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Abstract. The Star Plot approach to high-dimensional data visualization is applied to multi-
attribute dichotomies. It is observed that the areas of the plot for the two parts of a dichotomy
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1. Introduction

A multi-attribute dichotomy is any multi-dimensional dataset in which the dimensions
can be partitioned into two groups, each considered to be contributing to one part of
the dichotomy. For example, the set of options in a decision analysis may have cost and
benefit factors. In the clinical study of certain medical conditions, there may be a genetic-
environmental dichotomy (McGue, 1997). For consumer attitudes in market research, a
key issue can be whether customers are more price or quality focused (Riesz, 1978). With
online auction markets, one can study whether conditions are favorable to either buyers
or sellers (Ho, 2004). In each case, it is of interest to classify instances of the dataset
according to the dominance of one part or the other of the dichotomy. In decision analysis,
this identifies cost-effective options. In medical diagnosis, such classification may help to
select treatment methods. In marketing campaigns, proper segmentation of customers can
guide the balance between pricing or product improvement incentives (Johnson, 2000).

Many methods have been explored and well studied for the problem of aggregating
multiple and incommensurate attribute functions. The aggregate measure may assume
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simple additive forms for which appropriate weights must be determined (Poyhonen and
Hamalainen, 2001) through some process of subjective preference evaluation by some
decision maker (Dyer and Sarin, 1979; Kirkwood and Sarin, 1980). In the more com-
prehensive theory of multi-attribute utility, the decision maker’s attitude towards risk is
taken into consideration by the evaluation of uncertain options among outcomes (Keeney
and Raiffa, 1976). The approach developed in this work is a departure from such classical
methodology. While an aggregate measure is sought to discern the relative dominance of
the two parts of a dichotomy, no pair-wise comparison of outcomes, or preference evalu-
ation under uncertainty is invoked. Instead, a subset of the dichotomies with “prejudged”
dominance of one part or the other is used as a frame of reference. An aggregate mea-
sure is then derived from an optimization model which provides maximum resolution in
discerning dominance with respect to the reference set.

In this regard, our approach is grounded in Exploratory Data Analysis (EDA) (Tukey,
1977). In contrast to traditional inferential statistics, which focuses on hypothesis testing
designed to verify a priori hypotheses about relations among variables, EDA does not
presume any model on such relationships. It is a philosophy, rather than a collection of
techniques, to use primarily graphical visualization to gain insight into a data set. With
open-minded exploration, the goal is to uncover hidden structure and systematic patterns
that may lead to further discovery of knowledge. While EDA was pioneered in the days
of hand-drawn graphics, advances in database technology and computer graphics have
enabled more sophisticated specializations. EDA on large and complex databases now
falls under the rubric of Data Mining (Chenet al., 1996), and computerized graphical
methods are known as Data Visualization (Hoffman and Grinstein, 2001; Keim, 2002).

The major objective of Data Mining is Knowledge Discovery in Databases, one pop-
ular definition of which is the non-trivial process of identifying valid, novel, potentially
useful, and understandable patterns in data. One major topic is the discovery of associa-
tion rules, which shed light on correlations in the data. Such knowledge has practical use
for decision support when combined with appropriate decision-analytic models (Bohanec
and Zupan, 2001). Another major topic is classification, which subsumes the more tradi-
tional subjects of cluster analysis and pattern recognition (Ankerstet al., 2000). In this
work, the Star Plot Method (Chamberset al., 1983) of high-dimensional data visualiza-
tion is applied to multi-attribute dichotomies. Beyond giving shape to the dichotomies,
hence enabling visual EDA, the respective areas of the two parts suggest a plausible
aggregate measure for classifying the dichotomies according to the dominance of their
parts. A mathematical programming model is formulated to produce an optimal topology
for visualizing the dichotomies, so that the areas in the plot provide an aggregate measure
with maximum resolution with respect to some reference set. In this context, the proposed
approach is a novel application of optimization in visual data mining.

