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Danuṫe KRAPAVICKAITĖ, Aleksandras PLIKUSAS
Institute of Mathematics and Informatics
Akademijos 4, 08663 Vilnius, Lithuania
e-mail: {krapav,plikusas}@ktl.mii.lt

Received: November 2004

Abstract. Estimation of the ratio of two totals is considered, when a probability sample from the
finite population is available. Four estimators of the ratio are examined. The first one – called
“simple” – is the ratio of the Horvitz–Thompson estimators of totals; the second – the ratio of
two ratio estimators of totals; the third one – the ratio of two regression estimators of totals. The
fourth one is a calibrated estimator of the ratio. The variances of these estimators are compared.
The properties of such estimators of the ratio are studied. The simulation results are presented.
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1. Introduction

Consider a finite populationU = {1, 2, . . . , N}. Let y andz be two study variables de-
fined on the populationU and taking values{y1, . . . , yN} and{z1, . . . , zN} respectively.
The values of the variablesy andz are not known. Denote the unknown population totals
of these variables by

ty =
N∑

k=1

yk, tz =
N∑

k=1

zk.

We are interested in the estimation of the ratio of two totals

R = ty/tz .

Such a parameter is often met in the official statistics. For example, the unemployment
rate equals the ratio between the number of unemployed individuals and the number of
individuals in the labor force in the country. The average salary equals the ratio of the
sum of salary funds of enterprises to the sum of the number of employees. Income per
capita is equal to the sum of income of households divided by the sum of the numbers of
their members.

The unknown parameter of interest is estimated from the sample. To this end proba-
bility samples are used. It means that the sampling method used satisfies the following
conditions: the set of all possible samples is defined, the probability of each sample which
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can be selected is pointed out and the sum of these probabilities equals 1; it is required
that each element of the survey population has a positive probability to be included into
the sample. If it is possible to construct a sample selection mechanism satisfying the con-
ditions mentioned above, the sample drawn using this mechanism is called a probability
sample (Cochran, 1977; Särndalet al., 1992).

The simplest and usual way to estimate a ratio is to use the Horvitz–Thompson esti-
mator of totals (Särndalet al., 1992) taking into account sampling design in the numera-
tor and denominator of the ratio. The quality of the estimator can be improved by using
known auxiliary variables. A number of different estimators can be constructed exploiting
these additional variables.

The aim of this paper is, firstly, to propose some estimators of the ratio where distinct
cases of the calibrated estimators of totals are used in the numerator and denominator:
the ratio and regression estimators of totals; secondly, some properties of the calibrated
estimator of the ratio, suggested by Plikusas (2001) are investigated. All the estimation
methods are compared to some extent. The simulation study illustrates the theoretical
results.

2. Estimation Methods of the Ratio

Denote bys, s ⊂ U a probability sample drawn from the finite populationU , πk =
P(k ∈ s) – a probability of any elementk ∈ U to be included into the samples, πkl – the
inclusion probability of a pair of elements(k, l) into the sample. The notationπkk = πk

is used for convenience. The numbersdk = 1/πk are called the design weights. The
values of all variables of the sampled elements are supposed to be known.

2.1. Horvitz–Thompson Estimator of Totals

The simplest and straightforward way to estimate the ratioR is to use the Horvitz–
Thompson estimator for estimating totals and to take the ratio of these estimators as
the estimator of the ratio.

In order to make the paper more self contained we will present the known result on
the main properties of the Horvitz–Thompson estimator of a total.

PROPOSITION1. The Horvitz–Thompson estimator of the totalty

t̂y =
∑
k∈s

yk

πk
=

∑
k∈s

dkyk

is unbiased. The variance of this estimator equals

V ar (t̂y) =
∑

k,l∈U
(πkl − πkπl)

yk

πk

yl

πl
.
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The estimator of this variance

V̂ ar (t̂y) =
∑
k,l∈s

πkl − πkπl

πkl

yk

πk

yl

πl
(1)

is unbiased, ifπkl > 0 for all pairs(k, l), k, l ∈ U .

