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Abstract. T wave features suitable for automaticT wave alternans detection in low signal-to-noise
ratio electrocardiograms are explored using a correlation-to-template-based algorithm for detecting
T waves of variable duration. Amplitude and area features ofT waves are found to be notably less
sensitive to template selection than are duration features.T wave alternans features and measures
which can be determined more stably provide better classification accuracy of patients with and
without coronary artery lesions.
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1. Introduction

TheT wave that is the focus of this study is one of the five main waveforms in an electro-
cardiogram (ECG) and corresponds to the repolarization phase of the heartbeat (Pastore
et al., 1999; Armoundaset al., 2002). In some pathological conditions the morphology
of the T wave may change from beat to beat, the simplest and most easily recogniz-
able change being an amplitude change of the wave. When the alteration of amplitude is
regular and repeats every second heart beat one hasT wave amplitude alternans, a phe-
nomenon recognized over ninety years ago (Lewis, 1910) and illustrated in Fig. 1. As will
be observed, the alternation is relatively easy to recognize visually. The more generalT

wave alternans (TWA) is defined as a regular and repeating change in any characteristic
of theT wave, not only the amplitude, and such changes may be much less obvious. To
consider novel features and the presence of noise in real signals requires computer aided
detection, characterization, and analysis of TWA. If such generalized TWA can be reli-
ably detected and characterized they may provide a useful diagnostic or prognostic tool
for the cardiologist.
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Fig. 1. A fragment of an ECG with observableT wave alternans.

Advances in technology have made long duration high resolution ECG’s practicable
but routine automatic analysis is possible only for some features (e.g., R-R interval analy-
sis, Colomboet al., 1989).T waves are often low in amplitude and can have varied shapes
so that their detection is more difficult to automate. Yet for clinical use such automation is
a practical necessity. Hence in this paper we explore and test a template based correlation
method forT wave detection with minimal intervention by an experienced cardiologist.
Once theT wave sequence is available we use it to explore the use of features other than
T wave amplitude for the characterization of TWA. Finally, we examine the extent to
which the TWA defined by various features can be used to classify patients whose car-
diac medical status has been verified by an independent method. The questions to which
we wish to contribute are: Which feature of aT wave provides useful concordance be-
tween manual and automatic alternans analysis? To what extent can alternans analysis be
automated? Which alternans feature and measure choices provide useful classification of
patient ECG’s?

The plan of the paper is as follows: The next section reviews information related to
alternans, with one subsection devoted to primarily medical issues, and a second one to
signal analysis matters. This is followed by a description of our data base and the methods
used in signal processing, with operational details being given in appropriate appendices.
We then present a comparison between manual and automatedT wave detection results.
The section after that describes classification experiments with a mixed patient popula-
tion. The last section summarizes the results for both detection and classification.

2. Review ofT Wave Alternans

2.1. Medical Aspects

As mentioned above, macroscopicT wave alternans has been observed since the early
days of electrocardiology in the beginning of the 20th century. The advent of tools
to observe the alternans phenomenon at the microvolt level, not readily seen with
the naked eye and thought to be a much more frequent phenomenon, has lead to
a great increase in the number of publications about TWA (see (Cambridge Heart,
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2002) for a recent review) at the microphenomenon level and also to the introduc-
tion of the first commercially distributed TWA diagnostic system (CH2000 described
athttp://www.cambridgeheart.com).

TWA has been investigated as a marker for life-threatening heart rhythm disturbances
(Armoundaset al., 1998; Goldet al., 2000) and also has been found to be relatively
frequent in cardiomyopathies (Adachiet al., 1999; Konnoet al., 2001; Kitamuraet al.,
2002). The signifance of TWA was also investigated in patients with ischemic heart dis-
ease and heart failure (Tannoet al., 2000; Pedrettiet al., 2000; Klingenhebenet al., 2000),
and as an indicator of long-term survivability after myocardial infarction (Tapainenet al.,
2001).

