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Abstract. Estimation of the ratio of two totals is considered, when a probability sample from the
finite population is available. Four estimators of the ratio are examined. The first one — called
“simple” — is the ratio of the Horvitz—Thompson estimators of totals; the second — the ratio of
two ratio estimators of totals; the third one — the ratio of two regression estimators of totals. The
fourth one is a calibrated estimator of the ratio. The variances of these estimators are compared.
The properties of such estimators of the ratio are studied. The simulation results are presented.

Key words: finite population, probability sample, ratio of two totals, calibrated estimator.

1. Introduction

Consider a finite populatio = {1,2,..., N}. Lety andz be two study variables de-
fined on the populatioty and taking value$y;, ...,yx} and{z,..., zy } respectively.
The values of the variablgsandz are not known. Denote the unknown population totals
of these variables by

N N
ty:Zyk, tzzzzk.
k=1 k=1

We are interested in the estimation of the ratio of two totals
R=t,/t..

Such a parameter is often met in the official statistics. For example, the unemployment
rate equals the ratio between the number of unemployed individuals and the number of
individuals in the labor force in the country. The average salary equals the ratio of the
sum of salary funds of enterprises to the sum of the number of employees. Income per
capita is equal to the sum of income of households divided by the sum of the numbers of
their members.

The unknown parameter of interest is estimated from the sample. To this end proba-
bility samples are used. It means that the sampling method used satisfies the following
conditions: the set of all possible samples is defined, the probability of each sample which
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can be selected is pointed out and the sum of these probabilities equals 1; it is required
that each element of the survey population has a positive probability to be included into

the sample. If it is possible to construct a sample selection mechanism satisfying the con-
ditions mentioned above, the sample drawn using this mechanism is called a probability
sample (Cochran, 1977; Sarnéahl., 1992).

The simplest and usual way to estimate a ratio is to use the Horvitz—Thompson esti-
mator of totals (Sarndak al., 1992) taking into account sampling design in the numera-
tor and denominator of the ratio. The quality of the estimator can be improved by using
known auxiliary variables. A number of different estimators can be constructed exploiting
these additional variables.

The aim of this paper is, firstly, to propose some estimators of the ratio where distinct
cases of the calibrated estimators of totals are used in the numerator and denominator:
the ratio and regression estimators of totals; secondly, some properties of the calibrated
estimator of the ratio, suggested by Plikusas (2001) are investigated. All the estimation
methods are compared to some extent. The simulation study illustrates the theoretical
results.

2. Estimation Methods of the Ratio

Denote bys, s C U a probability sample drawn from the finite populatibiy 7, =
P(k € s) —a probability of any elemerit € I to be included into the sampiery,; — the
inclusion probability of a pair of elements, /) into the sample. The notation,;, = 7%

is used for convenience. The numbdyis = 1/7 are called the design weights. The
values of all variables of the sampled elements are supposed to be known.

2.1. Horvitz-Thompson Estimator of Totals

The simplest and straightforward way to estimate the r&tics to use the Horvitz—
Thompson estimator for estimating totals and to take the ratio of these estimators as
the estimator of the ratio.

In order to make the paper more self contained we will present the known result on
the main properties of the Horvitz—Thompson estimator of a total.

PropPoOsSITIONL. The Horvitz—Thompson estimator of the total

?yzz;yr—i :deyk

kes 7 kes

is unbiased. The variance of this estimator equals

n Ye Y
Var(t = Ty — M7 )— —.
=3 o
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The estimator of this variance

==~ Tkl — TETL Yk Y1
Var(ty) = Z e ————— 1)
kles Kl kT

is unbiased, ifry; > 0 for all pairs(k,1), k,1 € U.

Proof. Let us introduce the sample membership indicators

;_JL ifkes,
7o, if kés,

k =1,...,N. Then the expectatioBI;, = m, EI I} = my, the variancd’ar (I},) =
7, — w2 and the covarianc€ov(Iy, I;) = my;, — mpm . Now we can calculate the expec-
tation and variance df,:

Efy:EZi—Z:EZ%Ik:Z%EIk:t;

kes kel keu
2
Var (t,) = Var (Z y—klk) = Zvar @)+ Y L2 couy, 1)
ke T keu Tk kisu Tk T

Ye Y1

= > (m — mm) ==
T T

k,leUd

The unbiasedness of the variance estimator follows from the fact that

TRl — TET
EIkIl— = Tk — TET].
Tkl

Let?, = > _kes drzr be a Horvitz—Thompson estimator of the tatalLet the simple
estimator of the rati®? = ¢/t be

R=1,/t..