Proof. Let us introduce the sample membership indicators

Ik =
{

1, if k ∈ s,
0, if k /∈ s,

k = 1, . . . , N . Then the expectationEIk = πk, EIkIl = πkl, the varianceV ar (Ik) =
πk − π2

k and the covarianceCov(Ik, Il) = πkl − πkπl . Now we can calculate the expec-
tation and variance of̂ty:

E t̂y = E
∑
k∈s

yk

πk
= E

∑
k∈U

yk

πk
Ik =

∑
k∈U

yk

πk
EIk = t;

V ar (t̂y) = V ar

( ∑
k∈U

yk

πk
Ik

)
=

∑
k∈U

y2
k

π2
k

V ar (Ik) +
∑

k,l∈U
k �=l

yk

πk

yl

πl
Cov(Ik, Il)

=
∑

k,l∈U
(πkl − πkπl)

yk

πk

yl

πl
.

The unbiasedness of the variance estimator follows from the fact that

E IkIl
πkl − πkπl

πkl
= πkl − πkπl.

Let t̂z =
∑

k∈s dkzk be a Horvitz–Thompson estimator of the totaltz. Let the simple
estimator of the ratioR = ty/tz be

R̂ = t̂y/t̂z .

Using the first-order terms of the Taylor series expansion of this estimator, the approxi-
mate variance can be expressed as

AV ar (R̂) =
1
t2z

V ar (t̂y − Rt̂z) =
1
t2z

V ar

( ∑
k∈s

yk − Rzk

πk

)
. (2)

We see that it can be calculated and estimated as the variance of the Horvitz–Thompson
estimator of the total of the variabley − Rz. This linearization approach will be also
applied for the other estimators considered in the paper.

The estimator of the variance of the estimator of ratioR̂ is constructed as follows. The
quantity1/t2z (see (2)) is estimated by1/t̂2z, and Horvitz–Thompson estimator (1) of the
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variance of the total is used for the variabley − Rz, whereR is estimated bŷR. So, we
get

V̂ ar (R̂) =
1
t̂2z

∑
k,l∈s

πkl − πkπl

πkl

vk

πk

vl

πl
, vk = yk − R̂zk. (3)

Such type of variance estimators is commonly used when estimating the variances of a
rational functions of the Horvitz–Thompson estimators of totals.

2.2. Estimation of Ratio Using Ratio Estimators of Totals

Let us suppose some auxiliary information is available. This auxiliary information may
be known from the previous complete surveys of the same population, administrative
registers and other sources. Let a variablexy with the population valuesxy1, . . . , xyN

and a variablexz with the valuesxz1, . . . , xzN be auxiliary variables with the totals

txy =
N∑

k=1

xyk = Nµxy, txz =
N∑

k=1

xzk = Nµxz.

The ratio and regression estimators of totals (Cochran, 1977) are constructed using
the known auxiliary variables and may have smaller variances, provided that the study
and auxiliary variables are correlated enough. So, naturally there arises an idea to use this
kind of estimators for the totals in the numerator and denominator when estimating the
ratio.

If the variablexy is auxiliary for the variabley with the known population totaltxy,
then the estimator

t̂ (rat)
y =

t̂y

t̂xy

txy, t̂xy =
∑
k∈s

xyk

πk
,

is called a ratio estimator of the totalty. The approximate variance oft̂
(rat)
y is

AV ar
(
t̂ (rat)
y

)
= V ar

(
t̂y − ty

txy
t̂xy

)
= V ar (t̂y) +

( ty
txy

)2

V ar (t̂xy) − 2
ty
txy

Cov(t̂y, t̂xy). (4)

Denote bycv(θ̂) the coefficient of variation of a random variableθ̂:

cv(θ̂) =

√
V ar(θ̂)

E θ̂
.
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It follows from (4), that the approximate variance of the ratio estimator of total is not
bigger than the variance of the Horvitz–Thompson estimator of the totalt̂y:

AV ar
(
t̂ (rat)
y

)
� V ar (t̂y),

provided the coefficient of correlationρ between̂ty andt̂xy is sufficiently high:

ρ
(
t̂y, t̂xy

)
� 1

2
cv(t̂xy)
cv(t̂y)

, ρ
(
t̂y, t̂xy

)
=

Cov(t̂y, t̂xy)√
V ar(t̂y)

√
V ar(t̂xy)

. (5)

Denote bycv(y) the coefficient of variation of the variabley:

cv(y) =
sy

µy
, s2

y =
1

N − 1

N∑
k=1

(yk − µy)2, µy = ty/N.