The presence and clinical significance of TWA depends upon the conditions under
which it occurs. It has been found that the extent of TWA increases with an increase in
heart rate (Kavesh, 1998; Tannoet al., 2000). Further it has been demonstrated that at
high heart rates TWA is also present in normal individuals (Walkeret al., 2003; Cheung
et al., 2001). In usual practice TWA is evaluated during an exercise test and is classified as
“positive” if alternans is observed at heart rates not higher than 110 beats per minute (or is
present at rest) using the CH2000 system (Bloomfieldet al., 2002). Under such circum-
stances microvolt TWA analysis may be an alternative to invasive electrophysiological
testing (Smithet al., 1988; Armoundaset al., 1998; Bloomfieldet al., 2002).

2.2. Signal Processing Aspects

The traditional feature of theT waveform used in TWA analysis is presence of ampli-
tude fluctuations in time alignedT waves. The corresponding points in theT waves of an
ECG are used to construct a signal sequence, Fourier analysis is used to obtain a power
spectrum for the sequence, the steps are repeated for each point of theT wave, and the
resulting power spectra are averaged. Note, however, that the notion of a “power spec-
trum” should be considered with caution here, as frequency is defined on the basis of
heart beats, and the heartbeats do not follow exactly spaced in time. Because the study
involves empirical correlation of invasive and non-invasive methods, what is important is
that the procedures be well defined and realizable, with the theoretical justification being
a secondary matter. The presence of alternans is indicated by the presence of a peak at
a frequency of 0.5 cycles per beat in the averaged power spectrum (Armoundaset al.,
2002). The analysis is summarized by two measures: the alternans magnitude (Valt) and
the alternans ratio (k). Valt represents the magnitude of the voltage fluctuation between
successive heartbeats, and the alternans ratio is the ratio of alternans power to background
noise power. The alternans test is considered positive ifValt is at least 1.9µV andk � 3.0
(Armoundaset al., 2002). The method makes sense for steady state alternans; intermittent
alternans would give rise to lower frequency spectral components which would signifi-
cantly bias the evaluation.

An alternative approach to detecting TWA is the correlation method (Burratiniet al.,
1998) where a dimensionless alternans correlation-based index (ACI) is computed for
each of the consecutiveT waves by comparing eachT wave to the median wave in
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the sequence. AnACI > 1 corresponds to aT wave larger than the median, whereas
ACI < 1 corresponds to aT wave smaller than the median. Thus, in the presence of TWA
the ACI will alternate between values greater than and less than one. Since the value
of ACI is calculated for eachT wave, the correlation method allows one to determine
the duration of the TWA episode in terms of the number of alternating beats, and to
estimate the TWA amplitude. Alternating wave patterns in as few as seven consecutive
beats are considered informative. Complex demodulation method seeks alternans with
varying amplitude and phase, considered to be inscribed onto a regular every other beat
alternating pattern (Nearinget al., 1991; Martinezet al., 2000).

Still other choices may be made both in theT wave feature to be used in constructing
an alternans sequence and in the way the resulting sequence is analyzed. Among the for-
mer, in addition to the amplitude alternans already discussed, one may mention the use
of explicit T wave characteristics such as length or duration (Acar, 1999), of aT wave
lability index (measured as the difference between two consecutiveT waves (Nemecet
al., 2003)) and the introduction of multiplicative factors (characterizing aT waves series
in comparison with a prototypical wave (Tamosiunaiteet al., 2002)). With regard to se-
quence analysis, increasing attention is being devoted to the detection of a non-sustained
(nonstationary) or even aperiodic alternation inT waves (Nemecet al., 2003; Burra-
tini et al., 1998). Finally, among methods which attempt to combine feature choice and
sequence analysis in one step one may mention the use of the Karhunen–Loeve decom-
position (Lagunaet al., 1999).

