learning mechanism plays
important role in the performance of the controller.

2.3. Learning Mechanism

The data structures of fuzzy controller’s knowledge base are learnt by the controller’s
learning mechanism. The learning mechanism contains separate fuzzy decision making
systems and the knowledge base modifiers for each element in the knowledge base that
should be learnt: for example one for scaling gains, one for each rule base and etc. De-
pending on the process information each fuzzy decision making system of the learning
mechanism calculates the adjustment values for the appropriate data and with the help
of knowledge base modifier adjusts the knowledge base. Each fuzzy decision making
system, described in this paper, uses triangular fuzzification, MIN-MAX inference and
center of gravity defuzzification techniques. Other types might be used but the selected
ones are chosen because of fast and simple calculation, essential for real time control
(Driankov, 1998). The rule bases are ofMamdani type because it is easier to represent
expert knowledge in such rules.

Fuzzy decision making systems in the learning mechanism calculate shift values for
particular data in the knowledge base. A shift value is simply added to the knowledge base
data or some rules might be used. Each fuzzy decision making system in the learning
mechanism is synthesized using an expert knowledge: an expert knowledge is used to
decide what inputs are essential in the learning process of a particular data structures,
what the learning speed should be or how it should vary. The knowledge base can contain
some parameters from the learning mechanism as well, for example learning rate. In this
case the learning mechanism can slightly modify even itself. The inputs of the learning
mechanism are the outputs of the plant, its errors from appropriate reference values and
the outputs of the plant operation analysis unit.

2.4. Performance Analysis Unit

The plant’s performance analysis unit operates like an input preprocessing unit for the
learning mechanism and keeps track on the plant’s operation, analyses data and provides
the learning mechanism with relevant statistical data, like rise time, overshoot or steady
state errors of process variables. The structure of the unit depends on the control task and
is defined according to the expert knowledge with the purpose to provide the learning
mechanism with the required information and might operate like a separate fuzzy decision
making system.
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3. Learning Fuzzy Control of Level and Pressure

The water level and the air pressure control is a classical problem in control engineering,
specific to the rectification, adsorption, and graduation technological processes, widely
found in chemical and food industry. The control problems like: to maintain the water
level and the air pressure at the specified set points, to decrease the overshoot of process
variables during the system’s transient response and to decrease the variations of the
manipulated variables were analyzed in (Liutkevicius, 2003). The earlier proposed fuzzy
controller had many parameters that had to be experimentally adjusted. The selection
of appropriate values for these parameters took plenty of time. So the primary goal of
the fuzzy controller, presented in this paper is to learn to control the plant at different
operating regimes and to maintain the desired performance level learning not only the
control rules, but also the scaling gains and the controller’s learning rates. The aim of
this part of the paper is to show the practical application of the learning fuzzy controller
synthesized according to the structure, presented in Fig. 1.

3.1. Plant

The plant is shown in Fig. 2. Its central part is a close tank with the adjustable water
level and the air pressure. The variables of the process “pressure” and “level” can be
varied using the inlet water flow and/or the inlet airflow. These are varied with separate
pumps (1, 2). The pumps are the actuators and have an electrical input-range of 0 to
10 V. The tank has two outlets for water flow and two outlets for airflow. The exit water
flow is controller by manual valves (4a, 5). These valves and the control of the water
pump manipulate the stationary condition of the water flow. The manipulation of pressure
is performed through the air pump (2). The change of level and/or pressure set points
itself changes the dynamics of the plant. This is because water level and air pressure are
dependent on each other, so the change in the air pressure affects the water level, whereas
the change in the water level affects the air pressure.

Fig. 2. Plant’s structure.
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3.2. Fuzzy controller

Learning fuzzy controller is synthesized according to the structure, presented in Fig. 1.
Its simplified structure is displayed in Fig. 3.