In the case of simple random sampling (when elements are sampled with equal selection
probabilities without replacement (see Sect. 3)) the condition (5) can be written as

ρ(y, xy) � 1
2

cv(xy)
cv(y)

, ρ(y, xy) =
∑

k∈U (yk − µy)(xyk − µxy)√∑
k∈U (yk − µy)2

√∑
k∈U (xyk − µxy)2

.

Taking the ratio estimators of totalsty andtz, we obtain the estimator of the ratioR

R̂(rat) =

t̂y

t̂xy

txy

t̂z

t̂xz

txz

=
txy

txz
· t̂y t̂xz

t̂z t̂xy

= R0
t̂y t̂xz

t̂z t̂xy

, t̂xz =
∑
k∈s

xzk

πk
.

Here the ratioR0 = txy/txz is supposed to be known.
For an approximate expression of the variance ofR̂(rat), the Taylor series expansion

of this estimator by the first-order terms is used. Taking partial derivatives ofR̂(rat) by
t̂y, t̂z, t̂xy, t̂xz at the point(t̂y, t̂z, t̂xy, t̂xz) = (ty, tz, txy, txz), we derive the linearized
estimator

R̂
(rat)
l = R

(
1 +

t̂y − Rt̂z
ty

− t̂xy − R0t̂xz

txy

)
.

We consider its variance as the approximate variance ofR̂(rat):

AV ar(R̂(rat)) = V ar(R̂(rat)
l ) =

1
t2z

V ar
(
(t̂y − Rt̂z) − R1 rat(t̂xy − R0t̂xz)

)
.

Here the notationR1 rat = ty/txy is used. The expression (3) with

vk = yk − R̂zk − t̂y

t̂xy

xyk +
t̂y

t̂xz

xzk
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is used as the estimator of variance ofR̂(rat).

2.3. Estimation of Ratio Using Regression Estimators of Totals

Let the totaltxy of the auxiliary variablexy be known. The estimator of the totalty

t̂ (reg)
y = t̂y + (txy − t̂xy)B̂y

with

B̂y =
∑

k∈s dk(yk − µ̂y)(xyk − µ̂xy)∑
k∈s dk(xyk − µ̂xy)2

=
Ĉov(y, xy)

V̂ ar(xy)
, (6)

µ̂y = t̂y/N, µ̂xy = t̂xy/N,

is called the regression estimator of total (Cochran, 1977; Särndalet al., 1992). Its ap-
proximate variance for any sample design is

AV ar
(
t̂ (reg)
y

)
=

∑
k,l∈U

(πkl − πkπl)
yk − A − Byxyk

πk

yl − A − Byxyl

πl
.

Here

By =
Cov(y, xy)
V ar(xy)

=
∑N

k=1(yk − µk)(xyk − µxy)∑N
k=1(xyk − µxy)2

, A = µy − Byµxy . (7)

It is known that if the correlation coefficientρ(y, xy) > 0, then, in the case of simple
random sampling, the approximate variance of the regression estimator is less than that
of Horvitz–Thompson estimator:

AV ar
(
t̂ (reg)
y

)
< V ar (t̂y).

Using this estimator in the numerator and denominator of the ratioR = ty/tz, we get the
regression estimator of the ratio

R̂(reg) =
t̂y + (txy − t̂xy)B̂y

t̂z + (txz − t̂xz)B̂z

with B̂y defined in (6) and

B̂z =
Ĉov (z, xz)

V̂ ar (xz)
.