Because it is not exactly clear how TWA arises, the choice of which features of theT

waveform to use and what analyses are most useful must be made on empirical grounds
using patient populations. Here one is faced with three important issues: one must dis-
tinguish between noise and significant signal, one must cope with statistical fluctuations
encountered with small populations, and one must find a reliable independent diagnosis
for the problem being studied.

3. Data and Methods

3.1. ECG Database

The database consisted of 400 ECG’s collected in the KMU Institute of Cardiology and
included 238 patients with coronary artery lesions (CL class) and 162 patients without the
condition (HL class). Division into these classes was performed according to coronarog-
raphy results, obtained after injecting contrast material into the heart coronary arteries and
performing X-ray studies. The ECG recordings were obtained at rest, sampled at 2 kHz,
with a resolution of 12 bits. The lead V3 was chosen for TWA examination, because the
noise level in this lead tends to be low andT waves are clearly represented.

To explore how the method of detectingT waves influences alternans analysis ten CL
and ten HL ECG’s were selected from the database. The following criteria were used in
this selection: no premature beats, no significant baseline drifts, ST segment is always
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on the baseline, and both the beginning and the end ofT waves are clearly visible to
an experienced cardiologist. Further sets of 65 HL and 90 CL ECG’s were found in the
database for our classification experiments under less restrictive conditions, with record-
ings in the database being discarded if one of the following held: 1) high noise level (high
frequency noise, or considerable baseline wander); 2) very lowT wave amplitude; 3)
spacing between consecutiveT waves is too variable.

The ECG signals were preprocessed to eliminate baseline wander. Wavelet based fil-
tering (http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet
/wavelet.html) with 4th order Coiflets was used, and signal reconstruction was made
up to the 11th level (tuned for the 2 kHz sampled ECG signal).T waves were detected
with a correlation-based algorithm without preliminary low pass filtering (no high fre-
quency noise elimination).

3.2. Outline of the Experiment

We first summarize the information processing steps:

a) Each ECG is converted into a sequence ofT waves using manual or automated
detection ofT waves. The procedures are specified in Subsection 3.3. 128 consec-
utive waves are analyzed as conventionally used in spectral methods (Armoundas
et al., 2002).

b) The desiredT wave feature is evaluated for eachT wave in a series by calculating
the appropriate functional value, so that a sequence of 128 feature values is ob-
tained. In this studyT wave amplitude, duration, and area features were used. The
features are described in more detail in Subsection 3.4.

c) The power spectrum of the selected feature sequence is obtained, estimated via the
discrete Fourier transform of a Hanning-windowed sample autocorrelation function
(following (Burattini, 1998)). The examples of a spectrum when TWA is present
is provided in Fig. 2(a), and when TWA is absent are provided in Fig. 2(b). The
power spectrum in this case represents oscillations on a heart beat scale, which is
not exactly regular in time, as mentioned earlier in Subsection 2.2. TWA is defined
as change in the amplitude, duration or form of theT wave occurring in every
other heartbeat basis, so TWA appears in the spectrum as a peak at the highest
frequency, further denoted byF65, where the index 65 represents the place of the
highest frequency component in the spectrum computed from a sequence of 128
points.

d) ThreeT wave alternans measures (m1, m2, m3) are calculated from the power
spectrum function. The measures differ in the degree of averaging used and hence
in the degree to which they are affected by noise. Averaging is desirable to reduce
the influence of noise but does decrease the resolution that might be obtained.

The measures are defined as follows:

m1 =

∑65
j=63 F (j)

∑62
j=60 F (j)

, m2 =

∑65
j=63 F (j)

∑65
j=1 F (j)

, m3 =
F (65)
F (64)

,
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Fig. 2. A power spectrum example where TWA is present (a) and TWA is absent (b).

whereF (j) – the power spectrum function of theT wave feature (e.g., amplitude),j =
1 . . . 65.