Level/pressure learning fuzzy controller has six inputs and two outputs. The inputs
are water level and air pressure reference signals,Rlevel andRpressure respectively, level
error elevel and its change in time, pressure errorepressure and its change in time. The
outputs are the water pump control signalulevel and the air pump control signalupressure.
For all these input signals the scaling gains are used and their values are stored in the
controller’s knowledge base. In order to achieve better performance scaling gains for the
error inputs are adjusted online by controller’s learning mechanism. The values of these
scaling gains are dependent on the set point, so different operating regimes have their
own scaling gains for the error inputs. This modification provides a better performance
of the controller (see the results of experiments). The adjustment of the scaling gains
allows changing the controller’s sensitivity to the control errors as scaling gains make an
influence to the fuzzification process, can extend or narrow the universes of discourses
of the fuzzy inputs. The initial values for the errors’ scaling gains are set to ones. The
remaining scaling gains are chosen taking into account the physical characteristics of the
plant. The outputs of fuzzy controller are values from interval [0; 1] but the plant can take
inputs from interval [0; 10] so the scaling gains for output signals are set to 10.

The rule bases of the controller are synthesized online from the level rule base ref-
erence values, stored in the knowledge base. The reference values are stored in the nine
elements arrays. The rules haveMamdani type form because these are easier to under-
stand and to learn with the learning algorithm used in the controller. The water level fuzzy
controller’s rule base is composed of total 243 rules and air pressure fuzzy controller’s

Fig. 3. Level and pressure learning fuzzy control.
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– 243 rules, which are dependent on current level and pressure set points (Liutkevičius,
2003). Both rule bases are a set of nine 9×3 matrices, where water level error and air pres-
sure error have nine membership functions each. The universe of discourse of the change
of error input variable is covered with three triangular membership functions. Intervals
of universes of discourses of inputs and outputs (except error inputs) are chosen from
technical characteristics of the plant and experimentally tuned later. All combinations of
membership functions are taken into consideration in the rule bases. The rule bases at the
start up of the controller are set to zeros, this means controller knows nothing about how
to control the plant, but it has its knowledge base and learning mechanism so is capable
to learn to control the plant.

Controller’s learning mechanism
Fuzzy controller’s learning mechanism contains three fuzzy decision making systems,

one for the adjustment of the scaling, the second for the level rule base’s reference values
and the third for the pressure rule base’s reference values. As the rule base reference
values are used for the online synthesis of the controller’s rules, the change of these values
directly affect the controller’s rule base, the controller has the direct learning mechanism.
The decision making systems in controller’s learning mechanism also haveMamdani type
rules as these allow clearly express expert knowledge how to tune the controller. The
learning mechanism gets inputs from the plant’s performance analysis unit: the steady
state errors of process variables, their change in time and the rise time at the transient
states. The outputs of the fuzzy decision making systems in the learning mechanism are
the crisp values that are added to the appropriate data in the knowledge base.

For this task the knowledge base modifier is used. It also tracks the learning and
adaptation process and prevents the controller from over learning (Liutkevičius, 2003).

The adjustment of the error scaling gains is organized so that level and pressure error
scaling gains increase with the operating regimes. The reference level and pressure fuzzi-
fication is used to determine the operating regimes. The experiments show that at higher
operating regimes the plant is not so sensitive to the variation of the active rules in the
rule bases so the increase of scaling gains increase the sensitivity of the controller and it
reacts to the changes in the process variables’ errors faster. At lower operating regimes
the plant is very sensitive to the variation of active rules so it is desirable to reduce the
number of active rules decreasing the scaling gains. The learning mechanism learns nine
scaling gains for level error inputs and nine for pressure error input as the universes of
discourse for these inputs are covered with nine fuzzy membership functions each. The
scaling gain learning mechanism tracks the use of active rules in the rule base and adjusts
the scaling gains when the error fluctuates about the zero. The sufficient fluctuation of ac-
tive rules around the zero error stating rule was set to 5% at the lowest operating regime
and 30% at the highest.