The total of the variablexz is also supposed to be known.
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In order to get the expression of the approximate variance of the estimatorR̂(reg), the
expansion of this estimator in Taylor series up to the first-order terms is used. So, we get
the linear estimator

R̂
(reg)
l = R +

1
tz

(
(t̂y − ty) − By(t̂xy − txy) − R(t̂z − tz) + RBz(t̂xz − txz)

)
,

whereBy is defined in (7),

Bz =
∑N

k=1 (zk − µz)(xzk − µxz)∑N
k=1 (xzk − µxz)2

, µz = tz/N, µxz = txz/N.

Its variance is considered as the approximate variance ofR̂(reg):

AV ar (R̂(reg)) = V ar (R̂(reg)
l ) =

1
t2z

V ar
(
(t̂y − Rt̂z) − (t̂xyBy − Rt̂xzBz)

)
.

The expression (3) with

vk = yk − R̂zk − B̂yxyk + R̂B̂zxzk

is used as the estimator of variance ofR̂(reg).

2.4. Calibrated Estimator of the Ratio

The calibrated estimator of the population total was introduced by Deville and Särndal
(1992). In order to get a calibrated estimator of the totalty = y1 + . . . + yN , we are
looking for the weightswk, which differ as little as possible from the design weightsdk

with arbitrary positiveqk in the sense that

∑
k∈s

(wk − dk)2

qkdk
→ min, (8)

and which satisfy the calibration equation∑
k∈s

wkxyk = txy

for some auxiliary variablexy with the known population totaltxy. The weightswk are
called calibrated weights, and the estimator

t̂ (cal)
y =

∑
k∈s

wkyk

is called a calibrated estimator of the totalty. The ratio and regression estimators of total
are distinct separate cases of the calibrated estimator of total.

A calibrated estimator of a ratio is proposed by Plikusas (2001), where the ratioR0 =
txy/txz of totals of the auxiliary variablesxy andxz is kept fixed.
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DEFINITION. The estimator of the ratioR

R̂w =
∑

k∈s wk yk∑
k∈s wk zk

is called calibrated if the new weightswk minimize the distance function (8) and estimate
the known ratioR0 of totals of auxiliary variablesxy andxz without error:

∑
k∈s wk xyk∑
k∈s wk xzk

=
∑N

k=1 xyk∑N
k=1 xzk

=
txy

txz
= R0. (9)

Proposition 1 (Plikusas, 2001). The weights wk of the calibrated estimator of a ratio,
which minimize (8) with qk ≡ 1 and satisfy (9), can be expressed as

wk = dk

(
1 −

∑
l∈s dl(xyl − R0xzl)∑
l∈s dl(xyl − R0xzl)2

(xyk − R0xzk)
)

, k ∈ s.

The calibrated estimator̂R(cal) is not unbiased as well as the other estimators of the
ratio considered in this paper. It may be written in the form

R̂(cal) =
t̂y t̂1 − t̂2t̂3

t̂z t̂1 − t̂2t̂4
,

with

t̂1 =
∑
k∈s

dk(xyk − R0xzk)2, t̂2 =
∑
k∈s

dk(xyk − R0xzk),

t̂3 =
∑
k∈s

dk(xyk − R0xzk)yk, t̂4 =
∑
k∈s

dk(xyk − R0xzk)zk.

The approximate variance of̂R(cal) is

AV ar (R̂(cal)) =
1
t2z

V ar
(
(t̂y − Rt̂z) + R1 cal(t̂xy − R0t̂xz)

)
,

here

R1 cal =
Rt4 − t3

t1
, t1 =

N∑
k=1

(xyk − R0xzk)2, t2 =
N∑

k=1

(xyk − R0xzk) = 0,

t3 =
N∑

k=1

(xyk − R0xzk)yk, t4 =
N∑

k=1

(xyk − R0xzk)zk.
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The coefficientR1 cal can be expressed

R1 cal = −
∑N

k=1(xyk − R0xzk)(yk − Rzk)∑N
k=1(xyk − R0xzk)2

. (10)

The expression (3) with

vk = yk − R̂zk + R̂1 cal(xyk − R0xzk),

and

R̂1 cal = −
∑

k∈s dk(xyk − R0xzk)(yk − R̂zk)∑
k∈s dk(xyk − R0xzk)2

,

is used as the estimator of variance ofR̂(cal).