Using the first-order terms of the Taylor series expansion of this estimator, the approxi-
mate variance can be expressed as

-1 . . 1 _
AVar (R) = t—QVar (ty, — Rt,) = t—QVar (Z %) 2)

z z kes

We see that it can be calculated and estimated as the variance of the Horvitz—Thompson
estimator of the total of the variable— Rz. This linearization approach will be also
applied for the other estimators considered in the paper.

The estimator of the variance of the estimator of rdtiis constructed as follows. The
quantity1/t2 (see (2)) is estimated bly/fz and Horvitz—Thompson estimator (1) of the
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variance of the total is used for the variabhle- Rz, whereR is estimated bﬁ. So, we
get

1 Tt — TR Vg UL ~
Var v = yp — Rz 3)
2 Tk T
Z k,les

Such type of variance estimators is commonly used when estimating the variances of a
rational functions of the Horvitz—Thompson estimators of totals.

2.2. Estimation of Ratio Using Ratio Estimators of Totals

Let us suppose some auxiliary information is available. This auxiliary information may
be known from the previous complete surveys of the same population, administrative
registers and other sources. Let a variabjewith the population values,,...,zyn

and a variable:, with the valuest.1, ..., z,y be auxiliary variables with the totals

N N
yzzmyk:Nﬂxya thzzxzk:N,U/zz-
k=1 k=1

The ratio and regression estimators of totals (Cochran, 1977) are constructed using
the known auxiliary variables and may have smaller variances, provided that the study
and auxiliary variables are correlated enough. So, naturally there arises an idea to use this
kind of estimators for the totals in the numerator and denominator when estimating the
ratio.

If the variablez, is auxiliary for the variabley with the known population totatl,,,,
then the estimator

fra) _ tyy g N Tk
y — X< Ty Ty — T )
ry kes |k

is called a ratio estimator of the totgl. The approximate variance ﬁj‘”‘t) is

AVar (t ( mt)) =Var (?y - ;—ytAxy)

=Var (tAy) + (fi) Var (t Ty) COU( yaATy)- (4)

ry

Denote bycu(d) the coefficient of variation of a random variatste

~

Var ()

cv(f) = =
(6) =7
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It follows from (4), that the approximate variance of the ratio estimator of total is not
bigger than the variance of the Horvitz—Thompson estimator of thetiptal

AVar (t (Mt)) < Var (ty,),

provided the coefficient of correlatimwbetweerfy andt}y is sufficiently high:

~ 1 cv(t, Cov t t
Cv(ty) \/Var \/Var zy

Denote bycv(y) the coefficient of variation of the variable

N

s 2 1 2
cv(y) =2, s2= E (Y — py)”, gy =ty /N.
' VTN 14 W=t

In the case of simple random sampling (when elements are sampled with equal selection
probabilities without replacement (see Sect. 3)) the condition (5) can be written as

ZkEZ/{(yk — py) (Tyk — Pay) -
V2 keu W — 1)/ D peu @y — Hay)?

Taking the ratio estimators of totalg andt,, we obtain the estimator of the rati®

lcv(xy)
2 cu(y)’

p(y, zy) =

p(y, y) =

~

ty

Su g ~~ ~~

oo = ™ _tey Ble g Bles g o
trztxz taz tztxy tztzy kes k

Tz

Here the ratiaRy = t,,, /¢, iS supposed to be known.

For an approximate expression of the varianc&6tt), the Taylor series expansion
of this esumator by the first-order terms is used. Taking partial derivativégsf) by
ty, t., tmy, = at the pomt(t t. tmy,t 2) = (ty,tz, tay, tz=), We derive the linearized
estimator

H(ra %\T*R?z %\t - R %\mz
R = (14 22 - 2w,

Y tml/

We consider its variance as the approximate variande(tsf):

3 S(ra 1 >~ ™ = n
AVGT<R(NM)) = VCI/I“(RZ( t)) = t—ZVGT((tU - th) - rat(tacy - ROta:z))

z

Here the notatiotR; .. = t,/ts, IS used. The expression (3) with

~ t t
y y
v =Y — Rzp — =~y + =221

Ty Tz
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is used as the estimator of varianceftst").