3.3. Experiments

The performance of the enhanced learning fuzzy controller was experimentally tested and
the results were compared with the performance of the simple fuzzy controller (Kamin-
skas, 2002), conventional proportional-integral-derivative controller, PID, (Kaminskas,
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2002) and the learning fuzzy controller that does not have scaling gain learning capabil-
ity (Liutkevičius, 2003).

For the analysis of the controllers, 400 seconds of control data were examined. The
reference values were changed every 57 seconds; the data from the plant was logged at
one-second intervals. The water level and the air pressure reference signals have a step
form.

The efficiency of the controllers was evaluated calculating the standard deviations of
controlled and control signals according to formula:

Std =

√√√√ 1
N

N∑
i=1

(xi − x)2, (3)

wherex̄ is the reference signal, when calculating the deviation of the controlled variable,
and the average of the control signal when calculating the deviation of the control signal.
The performance of the controllers operating the plant at the 9.5 cm water level and 12
mbar air pressures are presented in the Table 1. Table 2 provides the average of standard
deviations operating the plant at all tested regimes.

The response of the plant, controlled with the conventional PID controller is shown
in the Fig. 4. Fig. 5 shows the response of the plant, controlled with the fuzzy controller,

Table 1

Comparison of controllers

9.5 cm water level,
12 mbar air pressure

Standard deviations

Water level
error

Air pressure
error

Water level
control signal

Air pressure
control signalControllers

PID controller 0.3187 0.3072 0.2704 0.0134

Fuzzy controller 0.1280 0.0812 0.0144 0.0010

Learning fuzzy controller 0.1088 0.0875 0.0517 0.0021

Enhanced learning fuzzy controller 0.1016 0.0812 0.0481 0.0017

Table 2

Comparison of controllers

Average of standard deviations
evaluated from all tested

operating regimes

Standard deviations

Water level
error

Air pressure
error

Water level
control signal

Air pressure
control signal

Controllers

PID controller 0.6751 0.1634 0.1949 0.0074

Fuzzy controller 0.3008 0.1023 0.0352 0.0026

Learning fuzzy controller 0.1889 0.0908 0.0286 0.0067

Enhanced learning fuzzy controller 0.1803 0.0845 0.0224 0.0059
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Fig. 4. PID control of the plant. Fig. 5. Fuzzy control of the plant.

Fig. 6. Learning fuzzy control of the plant. Fig. 7. Enhanced learning fuzzy control of the plant.

Fig. 6 shows the response of the plant, controlled with the learning fuzzy controller and
Fig. 7 shows the response of the plant, controlled with enhanced learning fuzzy controller.
The experiments on controllers were carried under the same conditions.

The experiment shows that the enhanced learning fuzzy controller provides the best
results controlling the plant at different operating regimes. PID controller was tuned to
operate at set points 8 cm and 4 mbar and from the Fig. 4 can be seen that is provides suf-
ficient performance, but as the plant is nonlinear, at other operating regimes controller’s
performance degrades. PID controller’s parameters have to be tuned for every other op-
erating regime. Analyzing the overall performance of these two controllers, the water
level error is 3.74 times smaller and the air pressure error is 1.93 times smaller in case of
enhanced learning fuzzy controller.

Simple fuzzy controller, all parameters and the rule bases were synthesized using ex-
pert knowledge. As the plant is nonlinear and every time operates slightly different the
rules and other parameters need to be adjusted. That is why learning fuzzy controllers
operate better. If compared to the learning fuzzy controller, simple fuzzy controller gives
1.59 times greater water level errors and 1.13 times greater air pressure errors. The dif-
ference is because learning fuzzy controller learns to control the plant trying to reduce
the process variable error. The synthesis of learning fuzzy controller is faster as there is
no need for the synthesis of the rule bases.