Section 2 motivates topological analysis of multi-attribute dichotomies, and describes
the application of the Star Plot Method. The optimization model for a maximum resolu-
tion topology is introduced in Section 3. An illustrative example in classifying the cost-
effectiveness of Law Schools is given in Section 4. Preliminary results of applications
and directions for future work are discussed in Sections 5 and 6.
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2. Topological Model for Visualization of Multi-Attribute Dichotomies

2.1. Star Plot for High-Dimensional Data

One of the simplest yet visually most powerful display of multi-dimensional data is
known as the star plot (Chamberset al., 1983). The values for an instance in the dataset
are mapped on symmetrically placed axes representing the dimensions radiating from a
common origin. The polygonal glyph obtained by connecting the plotted values gives
“shape” to the data. Pattern and structure of such shapes can then provide useful visual
cues for EDA. Chamberset al. (1983) presented what has become the best known exam-
ple, which was based on automobile data in 1979. There are twelve dimensions and 74
instances in the dataset. The dimensions are:

1. PRICE
2. MILEAGE (MPG)
3. REPAIR RECORD (1978) 1 = WORST & 5 = BEST
4. REPAIR RECORD (1977) 1 = WORST & 5 = BEST
5. HEAD ROOM (INCHES)
6. READ SEAT ROMM (INCHES)
7. TRUNK SPACE (CUBIC FEET)
8. WEIGHT (POUNDS)
9. LENGTH (INCHES)

10. TURNING CIRCLE (FEET)
11. DISPLACEMENT (CUBIC INCHES)
12. GEAR RATIO

Fig. 1. Star plots of 1979 automobile data.
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With appropriate scaling, all the attributes can be plotted with increasing value being
desirable. The star glyphs for four of cars in the dataset: Cadillac Eldorado, Buick Riviera,
Honda Accord, and Volkswagon Rabit are shown in Fig. 1.

Even from this small sample, it can be observed that larger American models exhibit
different glyph shapes from compact imports. More recent and significant applications
include data mining of molecular databases in automated drug discovery research (Song
et al., 2002), and international comparison of service use profiles of mental health patients
(Patel, 2003).

2.2. Star Plot for Multi-Attribute Dichotomies

While it is obvious and well known that the shape of the star glyphs depends on the con-
figuration of the attributes along the radial dimensions of the plots, EDA to date simply
encourages analysts to investigate the variations on an ad hoc basis. A first step toward
a more systematic approach is motivated by the topological analysis of online auction
markets (Ho, 2004). To address the question of “What shape is an online auction market
in ?” twelve attributes are identified:

1. NET ACTIVITY (auctions with bids)
2. PARTICIPATION (average number of bids per auction)
3. SELLER DIVERSITY (distribution of offers)
4. SELLER EXPERIENCE (distribution of sellers’ ratings)
5. MATCHING (auctions ending with a single bid)
6. SNIPING (last minute winning bids)
7. RETAILING (auctions ending with the Buy-It-Now option)
8. BUYER DIVERSITY (distribution of bidder participation)
9. BUYER EXPERIENCE (distribution of buyers’ ratings)

10. DUELING (evidence of competitive bidding)
11. STASHING (evidence of stock-piling)
12. PROXY (use of proxy bidding as evidence of true valuation)

Attributes 1 and 2 are common parameters of the market and considered neutral to
buyers and sellers. Attributes 3 through 7 reflect market conditions for buyers in the
sense that higher observed values are deemed to be advantageous. Similarly, attributes 8
through 12 are considered to be seller dimensions, as for example, higher level of com-
petitive bidding in the form of head-to-head dueling is a welcome condition for sellers.
By arranging the seller attributes on the left side, and buyer attributes on the right side
of a star plot, with the neutral attributes on the top and bottom verticals, respectively, a
glyph for the buyer-seller dichotomy can be drawn. Mining data on completed auctions
available on eBay.com, the largest platform for online auctions over the Internet, four ex-
ample markets in June and July 2004 are shown in Fig. 2. These markets: digital cameras
(medium capacity, 3–4 Mega pixels), diamond rings, classical music CDs, and toys and
games with the Star Wars theme, represent a small but diverse sample of the over 25,000
categories being offered on eBay. The star plots, which are snapshots of the markets at a
particular time point, illustrate that different markets take on different shapes according
to their operational characteristics at the moment.