2.3. Estimation of Ratio Using Regression Estimators of Totals

Let the totalt,, of the auxiliary variabler, be known. The estimator of the totg|
tAzsreg) = tAu + (tay — tay) By

with

_ Zkes di(yr — ﬁy)(xyk - ﬁty) . @(yvxy)

B = = =1,
! Dokes W (Tyk — Hlay)? Var(zy)

(6)
ﬁy:%\y/J\L ﬁzy:?wy/N7

is called the regression estimator of total (Cochran, 1977; Sama@hl 1992). Its ap-
proximate variance for any sample design is

N —A-B, _A-B
AVar (témg)) = g (Tt — ﬂkm)yk yLyk Yl y Tyl
h Tk i
kleu

Here

5 _ Covly,ay) _ S Uk = ) gk — fray)
Y Var(zy) Zi\fﬂ(xyk — Jlay)?

o A=y — Bypgy . (7

It is known that if the correlation coefficiept(y, z,) > 0, then, in the case of simple
random sampling, the approximate variance of the regression estimator is less than that
of Horvitz—Thompson estimator:

AVar (t}mg)) < Var(t,).

Using this estimator in the numerator and denominator of the Ritiot,, /¢, we get the
regression estimator of the ratio

o~

t
(th tl'Z)

s+

1

<

Blrea) _

)| &)

)

~

y+
Z+ z

with B, defined in (6) and

B Cov (z,2)

T Var(z.)

The total of the variable , is also supposed to be known.
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In order to get the expression of the approximate variance of the estifétet, the

expansion of this estimator in Taylor series up to the first-order terms is used. So, we get
the linear estimator

S(re 1 -~ -~ -~ -~
R = R+ - ((ty — ty) — By(tay — tay) — R(t. —t.) + RB.(tos — t22)),
whereB, is defined in (7),

N
B. = Zk:l (Zk - MZ)(ka - sz)
ng\;l (xzk: - Nwz)2

Its variance is considered as the approximate variandsf):

) ,uz:tz/Na Mmz:th/N

o S(re 1 n T T 7
AVar (R9) = Var (R"9) = sz Var (&, = BE:) = (fsy By — REz:Bz)).

z

The expression (3) with

Vg = Yk — ﬁzk - Bymyk + ﬁ-/B\zxzk:
is used as the estimator of variancef§f<s).
2.4. Calibrated Estimator of the Ratio

The calibrated estimator of the population total was introduced by Deville and Sarndal
(1992). In order to get a calibrated estimator of the tojak= y; + ... + yn, We are
looking for the weightsuy, which differ as little as possible from the design weighs

with arbitrary positive;. in the sense that

Z (w — dg)? s min, (8)

kes dek

and which satisfy the calibration equation

E WLy = tmy

kes

for some auxiliary variable,, with the known population total,,,. The weightsw;, are
called calibrated weights, and the estimator

fécal) _ Z WYk
kes

is called a calibrated estimator of the total The ratio and regression estimators of total
are distinct separate cases of the calibrated estimator of total.

A calibrated estimator of a ratio is proposed by Plikusas (2001), where theé¥atio
tzy/ts- OF totals of the auxiliary variables, andz . is kept fixed.
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DEFINITION. The estimator of the rati®

5 Dkes WUk
R,==""——
2 kes Wk 2k
is called calibrated if the new weighis, minimize the distance function (8) and estimate
the known ratiaR, of totals of auxiliary variables, andx, without error:

N
Wi T . X t
ZkES ktyk Zk_l yk _ tay _ Re. (9)

ZkES Wy Tk N E}chl T,k tes

Proposition 1 (Plikusas, 2001) The weights wy, of the calibrated estimator of a ratio,
which minimize (8) with ¢, = 1 and satisfy (9), can be expressed as

B Y ies di(zyr — Rowz)
Yies di(xyr — Row)?

w = dj <1 ((L'yk — Roxzk)), k € s.

The calibrated estimatdt(¢e!) is not unbiased as well as the other estimators of the
ratio considered in this paper. It may be written in the form

ﬁ(cal) _ ?y%\l — %\2%\3
t.ty — taty

with

/t\]. = Z dk(-ryk - ROxzk)Qa tAQ = Z dk(xyk - ROka)’
kes kes

ty = Z dip(Tye — Roxok)yh, ta= Z di(2yk — Rovzk) 2.
keEs kes

The approximate variance &) is
- 1 N . N -
AVar (R(cal)) = t—QVa?“ ((tu — th) + Ry cal(t:py — Roth)) s

here

k=1 k=1
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The coefficientR; .,; can be expressed

S oo (wyr — Rowar) (ye — R
ZkN:1($yk — Rox.1)?