2.5. Bias of the Calibrated Estimator of a Ratio

As far as the accuracy of the estimator is measured by the mean square error of the
estimator which depends on the variance and bias of the estimator, the expression of the
bias of the calibrated estimator of a ratio may be of interest.

Let us start from the approximate expression of the bias of simple estimator of the
ratio R̂ = t̂y/t̂z. Expansion of this estimator in Taylor series up to the second-order
terms gives us the following expression

R̂ ≈ R +
1
tz

(t̂y − Rt̂z) −
1
t2z

(t̂y − ty)(t̂z − tz) +
R

t2z
(t̂z − tz)2.

Denote

R̂
(sim)
2 = − 1

t2z
(t̂y − ty)(t̂z − tz) +

R

t2z
(t̂z − tz)2.

Then the approximate bias of̂R can be expressed as

Bias (R̂) = ER̂ − R ≈ ABias (R̂) = ER̂
(sim)
2 = − 1

t2z
Cov(t̂y, t̂z) +

R

t2z
V ar (t̂z).

Using the expansion of̂R(cal) at the point(t̂y, t̂z, t̂1, t̂2, t̂3, t̂4) = (ty, tz, t1, t2, t3, t4),
up to the second-order terms, we get the approximation ofR̂(cal):

R̂(cal) ≈ R + R̂
(cal)
1 + R̂

(cal)
2 .

Here

R̂
(cal)
1 =

1
tz

(
(t̂y − ty) + R1 cal(t̂2 − t2) − R(t̂z − tz)

)
,
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R̂
(cal)
2 =

(
− 1

t2z
(t̂y − ty)(t̂z − tz) +

R

t2z
(t̂z − tz)2

)
+

t4R1 cal

t2zt1
(t̂2 − t2)2

+
1

tzt1

( t4
tz

(t̂y − ty) − R1 cal(t̂1 − t1) − (t̂3 − t3)

− 2Rt4 − t3
tz

(t̂z − tz) + R(t̂4 − t4)
)
(t̂2 − t2)

= R̂
(sim)
2 +

t4R1 cal

t2zt1
(t̂2 − t2)2 +

1
tzt1

( t4
tz

(
t̂y − Rt̂z − (ty − Rtz)

)
− t1R1 cal

tz
(t̂z − tz) − R1 cal(t̂1 − t1)

−
(
t̂3 − Rt̂4 − (t3 − Rt4)

))
(t̂2 − t2).

Thus, we can find the approximate bias ofR̂(cal)

Bias (R̂(cal)) = E (R̂(cal) − R) ≈ ABias R̂(cal) = ER̂
(cal)
2

= E R̂
(sim)
2 +

t4R1 cal

t2zt1
E(t̂2 − t2)2

+
1

tzt1

( t4
tz

E (t̂y − Rt̂z − (ty − Rtz))(t̂2 − t2)

− t1R1 cal

tz
E (t̂z − tz)(t̂2 − t2) − R1 cal E (t̂1 − t1)(t̂2 − t2)

− E ((t̂3 − Rt̂4) − (t3 − Rt4))(t̂2 − t2)
)
.

Hence follows

Proposition 2. An approximate bias of the calibrated estimator of a ratio can be ex-
pressed as follows

ABias (R̂(cal)) = ABias (R̂) +
t4R1 cal

t2zt1
V ar (t̂2) +

1
t1tz

(
Cov(t̂y − Rt̂z, t̂2)

− R1 cal

( t1
tz

Cov(t̂z, t̂2)+Cov(t̂1, t̂2)
)
−Cov(t̂3−Rt̂4, t̂2)

)
.