In general, for dichotomies with no convenient “neutral” attributes to serve as the
separating vertical axis, two dummy dimensions are used. These may be labeled, say,
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Fig. 2. Star plots for four online auction markets.

“Top” and “Bottom” and set at arbitrary constant values, or at the mean of all attribute
values for the data instance.

2.3. Topological Model for Multi-Attribute Dichotomies

Given the star glyph of a multi-attribute dichotomy, as exemplified in Fig. 2, it will be
both visually and intuitively appealing if the areas covered by the two parts can be used
as a meaningful aggregate measure of their relative dominance. A larger area on the left
side of the glyph means dominance by the left part, and vice versa. In the case of online
auction markets, this can be interpreted as market conditions being advantageous to either
buyers or sellers. In mathematical terms, the aggregate value function takes the form of
the sum of pairwise products of adjacent attributes:

V (X1, . . . , Xn) = C
∑

XiXj ,

where attributesi andj are adjacent;Xi is the value of attributei, i = 1, . . . , n; andC is
some scaling constant.

While plausible, since increasing value of an attribute contributes positively to its
designated part, as well as the latter’s area in the glyph, the concept can be refined to
realize its potential.
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To this end, the first step is to render the glyph unit free by normalizing the data on
each dimension to the unit interval [0, 1]. The second step is to render the glyph context
free by harmonizing the dimensions as follows. For each attribute, the quartiles for the
values in the entire dataset are computed. A spline function (Cline, 1974) is constructed
to map these quartiles into the [0.25, 0.5, 0.75] points of the unit interval. This way, a
hypothetical data instance with all attributes at mean values of the dataset will assume
the shape of a symmetrical polygon with vertices at the mid-point of each radial axis. In
this frame of reference, all shapes and sizes are relative to this generic “average” glyph,
and free of either units or specific context of the attributes. For our exploratory work,
simple second-order (piecewise linear) splines are used.

Finally, the critical potential in the concept of using area as aggregate measure arises
from the degrees of freedom allowed by the topology of the glyph, namely, the con-
figuration of the attributes, and the angles between adjacent pairs thereof. For any given
arrangement of the attributes, the standard star plot produces a glyph along symmetrically
spaced radial axes. Variations from this symmetry imply a feasible set of shapes and ar-
eas, which along with permutations of the configuration, offer the choice of topologies
that may suit further criteria for a meaningful aggregate measure function. In particu-
lar, we use a subset of the data instances, for which the dichotic dominance has been
prejudged, in an optimization model to derive a topology with maximum resolution in
discerning dominance with respect to the reference subset. The aggregate value function
now takes the form of the sum of weighted pairwise products of adjacent attributes

V (X1, . . . , Xn) = C
∑

wijXiXj ,

where attributesi andj are adjacent, andwij is the weighing factor that determines the
angle between them.

Several options are open in choosing the reference subset of dichotomies. In the ab-
sence of significant insight into the classification of the dichotomies, and especially in
the early stages of EDA, any initial dataset can be used on an ad hoc basis. An arbitrary
configuration of the attributes within each part of the dichotomy is selected and evenly
spaced. The classification of the dichotomies according to this topology is fed into the
optimization model. The resulting optimal topology with respect to this reference set
provides a working definition of dominance for the dichotomies. This is analogous to se-
lecting a portfolio of stocks to provide an index for a stock market. The performance of
any stock can be gauged relative to the index, which may be arbitrarily chosen initially.
With better knowledge of the significance of individual stocks, more useful indices can
be established. By the same token, the maximum resolution topology for multi-attribute
dichotomies can be adaptively refined as the EDA progresses.