The expression (3) with

Ry cal — —

(10)

Vg = Yk — ﬁzk + Rl cal(xyk - Rszk)v
and

ZkEs dk(fcyk - Roxzk)(yk - ﬁzk)
Zk}ES dk(xyk — Rol‘zk)Q ’

Rl cal = —

is used as the estimator of variancefsfe!).
2.5. Bias of the Calibrated Estimator of a Ratio

As far as the accuracy of the estimator is measured by the mean square error of the
estimator which depends on the variance and bias of the estimator, the expression of the
bias of the calibrated estimator of a ratio may be of interest.

Let us start from the approximate expression of the bias of simple estimator of the
ratio B = tAy/tAZ. Expansion of this estimator in Taylor series up to the second-order
terms gives us the following expression

= 1~ ~ 1~ ~
R~ R+ —(t, — Rt.) (ty —ty)(tz —t.) +

R - )
- = —(t, —t.)2.
t, t2 (8- — )

t2

z
Denote

S(sim 1 ~ -~ R -~
R{™ = — 5 by = 1) = 1) + 5 (F — t.)2.

z

Then the approximate bias &f can be expressed as

fa o 5 H(stm 1 > 7T R =
Bias(R) = ER — R~ ABias (R) = ERé ) = —t—QC'ov(ty,tz) + t—QVar (t.).

z z

N N N NN

Using the expansion aR(ca!) at the point(Z, ., t1, 2, i, £1) = (ty,ts,t1, b2, ts, ta),
up to the second-order terms, we get the approximatid®(ef) :

]’%(cal) ~R+ Egcal) + Eécal).
Here

~(ca 1, ~ n 7
R§ V= t_((ty —ty) + Rica(tz — t2) — R(t: — t.)),

z
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»(cal 1 ~ ~ R ~ t4R1 al o~
Ré ) _ (— t_2(ty —ty,)(t, —t5) + t—2(t2 —tz)2) + t2t:a (o — t)?
1 sty ~ N .
+ (_(tU - ty) - Rl cal(tl - tl) — (t3 — tg)
tztl tz
2Rty —t3 ~ ~ —~
- SR — ) + Rl — 1)) (B2 — 1)

H(sim taR cal tqg ~ ~
= Ry 4 Sl — 1) (3 (@ - RE. - (t, - Rt.))
zl1

t,t1 \t,
. thl cal

t.
— (fs — Rty — (ts — Rt@))(t} —ty).

(?z - tz) - Rl cal(%\l - tl)

Thus, we can find the approximate bias/tfe!)

Bias (E(cal)) = E (E(cal) _ R) ~ ABias ﬁ(cal) _ Eﬁgcal)
ta R cal

2t

= ER(™ 4 E(ty — t2)?

1 oty o~ R
+ (—4E(ty — RE, — (t, — RE))(Es — 1)
1 \L

tR ~ - 1 t:
1t cal E(tz _ tz)(tQ _ t2) — Rlcal E(tl —tl)(tQ — t2)

z

—E((fs — REa) = (ts = Rta)) (2 — 12) ).
Hence follows

Proposition 2. An approximate bias of the calibrated estimator of a ratio can be ex-
pressed as follows

tR ca o~
A leal lVar(tg)-l-

. p(cal)y _ . 5)
ABias (R\“*) = ABias (R) + 20 P

(cov@ P D)

t o~ o~ o~ o~ o~ o~ o~
—Rlcal(t—lCov(tz,tg)—i-Cov(tl,tg))—Cov(tg—Rt4,t2)>.

3. Some Properties of the Estimator s of a Ratio

The sampling design when any collectionroflifferent elements from the finite popu-
lation of size N has equal probabilities/C}; to be selected, is called simple random
sampling. It is the sampling with equal selection probabilities without replacement. The
estimator of the population tota)

~ N
by=—> w
k=1
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is unbiased for this sampling design, its variance equals
Var (t,) = N2(1 - E)ﬁ
Yy, — N/ n )

and the covariance of two estimators of totals

P n TN\(F n 2 n 53212
Cov (t,,t.) =E(t, —Et,)({. —Et.) =N (1_ N) v,

N N
Zyk—ﬂy ’ Sy Zyk_.uy (21 — p2).