The measures define ratios of the highest frequency components of the spectrum func-
tion to the indicated lower frequency components. The measurem1 shows the ratio of the
energy in the last components representing the highest frequencies to the energy of the
preceding three components, which are supposed to represent noise energy. Note that a
wider spectral interval for alternans components is used here than in the traditional spec-
tral method, allowing for some deviation from strict alternation in the amplitude. The
measurem2 expresses the ratio of the last three highest frequency components to the
overall spectrum energy, whilem3 includes no averaging, and simply relates the energy
of the component representing the exact alternans pattern, to the preceding frequency
component used as a measure of noise.

3.3. T Wave Detection

To explore alternative strategies forT wave detection we chose twenty test ECG’s, as de-
scribed in the previous section. Manual detection was used to provide a known reference
for the exploration, so these ECG’s were first annotated completely by an experienced
cardiologist. In the procedure of manual detection a cardiologist reads each ECG and
marks the beginning and end of everyT wave. An interactive computer program aids this
task.

Automated detection was carried out using a templateT wave matching algorithm,
based on beginning and end point correlations. The template waves were selected man-
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ually with the aid of an interactive computer program in each ECG, and then the other
T waves were detected by comparing eachT wave of every ECG to one (or several)
templateT waves; the automatic detection algorithm is described in Appendix A. To
minimize cardiologist involvement and computational effort one would like to use the
minimum number of templates possible, butT waves can be quite variable not only in
amplitude but also in shape, so one set of calculations was done with one template, an-
other set with five templates. In the latter case the five templates were selected by dividing
the ECG signal into five intervals and choosing aT wave at random within each interval
to serve as a template; each of these templates was used to analyze the complete ECG
and the results were averaged.

The possibility that different patient classes may have systematically differentT wave
forms was examined by using manually detectedT wave features in three stages: the
CL class of ECG‘s, the HL ECG class, and finally the pooled ECG‘s. No statistically
significant difference was observed in these results so further calculations were with the
pooled sample.

Note that the overall processing uses sequences which were generated by one of three
T wave detection procedures: manual, automatic with one template, automatic with five
templates (recall Appendix A), so that the calculations to follow are done thrice for each
study ECG.

3.4. Feature Evaluation

The features chosen for exploration were the following: amplitude ofT wave maximum,
four types ofT wave duration features, and two types ofT wave area features. The
choices were made by balancing algorithmic considerations for reliable automation of
the TWA analysis against expectations of noise sensitivity. In addition to being the tradi-
tional choice, the amplitude feature was expected to be not very sensitive to errors in the
detection of the beginning and end point of theT wave, and was expected to be sensitive

Fig. 3.T wave features: amplitude feature(a), duration features (b) and area features (c).
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only to high frequency (myoelectric) noise on the wave. The area features were presum-
ably the least noise-sensitive ones, both in respect to the inaccuracies in wave extraction
and to the myoelectric noise due to averaging inherent in area evaluation. The duration
features were expected to have the greatest variability. The nature of the different features
is illustrated graphically in Fig. 3, with the algorithmic definition given in Appendix B.

4. Results

4.1. Feature Suitability for Automation

To evaluate the extent to which a given feature is suitable for automaticT wave detection
we compute feature specific correlation coefficient between the automatically detected
feature sequences, e.g., amplitudes ofT wavesAaut(1), Aaut(2), . . ., Aaut(128), and
the ones calculated using manualT wave detection:Aman(1), Aman(2), . . ., Aman(128).
Fig. 4 presents correlation coefficients for features A, T1, T2, T3, T4, S1, S2, averaged
over the 20 analyzed ECG‘s when the detection is done with one template wave form.
Fig. 5 summarizes the results when automatic detection involves five templates. Five
correlation coefficients (one for each template) in this case were averaged for each feature
of each ECG. In addition to the mean result we also present the 95% confidence intervals
based on the sample of 20 analyzed ECG’s. The meaning of the feature symbols was
shown in Fig. 3.