When there is expert opinion, or a role for a decision maker, the reference subset can
be chosen subjectively. Note that rather than eliciting preference evaluation as in other ap-
proaches to aggregate multi-attribute value functions, only judgment on the classification
of a subset of data instances is required. In practice, the decision maker is asked to iden-
tify some dichotomies that he or she judges with confidence to be “left-dominant”, and
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others (preferably more or less equal in number) that are “right-dominant”. Obviously,
a certain degree of consistency is expected of the subjective judgment for the optimiza-
tion to be feasible. Minor systematic discrepancies may be compensated by a uniform
rescaling of the “left” and “right” attributes appropriately.

Yet another option to select the reference dichotomies can be an integral part of the
EDA process. For example, for market segmentation in consumer attitude research, the
dichotomy is cost focus versus quality focus. Based on responses to surveys that supply
data on how customers rate various cost and quality attributes, the objective is to classify
all potential customers. In this case, focus groups can be employed to identify customers
who are bona fide specimens of each class. Their corresponding data points are then used
as the reference subset in the optimization model.

Subject to the constraints of preserving the prejudged dominance in the reference sub-
set of dichotomies, an optimal topology (configuration of attributes and angles between
adjacent pairs) is sought that maximizes the discriminating power (sum of absolute differ-
ences in left and right areas) for the reference subset. Before presenting the details of the
model, it should be remarked that maximum resolution in this context does not imply the
classification of the most dichotomies. Any topology can classify all instances in a dataset
(except in degenerate cases where the areas are numerically equal). The critical factor is
that as aggregate measures, different topologies may classify the same dichotomy differ-
ently. The maximum resolution model rationalizes the choice for one that best “enforces”
the classifications in the reference subset.

3. An Optimization Model for Maximum Resolution Topology

With the star glyph as the topology, we now introduce its optimization model. A (kth)
datarecord consists of (“left” or) X-attribute data{xk

i } and (“right” or) Y-attribute data
{yk

j }, such thatxk
i denotes thekth record’sith X-attribute value andyk

j denotes thekth
record’sjth Y-attribute value, with (unit interval data range)

{
0 � xk

i � 1|i ∈ I
}

and
{
0 � yk

j � 1|j ∈ J
}
,

where

I ≡
{
i = 1, 2, · · · , m|x̄1 � x̄2 � · · · � x̄m−1

}

and

J ≡
{
j = 1, 2, · · · , n|ȳ1 � ȳ2 � · · · � ȳn−1

}
.

The x̄i and ȳj above are the average attribute-values over the records. The index sets
I andJ are defined as one convention to standardize a “default” configuration of the
attributes. We assume the natural boundary conditions of

xk
0 = yk

0 (�) xk
m = yk

n ∀k ∈ K
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are assumed. These are either neutral attributes, or dummy attributes “Top” and “Bottom”
assigned to the vertical axes as discussed in Subsection 2.2. The records are indexed by
k ∈ K in the manner to be explained below. When referring to theith X-attribute as a
variable rather than its value for a particular data instance, we shall writexi instead of
xk

i ; and similarlyyj instead ofyk
j .

In the star plot illustrated in Fig. 3, denote theangles between attributesxi−1 andxi

by αi, i ∈ I, and that between attributesyj−1 andyj by βj , j ∈ J , for all |K| records.
Let theweights be

ai ≡ Sinαi, i ∈ I; and bj ≡ Sinβj , j ∈ J.

And we have0 � ai � 1, i ∈ I and0 � bj � 1, j ∈ J . Hence for thekth record, the
sector area between attributesxi−1 andxi, and that between attributesyj−1 andyj , are
given respectively by

Ak
i (= Ak

i (x)) ≡ 1
2
xk

i−1x
k
i Sinαi =

xi−1xi

2
ai, i ∈ I;

and

Bk
j (= Bk

j (y)) ≡ 1
2
yk

j−1y
k
j Sinβj =

yj−1yj

2
bj , j ∈ J.