3. Some Properties of the Estimators of a Ratio

The sampling design when any collection ofn different elements from the finite popu-
lation of sizeN has equal probabilities1/Cn

N to be selected, is called simple random
sampling. It is the sampling with equal selection probabilities without replacement. The
estimator of the population totalty

t̂y =
N

n

n∑
k=1

yk
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is unbiased for this sampling design, its variance equals

V ar (t̂y) = N2
(
1 − n

N

)s2
y

n
,

and the covariance of two estimators of totals

Cov (t̂y, t̂z) = E (t̂y − E t̂y)(t̂z − E t̂z) = N2
(
1 − n

N

)s2
yz

n
,

s2
y =

1
N − 1

N∑
k=1

(yk − µy)2, s2
yz =

1
N − 1

N∑
k=1

(yk − µy)(zk − µz).

1. Comparison of approximate variances of calibrated and simple estimators of a
ratio. The approximate variance of the calibrated estimator of a ratio is not higher than
that of the simple estimator of ratio for simple random sampling:

AV ar (R̂(cal)) � AV ar (R̂) .

Proof. The difference

AV ar (R̂(cal)) − AV ar (R̂)

=
1
t2z

R1cal

(
R1calV ar(t̂xy − R0t̂xz) + 2E (t̂y − Rt̂z)(t̂xy − R0t̂xz)

)
.

In the case of simple random sampling from (10) we have

R1 cal = −
sxy−R0xz,y−Rz

s2
xy−R0xz

= −E (t̂y − Rt̂z)(t̂xy − R0t̂xz)
V ar (t̂xy − R0t̂xz)

(11)

and

AV ar (R̂(cal)) − AV ar (R̂) = −R2
1 cal

t2z
V ar (t̂xy − R0t̂xz) � 0.

It means that the approximate variance of the calibrated estimator of a ratio is not greater
than that of the simple estimator of a ratio.

2. Comparison of the approximate variance of ratio and simple estimators of a
ratio. Under the condition

ρ
(
t̂y − Rt̂z, t̂xy − R0t̂xz

)
� 1

2
ty
txy

√
V ar(t̂xy − R0t̂xz)

V ar(t̂y − Rt̂z)
(12)

the approximate variance of the ratio estimator of a ratio is not higher than the variance
of the simple estimator of a ratio

AV ar (R̂(rat)) � AV ar (R̂)
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for any sampling design.

Proof. The difference of approximate variances can be expressed as follows:

AV ar (R̂(rat)) − AV ar (R̂) =
1
t2z

ty
txy

V ar (t̂xy − R0t̂xz)

×
(

ty
txy

− 2

√
V ar (t̂y − Rt̂z)

V ar (t̂xy − R0t̂xz)
ρ
(
t̂y − Rt̂z, t̂xy − R0t̂xz)

)
. (13)

Solving the inequalityAV ar (R̂(rat)) − AV ar (R̂) � 0 with respect to the correlation
coefficientρ we get (12).

Conclusion. For the simple random sampling we have

AV ar (R̂(rat)) − AV ar (R̂) � 0

if

ty
txy

V ar (t̂xy − R0t̂xz) − 2E(t̂y − Rt̂z)(t̂xy − R0t̂xz) � 0

because of (13). This condition can be expressed as

N2
(
1 − n

N

) 1
n

( ty
txy

s2
xy−R0xz

− 2sy−Rz,xy−R0xz

)
� 0,

or

A(y, z, xy, xz)=
ty
txy

N∑
k=1

(xyk−R0xzk)2−2
N∑

k=1

(yk−Rzk)(xyk−R0xzk)�0. (14)

3. Comparison of approximate variances of calibrated and ratio estimators of a
ratio. The approximate variance of the calibrated estimator of a ratio is not higher than
the approximate variance of the ratio estimator of a ratio for simple random sampling:

AV ar (R̂(cal)) � AV ar (R̂(rat)). (15)

Proof. The difference of approximate variances can be expressed as

AV ar (R̂(cal)) − AV ar (R̂(rat))