Another way to assess the influence of the template wave form inT wave detection is
to check for consistency among the five templates used in the automaticT wave detection
algorithm by computing the correlations among the different template results. Here we
average correlation coefficients obtained for all template pairs. The summary calculations
are shown in Fig. 6.

Fig. 4. Correlations betweenT wave features detected automatically (one template) and manually.
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Fig. 5. Correlations betweenT wave features detected automatically (five templates) and manually.

Fig. 6. Mutual correlations betweenT wave features obtained using different templates (five templates auto-
matic detection).

The agreement between manual and automatic detection methods is improved by us-
ing several templates, and is best for theT wave maximum amplitude, the traditional
feature, with area features being almost as good, and time interval features performing
poorly. Increasing the number of templates would narrow the confidence intervals but is
unlikely to change the correlations themselves.

4.2. Classification Experiments According toT Wave Alternans Measures

Classification of patients whose medical condition is known provides an additional way
to evaluate the utility of differentT wave features. Classification of ECG recordings ob-
tained from patients with documented coronary artery stenosis (CL – 90 cases) vs. ECGs
obtained from patients without such lesions (HL – 65 cases) was performed, hypothesiz-
ing that the two classes would show different amounts ofT wave alternans (Lagunaet
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Table 1

Classification errors of patients with and without stenosis, using different
alternans features with different measures

Feature Measure eCL eHL eT

m1 0.56 0.34 0.45

A m2 0.45 0.18 0.31

m3 0.62 0.45 0.53

m1 0.62 0.36 0.49

T1 m2 0.53 0.36 0.44

m3 0.50 0.55 0.52

m1 0.45 0.57 0.51

T2 m2 0.56 0.40 0.48

m3 0.22 0.73 0.47

m1 0.56 0.33 0.44

T3 m2 0.46 0.23 0.34

m3 0.52 0.54 0.53

m1 0.52 0.27 0.39

T4 m2 0.45 0.19 0.32

m3 0.62 0.46 0.54

m1 0.57 0.25 0.41

S1 m2 0.44 0.13 0.28

m3 0.56 0.49 0.52

m1 0.52 0.52 0.52

S2 m2 0.34 0.15 0.24

m3 0.45 0.59 0.52

al., 1999). Fisher’s linear discriminant function (Raudys, 2001) was used for classifica-
tion, and classification accuracy was evaluated on a test set. Data was divided randomly
one thousand times into learning (2/3 of data) and test (1/3 of data) sets in order to avoid
accommodation to some specific division of a data set, and the resulting classification
errors were averaged.

The resulting classification errors according toT wave alternans measuresm1, m2,
m3 for each of the features are presented in Table 4.1. HereeCL denotes errors in the
class with coronary artery stenosis,eHL – errors in the class without coronary artery
lesions, andeT – the total classification error.

Patients with stenosis are classified best by using the duration feature T2 and mea-
surem3, while patients without stenosis are classified best by area feature S1 and mea-
surem2. Total classification erroreT is the smallest for feature S2 and measurem2. The
cardiologist’s problem is what to do with a patient whose stenosis status is not known at
presentation. To give an answer to that question the results are further condensed in Fig. 7.
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Fig. 7. Classification errorseT using different alternans features with different measures.

Here the overall classification errorseT grouped by features and measures are presented.
It might be noticed that the measurem2 systematically gives smaller classification er-
rors than the other measures, while the results obtained using measurem3 are dispersed
around 50% and show no potential to separate the two classes. In that situation the results
obtained with area feature S1, or S2 and measurem2 are more relevant, and the ones ob-
tained with duration feature T2 and measurem3 might be hypothesized as having given
good classification results for the class with coronary artery stenosis just by chance in the
relatively small sample analyzed here. For the feature S2 and measurem2 the average
error achieved is 0.24, with individual contributions ofeCL = 0.34 andeHL = 0.15. The
next best diagnostic is provided by area feature S1 and measurem2, with an error of 0.28,
while the more traditional amplitude feature A with measurem2 gives a slightly worse
error of 0.31. The duration feature T4 with measurem2 does equally well. Other tempo-
ral features provide substantially worse classification of these patients. Usually features
and measures which involve an appropriate amount of averaging provide better results in
classification than do such measures asm3 which involve no averaging at all, as might
be expected from noise sensitivity considerations.