1. Comparison of approximate variances of calibrated and simple estimatorsof a
ratio. The approximate variance of the calibrated estimator of a ratio is not higher than
that of the simple estimator of ratio for simple random sampling:

AVar (R < AVar (R).
Proof. The difference
AVar (R)) — AVar (R)

1 . _ S _
= Rica (RlcalVar(tw — Roly.) + 2E (£, — RE)(Fay — Rotu)).

In the case of simple random sampling from (10) we have

Ry = Srv—Rovey=pz _ E(ly = RE)(Eay — Rota:) (12)
“ Szyngzz Var(t, wy — Rot,.)

and

2

AVar (R (cal)y — AV ar (]/%) Ri;‘ll Var ( — Rot,.) <0.

It means that the approximate variance of the calibrated estimator of a ratio is not greater
than that of the simple estimator of a ratio.

2. Comparison of the approximate variance of ratio and simple estimators of a
ratio. Under the condition

p(tA _RE.F. _ R.E ) Vcw‘(%;.y - Rotsz) (12)
. - 0tee 2 tzy Var(tAy - R%\z)

the approximate variance of the ratio estimator of aratio is not higher than the variance
of the simple estimator of aratio

AVar (R (rat)y < AVar (1/%)
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for any sampling design.
Proof. The difference of approximate variances can be expressed as follows:

AVU/T (E(Tat)) — AVCLT (ﬁ) = ——yVaT’ (%\xy - RO%\IZ)

t2 tay
. ( by [VarG-RE) o RO@)). (13)
tay Var (tgy — Rotsz)

Solving the inequalityAVar (R("0)) — AVar (R) < 0 with respect to the correlation
coefficientp we get (12).

Conclusion. For the simple random sampling we have

AVar (ﬁ(mt)) — AVar (ﬁ) <0

t )
50 ar (F, — Rofr) — 260,  RE)(Eoy — Rofar) <0

zy

because of (13). This condition can be expressed as

ny1l/t
N2 (1 — N) E (t_ysiy*Rowz - 2Sy7Rz,a:y7Rng) <0,
zy

or
N N
Ay, z,zy, 2, —t—y]; Ty —RoT k) 2 2’; yr—Rz) (zyr—Rox,,) <0. (14)

3. Comparison of approximate variances of calibrated and ratio estimators of a
ratio. The approximate variance of the calibrated estimator of a ratio is not higher than
the approximate variance of the ratio estimator of a ratio for simple random sampling:

AVar (R < AVar (R)). (15)
Proof. The difference of approximate variances can be expressed as
AVar (ﬁ(cal)) AVar (Re0)
=z (B catVar (Bey — Rofie) + 2Bs ciE (B, — By — Rfs)

+ 2Ry i E (i, — RE.)(Tuy — Rolws) — R2,0Var (Tuy — Rofm))

_ Rl cal T Rl rat

2 Var(tAmy - Rofm)
4
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X ((Rl cal — Rl Tat) +2 E (ty — R/t\z)(tiv’u _AROth))
Var (tyy — Rotsz)

_ Rl cal T+ Rl rat
= 7#
z

Var (t, — Rt, N P N
poy | Yarlty =Rt:) o g g - Rotm))
Var (tzy — Rotz.) ’

Var (aby - RO%\IL‘Z) (Rl cal — Rl rat

Thus, we havelVar (R(¢e)) < AVar (R, if

Var tAz — R fm
(Rl rat — Rl cal) ( }i OA )
Var (t, — Rt.)

p(?y - Ri\zagxy - Roi\zz) <

N =

for any sampling design.
In the case of simple random sampling, we obtain

AVar (ﬁ(cal)) — AVar (E(Mt))
_ Rl cal T Rl rat

= T
(Rl cal + Rl rat)

2
= _ iz Var(tyy — Rotz») <0,

Var(%\:cy - RO%\a:z)(Rl cal — Rl rat — 2-Rl cal)

it means that the variance of the calibrated estimator of the ratio is not higher than the
variance of the ratio estimator of a ratio.