The enhanced learning fuzzy controller helps to select the values of the scaling gains.
The experiments show that good strategy may slightly improve the performance of the
controller and also saves controller’s synthesis time.
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4. Learning Fuzzy Control of Heating System

Energy consumption, environment pollution and comfort are important aspects of heating
systems’ control problems. The proposed in this paper fuzzy controller’s with the learn-
ing mechanism design structure was applied to the synthesis of the fuzzy controller for
heating system control to show its application availability. The synthesized fuzzy con-
troller contains learning mechanism that allows adjusting the fuzzy controller to different
environment and eliminates maintenance problems.

The goals of the proposed learning fuzzy controller are:

• to adjust to different environment,
• to learn to control heating system that has a similar configuration, and
• to reduce burner on/off switching rates.

4.1. Plant

The structure of the heating system is shown in the Fig. 8. System consists of a gas boiler
(1), four way mixing valve (2), regulated with a servo motor, the water circulation pump
(4) and a radiator system (3). This heating system’s structure is typical for most mid size
private houses. Besides, this structure can be found as subsystems in complex heating
systems, where the output water temperature has to be controlled, so the control strategy
can actually be widely applied.

4.2. Learning fuzzy controller

Simplified fuzzy controller’s structure is shown in Fig. 9. The main fuzzy logic controller
FLC3 controls the boiler’s heating capacity with PD characteristics. It has four input
signals and one output signal. The output signal is the boiler stageBStage, which can get
values 0, 1, and 2, where 0 means the boiler is turned off, 1 – boiler works at half of its
heating capacity, and 2 – boiler works at full heating capacity. The input signals to the
controller are calculated in the preprocessing stage and are: the heating power demand,

Fig. 8. Heating system control scheme.
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Fig. 9. Learning fuzzy control of heating system.

the room temperature error, differential of room temperature error, and the supply water
temperature error. For the calculation of heating power demand and the supply water
temperature error, the calculated reference output water temperature is used. Other two
variables, the return water temperature and the supply water temperature, are measured.
Fuzzy controllerFLC 3 utilizes triangular membership functions that are arranged by
Ruspini-type partition, keeping the sum of the membership degrees equal to 1 (Abonyi,
2003). The expert knowledge is used to define the controller’s rule base that has 225
rules. The rules haveMamdani-type form and are generated automatically in a particular
way (Liutkevǐcius, 2003). The fuzzy controller’s inference mechanism uses the product
of the degrees of memberships for the calculation of the output that is defuzzyfied using
the center of gravity technique (Pasino, 1998).

Fuzzy preprocessing blockFLC1, depending on the outside air temperature, calcu-
lates the boiler’s switching delay time and the temperature rise time, during which the
premises temperature rises by 1◦C. The rule base of this input preprocessing block is
initially set to zeros and is learnt during the control process.

Usually room temperature controllers have timers that allow the users to specify the
reference room temperatures for the whole week or a single day. Most of them do not
calculate how long it takes to rise the temperature in the premises to the desired set
point. If a user wants the temperature in the room to be the desired one at the specified
time, he by him self has to evaluate the rise time of the temperature in the premises.
The rise time depends not only on the premises characteristics, but also on the outside
air temperature, so it will be necessary to evaluate it every time the outside temperature
changes. So the second fuzzy input preprocessing blockFLC2 according to the reference
room temperature and the outside air temperature calculates the reference output water
temperature – an input to the main fuzzy controller.
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The learning process in the controller starts by analyzing the heated premise’s temper-
ature correspondence to the desired at the current moment temperature and calculation of
theFLC 1 rule base correction values: delay and the rise time. At the start up of the con-
troller the rule baseRB2 is initialized to the values, equal to 60◦C. This means that despite
of the outdoor weather temperature and the reference room temperatures, the reference
output water temperature is equal to 60◦C. But controller’s learning mechanism along
with the plant performance analysis unit analyses the environment, heating system’s per-
formance and corrects the rules in the rule base in order to achieve better performance.
In general, the learning mechanism of the input preprocessing blockFLC2 searches for
the lowest output water temperature that can keep the room temperature at the desired set
point taking into account the outside air temperature.