5. Conclusions

In this paper we presented experiments with a novel procedure for automaticT wave
characterization andT wave alternans analysis and applied the approach to the problem
of classifying patients whose status with respect to the presence or absence of cardiac
artery stenosis had been verified by coronarograhy, an independent albeit invasive diag-
nostic technique. It was seen that once an experienced cardiologist has annotated a small
number ofT waves, say five or fewer, the patient’s ECG can be processed automatically
with acceptable results. In addition we explored several differentT wave features which
might be used for TWA characterization. Overall it was found that there are several fea-
tures which can be used in an automatic TWA analysis with performance close to that
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achieved by an experienced cardiologist. These same features perform well when used in
a clinical lesion classification setting. Features and measures which effectively integrate
the information given by an ECG seem to give the best results so that development of
automated analysis methods that use long ECG’s, with minimal involvement of a cardi-
ologist, may be a promising approach for cardiac diagnosis. It may be worthwhile to seek
new features as well.

Appendix A. T Wave Detection Algorithm

Algorithm uses the following initial quantities:

1. Discrete ECG signalY (t), t = 1, 2, . . . , N , whereN – number of samples in the
ECG.

2. A templateT wavedefined by the beginning pointtb templ and the end point
te templ of the selectedT wave (tb templ, te templ – manually defined).

3. A template time intervalatempl between two adjacentT wavesdefined as a dis-
tance between the template and the adjacentT wave maximum points:atempl =
tm templ − tm adj , wheretm templ – maximum point of the template wave and
tm adj – maximum point of the adjacentT wave (tm templ, tm adj – manually
defined).

4. A template time intervala1 templ between the beginning point and the maxi-
mum pointof the template wave:a1 templ = tm templ − tb templ, and template
time intervala2 templ between the maximum point and the end point: a2 templ =
te templ − tm templ.

5. Template beginning and end signalsFb templ(x) andFe templ(x): Fb templ(x) =
Y (t), t = tb templ − 50..tb templ + 50, x = 1 . . . 101; Fe templ(x) = Y (t), t =
te templ − 50..te templ + 50, x = 1 . . . 101, the constants being adapted to the
2 kHz sampled ECG signal.

6. The initial point t = t10 of T waves series analysis (detection process is started
at the approximate maximum point of aT wave in the beginning of a signal,t10 –
manually defined).

Manual definitions were done by a cardiologist using an interactive computer pro-
gram.

Algorithm for detection of theith T wave in a sequence operates as follows:

1. The time interval[t1, t2] around the initial pointti0, approximately defining the
position of theith T wave, is constructed, wheret1 = ti0 − 0.4a1 templ, andt2 =
ti0 + 0.4a2 templ. Then the maximum pointtim of this interval (i.e., the maximum
of theith T wave) is computed,tim = max{Y (t)}, t = t1 . . . t2.

2. Theinitial beginningtib and endtie pointsfor theith wave are computed as follows:
tib = tim − a1 templ, andtie = tim + a2 templ.

3. Correlation-based refinement of theinitial beginning and end pointstib, tie is car-
ried out and thisrefined beginning pointtib ref is obtained. At firsttib ref = tib is
defined. Then time interval[tb 1, tb 2] is constructed, wheretb 1 = tib − 75, and
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tb 2 = tib +75. From the beginning point of this interval the algorithm shifts trough
all the points computing the correlation coefficientr between signalsFb templ(x),
x = 1 . . . 101, andY (t), t = i0 . . . i0 + 100 (in the beginningi0 = tb 1), which
is compared with the given correlation coefficientru = 0, 98. If r = ru, the point
t = t + 50 is fixed as the final beginning point of theT wave. Elsei0 is increased,
i0 = i0 + 2, and correlation coefficientr is computed again.