4, Simulation Study

The data of the artificial populations of si2é= 100 were used for the simulation study.
Three collections of variables were generated:
Case 1. Non-correlated variables:

ply,z) =0.09, p(y,zy) =011, p(z,2,)=0.1, p(zy, z,)=0.1

An unknown ratio of the totals of study variabl&= t,/t, = 3.3477 which has to be
estimated, the known ratio of the totals of auxiliary varialfigs= ¢, /t,. = 0.9711.

Case 2. Non-correlated study variables, and study variables correlated with the auxil-
iary variables:

p(y,2z) =0.09, p(y,z,) =0.83, p(z,2z,) =083, p(z,,z,)=0.04.

Parameter® = 3.3477, Ry = 3, 7378.
Case 3. Correlated study variables, and study variables correlated with the auxiliary
variables:

p(y,z) =08, ply,x,) =08, p(z,2:)=0,8, p(zy,2.)=0.59.
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Parametersl = 3.8825, Ry = 3.9957.

The values of variableg andz of the artificial population are presented in Fig. 1 and
Fig. 2.

1000 simple random samples of sizes=10, 20, 30 were drawn from the popula-
tion. The estimate®, R(*), R(re9) R(cal) as well as estimates of their approximate
variances have been calculated in each case.

The results of simulation are presented in Tables 1, 2, 3. For all estintater®,
R(rat) R(reg) R(cal): qverages of the estimates

= 1 ~
-39
b 1000 ’

-~

estimated biaseBias (6) = § — R, approximate variances, estimated mean square errors

-~ ~ —— A~

MSE (0) = AVar (0) + (Bias (0))?, estimated relative mean square errors

. MSE (8)
Rel MSE (0) = — 100(%),
0
I
=]
o E .\ ¥ & Ta * & = * ;‘
Y AP T . * 4 4l .
* Ty T 4% 5
L Y& & W # mt* .
e i PR T * *
& W
7 — * * -4 * 5 " s -
* . & . A
i " - # ‘ 4 & _'_ L ) =
a
B & 100 150 aa ¥
Fig. 1. Scatter-plot of the variablgsandz in Cases 1, 2.
F 4
=]
&0 + - +
M -
40 ¥ )
g 0 .
i} '_-.-" &
P Y i -; = *
& E - k.
14 [T : *
R
a
0 & 100 160 200 '

Fig. 2. Scatter-plot of the variablgsandz in Case 3.
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Table 1
Results of the estimation in Case 1

Esti- Sample Average Esti- Approxi- Rel Average
mator size esti- mated mate  MSE MSE estimate
9 n mate bias variance (%) of variance
10 3.3784 0.0307 0.3667 0.3676 17.95 0.4089
R 20 3.3439 —0.0038 0.1630 0.1630 12.07 0.1704
30 3.3465 —0.0012 0.0951 0.0951 9.22 0.0974
10 3.3487 0.0890 0.6732 0.6811 24.01 0.7701
R(rat) 20 3.3775 0.0298 0.2992 0.3001 16.22 0.3179
30 3.3791 0.0314 0.1745 0.1755 12.40 0.1820
10 3.4160 0.0683 0.3556 0.3603 17.57 0.3542
R(re9) 20 3.3468 —0.0009 0.1581 0.1581 11.88 0.1579
30 3.3521 0.0044 0.0922 0.0922 9.06 0.0926
10 3.3702 0.0255 0.3520 0.3525 17.62 0.3462
R(cal) 20 3.3358 —0.0119 0.1565 0.1566 11.86 0.1557
30 3.3454 —0.0023 0.0913 0.0329 9.03 0.0917
Ril M5E 5}
1 Simple
209 - [l Ralit
O Fagression |
“ B Cafibratesd
15 4
104
L
o
=1 =2 =30

Fig. 3. Results of the estimation of the ratio in Case 1.

averages of the estimates of variances

—_— ~ 1 — ~
Var(0) = MZVM" (9)

are shown in the tables. The dependence of the estimated mean square errors of the esti-
mates on the sample sizds presented in Figs. 3, 4, 5.
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Table 2
Results of the estimation in Case 2