4.3. Experiments

The proposed learning fuzzy controller was experimentally tested and compared to the
conventional proportional controller (Ogata, 1997) factory built into the boiler. For the
comparison of controllers’ performance, three criterions were used:

• comfort level,
• gas consumption,
• on/off switching rate of the boiler stages.

The experiments have been carried out at the similar environmental conditions. The
outdoor air temperature during the first experiment varied from about−3◦C to −5◦C,
and during the second experiment – from−5◦C to−9◦C. Room air, supply, return water
temperatures at the beginning of the day were also similar. Reference room temperatures
during both experiments varied in the same way.

The response of the heating system, controlled with the proportional controller, is
shown in Fig. 10. Fig. 11 shows the response of the heating system controlled by the
learning fuzzy controller. The first two graphs of each figure represent the output and

Fig. 10. Heating system response to P control.
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Fig. 11. Heating system’s response to learning fuzzy control.

the return water temperatures. Next two graphs represent room temperature set point and
current values. The reference room temperature was changed three times per day. The
last graph represents boiler state. The peaks represent full heating capacity of the boiler;
the middle position indicates the boiler operation at half of the total capacity.

The effectiveness of controllers was evaluated according to three criterions. Comfort
level is determined by calculating the average deviation of room temperature from the
room reference temperature, when the room temperature is in raised states, according to
formula 3, wherexi is the room temperature, and̄x is the reference room temperature.
N is the number of records. Gas consumption and On/Off switching times are calculated
for the whole experiment time – 24 hours. On/Off switching rate is determined calculat-
ing how many times boiler stages were activated during the day. Calculation results are
presented in the Table 3.

According to the Table 3, the comfort level in the system controlled with the proposed
learning fuzzy controller is 7.25 times higher than in the system controlled with the con-
ventional P controller. Gas consumption is 1.28 times smaller and the boiler switching on
and off times is 1.39 times smaller in case of fuzzy control, so the overall performance of
learning fuzzy controller is better.

Table 3

Performance criterions

Criterions Proportional controller Fuzzy controller

Comfort level 1.408 0.194

Gas consumption per day 7.36 m3 5.75 m3

On/Off switching rate 100 72
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5. Conclusions

In this paper general learning fuzzy controller’s design strategy was presented and ap-
plied for the synthesis of the learning fuzzy controllers for two nonlinear processes: the
level/pressure process and the heating system. The efficiency of the synthesized con-
trollers was experimentally tested and compared with the other controllers. The results of
the experiments prove the ability of the synthesized fuzzy controllers to identify the char-
acteristics of nonlinear plants and to learn to control them at different operating regimes.
The results also prove the advantage of proposed learning fuzzy controllers over the con-
ventional and non-learning fuzzy (in case of level-pressure control) controllers.
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Netiesini ↪u proces ↪u neraiškia logika pagr ↪istas mokslus valdymas

Vytautas KAMINSKAS, Raimundas LIUTKEVǏCIUS

Straipsnyje nagriṅejamas netiesinio objekto valdymas neraiškios logikos reguliatoriais. Pasiū-
lyta bendra mokslaus neraiškia logika pagr↪isto reguliatoriaus strukt̄ura, kur eksperto patirtis ir ži-
nios panaudojamos reguliatoriaus mokymo algoritm↪u sudarymui, o ne valdymo taisykli↪u formu-
lavimui, ir parodytas tokio reguliatoriaus pritaikymas dviejuose netiesinio valdymo uždaviniuose:
vandens lygio ir oro slėgio valdyme, bei šildymo sistemos valdyme. Eksperimentiškai parodytas ir
palygintas su kitais reguliatoriais pasiūlytos strukt̄uros reguliatori↪u pakankamas efektyvumas.