Next, we partition the data records according to their left-right dominance under equal
weighting in a standard star plot. Usingai = 1/|I|, andbj = 1/|J | in the above formulas
for Ak

i , ∀i andBk
j , ∀j respectively, we group the|K| records into two partitions such that

K ≡ K+ ∪ K−, with

K+ =
{
k ∈ K|Ak � Bk

}
and K− =

{
k ∈ K|Bk > Ak

}
,

Fig. 3. Terminology for the optimization model.
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where

Ak =
∑
i∈I

Ak
i and Bk =

∑
j∈J

Bk
j .

Note thatAk is the area of the left part of the dichotomy in the star glyph spanned
by its X-attributes, andBk is the area of the right part of the dichotomy spanned by its
Y-attributes of recordk, k ∈ K. K+ indicates records with X-attribute dominance (or left
dominance), andK− indicates records with Y-attribute dominance (or right dominance).
With these notations, we formulate theMaximum Resolution Topology Linear Program
(or MRT-LP for short) as follows.

Max
∑

k∈K+

[Ak − Bk] +
∑

k∈K−

[Bk − Ak].

Subject toAk − Bk � 0, k ∈ K+ andBk − Ak � 0, k ∈ K−

∑
i∈I

ai = 1,
∑
j∈J

bj = 1, ai � 0, i ∈ I; bj � 0, j ∈ J.

The objective function above, with each term constrained to be non-negative, measures
the gross dominance by the larger part in the dichotomy. By maximizing, we seek the
highest discriminating power, in an aggregate sense, to separate the parts.

Indeed, a numerical experiment with |K| = 16 records,|K+| = 8, |K−| = 8, m = 3,
n = 4, and random input data forxi and yj over [0, 1], gives the following results.
The maximum objective function value (=TTLMRT) is equal to 1.859, compared to the
equal-weight total area difference given by

∑
k∈K+

[Ak − Bk] +
∑

k∈K−

[Bk − Ak]
∣∣∣
{

ai =
1
|I| ,∀i; bj =

1
|J | ,∀j

}
= 1.278,

or an improvement of over 45%. However, the optimal weights (by a Lingo code) are:
a∗ = (0.796, 0.000, 0.204) and b∗ = (0.000, 0.777, 0.223, 0.000). The extreme point
solution by linear programming collapses three out of the seven inter-attribute angles,
and cannot produce a proper star glyph displaying all the attributes. To circumvent this
difficulty, we extend the MRT-LP model into its goal programming version (Chu, 2001)
of MRT-GP by the addition of the usual deviation variables with total smoothing variation
(=TTLVAR) and/or bounded deviation (=TTLDEV). This MRT-GP with decision variables
ai, i ∈ I andbj , j ∈ J is then given by

Max TTLMRT
Min TTLDEV

Min TTLVAR

Subject toAk − Bk = Dk, k ∈ K+ andBk − Ak = Ek, k ∈ K−

∑
i∈I

ai = 1,
∑
j∈J

bj = 1, ai � 0, i ∈ I; bj � 0, j ∈ J ;
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TTLMRT =
∑

k∈K+

Dk +
∑

k∈K−

Ek,

TTLDEV =
1
|I|

∑
i∈I

[
PDEVX(i) + NDEVX(i)

]

+
1
|J |

∑
j∈J

[
PDEVY (j) + NDEVY (j)

]
,

TTLVAR =
1
|I|

∑
i∈I

[
PVARX(i) + NVARX(i)

]

+
1
|J |

∑
j∈J

[
PVARY (j) + NVARY (j)

]
.

(Deviation bounds)

1
|I| − F ∗ 1

|I| � ai � 1
|I| + F ∗

(
1 − 1

|I|
)
, i ∈ I,

1
|J | − F ∗ 1

|J | � bi � 1
|J | + F ∗

(
1 − 1

|J |
)
, j ∈ J.