Esti- Sample Average Esti- Approxi- Rel Average
mator size esti- mated mate MSE MSE estimate
9 n mate bias variance (%) of variance
10 3.3783 0.0306 0.3667 0.3676 17.95 0.4089
R 20 3.3439 —0.0038 0.1630 0.1630 12.07 0.1704
30 3.3465 —0.0012 0.0951 0.0951 9.22 0.0974
10 3.3530 0.0053 0.1192 0.1192 10.30 0.1332
R(rat) 20 3.3625 0.0148 0.0530 0.0532 6.86 0.0535
30 3.3486 0.0009 0.0309 0.0309 5.25 0.0312
10 3.3313 —0.0164 0.1037 0.1040 9.68 0.1038
R(re9) 20 3.3504 0.0027 0.0461 0.0461 6.41 0.0446
30 3.3420 —0.0057 0.0269 0.0269 491 0.0264
10 3.3468 —0.0009 0.1027 0.1027 9.58 0.1026
R(caD) 20 3.3550 0.0073 0.0457 0.0458 6.38 0.0441
30 3.3484 0.0007 0.0266 0.0266 4.87 0.0261
Rel MSE=6) .
B Simpes
20 - { wRsta
ag O Rogression
B Cabkbmled
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i
=1l n=20 rrecdl

Fig. 4. Results of the estimation of the ratio in Case 2.

One can see comparatively high mean square errors of the ratio estimator of a ratio in
Cases 1 and 3. Only in Case 2 it becomes less than that of the simple estimator of a ratio.
This phenomena can be explained by checking the condition (14) (see Table 4).

Condition (14) is only satisfied in Case 2, and only in this case the approximate vari-
ance of the ratio estimator of ratiB("*?) is less than the approximate variance of the
simple estimator of the ratit.
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Table 3
Results of the estimation in Case 3

Esti- Sample Average Esti- Approxi- Rel Average
mator size esti- mated mate MSE MSE estimate
9 n mate bias variance (%) of variance
10 3.8948 0.0123 0.1270 0.1272 9.16 0.1297
R 20 3.8937 0.0112 0.0564 0.0565 6.11 0.0582
30 3.8783 —0.0042 0.0329 0.0329 4.68 0.0337
10 3.9125 0.0300 0.1448 0.1457 9.76 0.1731
R(rat) 20 3.9144 0.0319 0.0644 0.0654 6.53 0.0704
30 3.8898 —0.0073 0.-375 0.0376 4.98 0.0394
10 3.8586 —0.0239 0.1057 0.1063 8.45 0.1122
R(reg) 20 3.8877 0.0052 0.0470 0.0470 5.58 0.0486
30 3.8767 —0.0058 0.0274 0.0274 4.27 0.0281
10 3.8841 0.0016 0.0733 0.0733 6.97 0.0473
R(caD) 20 3.827 0.0102 0.0326 0.0327 4.65 0.0269
30 3.8801 —0.0024 0.0190 0.0190 3.55 0.0169
Rl MSE %)
@ Simple
25 = | m Featio
ap O Resgressaion
m Cafibraled
16
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= '
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Fig. 5. Results of the estimation of the ratio in Case 3.

5. Conclusions

1. The calibrated estimator of a ratio has the smallest mean square error among the
estimators investigated.

2. The simulation results do not show any significant bias of the estimates.

3. The ratio estimator of a ratio has to be applied carefully because its mean square
error can be larger than that of the simple estimator. Even in Case 3, when all
variables are correlated, the condition (12) is not satisfied.

4. The method of calibration of weights of the estimator of a ratio does not guarantee
the positivity of weightaw,. The case of the negative weights is not attractive for
practitioners because it is thought that a sampled element could represent at least
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Table 4
Statistic for comparison of the simple and the ratio estimates of a ratio

Case 1 2 3

Ay, 2,2y, 72) 330 030 —287598 15261

itself and its weight has to be greater or equal to 1. So, restrictions on the weights
can be put, but then the properties of the estimators would change.

5. The problem of calibration of weights may be generalized for the estimation of
some other nonlinear functions of totals. Some other distance measures between
the design weights and the calibrated weights can be used.
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Santykio vertinimas baigting e populiacijoje
Danué KRAPAVICKAITE, Aleksandras PLIKUSAS

Nagrirejami dviejs sumy santykio vertinimo bdai, turint i$ baigties populiacijos iSrinkt
tikimybine imt. Lyginami 4 santykioivertiniai: paprastasis — Horvico—Tompsono suivertiniu
santykis, santykinis — santykinisumosyvertiniy santykis, regresinis — regresirsumosyertiniu
santykis ir kalibruotas santykiwertinys. Tiriamos 81 santykioivertiniu savyles. Teoriniai rezul-
tatai iliustruojami modeliavimo pavyzdziu.