4. If ru is not achieved in the given interval[tb 1, tb 2], thenru is decreasedru =
ru − 0.02, and the algorithm returns to the beginning of the interval. The action is
performed untilr >= ru is achieved.

5. In a similar way as therefined beginning pointin step (3), therefined end point
tie ref of theT wave is computed. In that case the correlation coefficient between
signalsFe templ(x), x = 1 . . . 101, andY (t), t = i0 . . . i0 + 100 is calculated.

6. Correlation coefficientru for the end template match is decreased in the same way
as in step (4) for the beginning template match if the required precision is not
achieved in step (5), and this step is repeated untilr >= ru is achieved for the end
template match.

7. Further withti+1
0 = ti0 + atempl the algorithm returns to the 1st step to process

the next wave. The process is repeated until the required number ofT waves is
achieved, i.e.,i = 128.

Appendix B. Features ofT wave

The amplitude feature was evaluated by calculating the functional value for eachT wave:

A(i) = Y (tim) − Y (tib) + Y (tie)
2

,

whereY (t) – ECG signal,tim – the maximum point ofith T wave,tib – the beginning
point of ith T wave,tie – the end point ofith T wave,i = 1 . . . 128 (see Fig. 3(a)).

For duration feature determination four different functional values need to be com-
puted. One of them depends only on wave boundaries:T1(i) = tie − tib.

The other three additionally included area information:
T2(i) = tiS0.5

− tib – measures the time interval to accumulate from 0 to 50% of theT

wave area, wheretiS0.5
is defined by the equation

ti
S0.5∑

t=ti
b

Y (t) = 0.5 · S1(i).

T3(i) = tiS0.75
− tiS0.25

– measures the time interval to accumulate from 25 to 75% of
the area, wheretiS0.75

andtiS0.25
are defined by the following equations:

ti
S0.25∑

t=ti
b

Y (t) = 0.25 · S1(i),
ti
S0.75∑

t=ti
b

Y (t) = 0.75 · S1(i).
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Finally, the time interval to accumulate from 5 to 95% of the area (see Fig. 3(b))
T4(i) = tiS0.95

− tiS0.05
, wheretiS0.95

andtiS0.05
are defined by the following equations:

ti
S0.05∑

t=ti
b

Y (t) = 0.05 · S1(i),
ti
S0.95∑

t=ti
b

Y (t) = 0.95 · S1(i).

Two functional values directly reflecting theT wave area were calculated:

S1(i) =
ti
pb∑

t=ti
b

Y (t), S2(i) =
ti
m∑

t=ti
b

Y (t),

whereS1(i) – T wave area from the beginning point to the end point,S2(i) – area from
the beginning point to the maximum point (see Fig. 3(c)).
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T dantelio požymi ↪u tinkamumo automatiniam alternacijos ↪ivertinimui
tyrimas

Tomas KULVIČIUS, Minija TAMOŠIŪNAITĖ, Rimas VAIŠNYS

Tiriama, kokieT dantelio požymiai tinka automatiniamT dantelio alternacijos elektrokardio-
gramoje ↪ivertinimui, kai signalas yra nedaug stipresnis už triukšm↪a. Kintamo ilgio T danteli↪u
išskyrimui naudojamas koreliacija su šablonu pagr↪istas algoritmas. Randama, kad amplitudės ir
ploto požymiai yra žymiai mažiau jautrūs šablono parinkimui, negu ilgio požymiai. TieT dantelio
požymiai ir alternacijos matai, kuriuos↪imanoma patikimiau↪ivertinti, teikia geresn↪i klasifikavimo
tikslum ↪a, atskiriant pacient↪u su koronarini↪u arterij ↪u pažeidimais ir be pažeidim↪u elektrokardiogra-
mas.