(Deviation goal constraints)

ai − PDEVX(i) + NDEVX(i) =
1
|I| , i ∈ I,

bj − PDEVY (j) + NDEVY (j) =
1
|J | , j ∈ J.

(Variation/smoothing goal constraints)

ai − ai+1 − PVARX(i) + NVARX(i) = 0, i ∈ I (am+1 ≡ a0),

bj − bj+1 − PVARY (j) + NVARY (j) = 0, j ∈ J (bn+1 ≡ b0).

The0 < F < 1 parameter in the MRT-GP formulation above is the fraction of deviation
from equal weights allowed for the weight variablesa andb. An empirical trial, using
weighted rather than pre-emptive GP with a deviation allowance of 50% (F = 0.5)
returns 1.657 for TTLMRT, which is about a 30% improvement over 1.278. The weights
area = (2/3, 1/6, 1/6) andb = (1/8, 9/16, 3/16, 1/8).

This numerical instance illustrates only one of the two aspects of degrees of freedom
of the topology – the “angles”. The other aspect – “configuration” – can be simply treated
by considering all the 144 (= 3! × 4!) cases of complete permutations of{i ∈ I} and
{j ∈ J} from the two sets of attributes. The example in Section 4 will demonstrate both
in an actual application setting.
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4. An Illustrative Example

To illustrate the optimization model for maximum resolution topology for multi-attribute
dichotomies, we use an example in cost-benefit analysis of US law schools. The dataset,
adapted from (ILRG, 1996), has 51 instances. Six attributes are used in a cost-benefit
dichotomy. The cost attributes are Tuition, Room and Board, and Payment on Loan. The
benefit attributes are ratings on Job Placement, Starting Salary, and Ranking (Reputation).
The data is first normalized and harmonized as described in Subsection 2.3. The dummy
dimensions “Top” and “Bottom” are set at the mean of all attribute values for the data
instance. The subjective prejudgment by a decision maker to select the reference subset
is then simulated. Under an arbitrary default topology (with the attributes ordered as listed
above in the standard star plot), the five records that are most cost-dominant, and the five
records that are most benefit-dominant are chosen, assuming that these are the “clear-cut”
cases for the hypothetical decision maker. The data for this reference subset is shown in
Table 1.

For each permutation of the configuration of the attributes, the MRT-GP problem com-
prises eight variables and 54 constraints. With six attributes (3 for each part), there are (3!
x 3!) =36 permutations yielding four optimal configurations that are topologically equiv-
alent due to symmetry. The average gain in resolution from optimization, as measured in
Section 3, is 32.6% over all configurations. A maximum resolution topology for a typical
data instance is shown in Fig. 4. The optimal configuration, counting from the “Top”,
is Room and Board, Tuition, and Loan Payment for the cost attributes; and Job Place-
ment, Salary, and Ranking for the benefit attributes. The optimal angles (in units ofπ)
are, clockwise from the “Top”, (0.125, 0.625, 0.125, 0.125, 0.125, 0.625, 0.125, 0.125).
Since the star glyph topology accentuates pairwise correlation among the attributes, we
observe that Tuition and Loan Payment have the highest correlated effect for the cost
attributes, whereas Placement and Salary do so for the benefit attributes, with each pair
being assigned the largest weight of 0.625. For the data instance in Table 1, the aggre-
gate measure for the cost attributes is 0.076, compared to that of 0.144 for the benefit

Table 1

The reference subset for cost-benefit dichotomy of law schools

Data ID Tuition R&B Payment Placement Salary Ranking

39 0.612 0.356 0.454 0.324 0.356 0.247

50 0.785 0.815 0.464 0.676 0.620 0.459

33 0.643 0.642 0.409 0.516 0.535 0.100

31 0.690 0.404 0.585 0.484 0.292 0.198

41 0.617 0.501 0.711 0.708 0.180 0/345

32 0.792 0.660 0.408 0.740 0.660 0.786

4 0.391 0.412 0.306 0.580 0.388 0.622

38 0.815 0.579 0.475 0.868 0.548 0.753

23 0.850 0.603 0.423 0.676 0.660 0.802

29 0.429 0.243 0.202 0.548 0.532 0.231
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Fig. 4. Maximum resolution topology for law schools.

attributes, resulting in a classification of benefit-dominant. In other words, the law school
represented by this data instance is deemed cost-effective using a maximum resolution
aggregate measure induced by the decision maker’s prejudgment on the reference cases.
On this basis, of the entire data set of 51 law schools, 22 are rated cost-dominant, and 29
benefit-dominant.

5. Preliminary Results of Application

As examples of application of multi-attribute dichotomies, we summarize initial results
in two ongoing research projects in economic analysis, and technological diffusion, re-
spectively. Details of the studies will be issued separately in forthcoming reports.

The International Bank for Reconstruction and Development (The World Bank) has
been gathering and analyzing data for insights into how investment climates vary around
the world and how they influence growth and poverty. In particular, Investment Climate
Surveys have been conducted in over 53 countries since 2001 to measure specific con-
straints facing firms, and relate them to measures of firm performance, growth, and in-
vestment (World Bank, 2004). The framework of Investment Climate Indicators (ICI)
can be cast into a policy-resource dichotomy withPolicy Uncertainty, Licensing Regu-
lations, andTax Rate as policy dimensions, andElectricity, Cost of Financing, andLa-
bor Supply as resource dimensions. The goal in this application is to classify economies
according to whether investment climate is constrained predominantly by either govern-
mental policies, or by infra-structural resources. By using five obvious instances in each
case as the reference subset, a maximum resolution topology is derived to classify all
47 countries under study. As a result, 27 are classified as policy-dominant, and 20 as
resource-dominant for their constraints in the investment climate.

The Global Diffusion of the Internet (GDI) Project, initiated by The Mosaic Group
in 1997, focuses on measuring and analyzing the growth of the Internet throughout the
world. Using a well-defined analytic framework (Wolcottet al., 2001) with six dimen-
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sions, nearly 30 countries have been studied. The six dimensions fall into a supply-
demand dichotomy: withOrganizational Infrastructure, Connectivity Infrastructure, and
Geographic Dispersion being the supply dimensions, whilePervasiveness, Sectoral Ab-
sorption, andSophistication of Use are the demand dimensions. Using data from 24 GDI
cases for the year 1999, a maximum resolution topology is derived to classify countries
according to whether their adoption of the Internet should be considered supply-side or
demand side dominant at any particular stage of development. Initial international, inter-
regional, as well as inter-temporal comparisons indicate that the MRT model can indeed
shed light on subtle differences.

6. Discussion

We presented an optimization approach to derive an aggregate value function for the clas-
sification of multi-attribute dichotomies. Motivated by the Star Plot Method to visualize
high-dimensional data, the area spanned by the attributes of a data instance suggests an
aggregate measure in the form of the sum of products of adjacent pairs. Optimizing over
the pairing of attributes as well as the weight on their products results in a maximum
resolution topology with respect to a given subset of pre-classified dichotomies. Future
work includes empirical studies and application of the approach in diverse fields, such as
consumer market research, diffusion of innovation and technology, dynamics of online
auction markets, and medical diagnostics. Theoretical results and refinements are also
expected from further analysis of data normalization and harmonization, choice of spline
functions, the process of selecting the reference subset, and alternatives to the constraints
of bounded variations on the angles in the optimal topology.
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Maksimalios skiriamosios galios topologija daugelio atribut ↪u
dichotomijose

James K. HO, Sydney C.K. CHU

Siūlomas optimizacinis modelis skirtas maksimizuoti dichotomini↪u sprendim↪u skiriam↪aj ↪a gali↪a,
kai veikia daug skirting↪u faktori ↪u. Optimizavimas vykdomas pagal ši↪u faktori ↪u svorius lyginimo
dichotomij ↪u atžvilgiu. Pateikiami pavyzdžiai.