=
1
t2z

(
R2

1 calV ar (t̂xy − R0t̂xz) + 2R1 calE (t̂y − Rt̂z)(t̂xy − R0t̂xz)

+ 2R1 ratE (t̂y − Rt̂z)(t̂xy − R0t̂xz) − R2
1 ratV ar (t̂xy − R0t̂xz)

)
=

R1 cal + R1 rat

t2z
V ar(t̂xy − R0t̂xz)
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×
(
(R1 cal − R1 rat) + 2

E (t̂y − Rt̂z)(t̂xy − R0t̂xz)
V ar (t̂xy − R0t̂xz)

)
=

R1 cal + R1 rat

t2z
V ar (t̂xy − R0t̂xz)

(
R1 cal − R1 rat

+ 2

√
V ar (t̂y − Rt̂z)

V ar (t̂xy − R0t̂xz)
ρ (t̂y − Rt̂z, t̂xy − R0t̂xz)

)
.

Thus, we haveAV ar (R̂(cal)) � AV ar (R̂(rat)), if

ρ(t̂y − Rt̂z, t̂xy − R0t̂xz) � 1
2
(R1 rat − R1 cal)

√
V ar (t̂xy − R0t̂xz)

V ar (t̂y − Rt̂z)

for any sampling design.
In the case of simple random sampling, we obtain

AV ar (R̂(cal)) − AV ar (R̂(rat))

=
R1 cal + R1 rat

t2z
V ar(t̂xy − R0t̂xz)(R1 cal − R1 rat − 2R1 cal)

= − (R1 cal + R1 rat)2

t2z
V ar(t̂xy − R0t̂xz) � 0,

it means that the variance of the calibrated estimator of the ratio is not higher than the
variance of the ratio estimator of a ratio.

4. Simulation Study

The data of the artificial populations of sizeN = 100 were used for the simulation study.
Three collections of variables were generated:

Case 1. Non-correlated variables:

ρ(y, z) = 0.09, ρ(y, xy) = 0.11, ρ(z, xz) = 0.1, ρ(xy, xz) = 0.1.

An unknown ratio of the totals of study variablesR = ty/tz = 3.3477 which has to be
estimated, the known ratio of the totals of auxiliary variablesR0 = txy/txz = 0.9711.

Case 2. Non-correlated study variables, and study variables correlated with the auxil-
iary variables:

ρ(y, z) = 0.09, ρ(y, xy) = 0.83, ρ(z, xz) = 0.83, ρ(xy, xz) = 0.04.

ParametersR = 3.3477, R0 = 3, 7378.
Case 3. Correlated study variables, and study variables correlated with the auxiliary

variables:

ρ(y, z) = 0.8, ρ(y, xy) = 0.8, ρ(z, xz) = 0, 8, ρ(xy, xz) = 0.59.
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ParametersR = 3.8825, R0 = 3.9957.
The values of variablesy andz of the artificial population are presented in Fig. 1 and

Fig. 2.
1000 simple random samples of sizesn =10, 20, 30 were drawn from the popula-

tion. The estimateŝR, R̂(rat), R̂(reg), R̂(cal) as well as estimates of their approximate
variances have been calculated in each case.

The results of simulation are presented in Tables 1, 2, 3. For all estimatorsθ̂ = R̂,
R̂(rat), R̂(reg), R̂(cal): averages of the estimates

¯̂
θ =

1
1000

∑
θ̂,

estimated biaseŝBias (θ̂) = ¯̂
θ−R, approximate variances, estimated mean square errors

M̂SE (θ̂) = AV ar (θ̂) + (B̂ias (θ̂))2, estimated relative mean square errors

Rel M̂SE (θ̂) =

√
M̂SE (θ̂)

¯̂
θ

100(%),

Fig. 1. Scatter-plot of the variablesy andz in Cases 1, 2.

Fig. 2. Scatter-plot of the variablesy andz in Case 3.
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Table 1

Results of the estimation in Case 1

Esti- Sample Average Esti- Approxi- Rel Average

mator size esti- mated mate M̂SE M̂SE estimate

θ̂ n mate bias variance (%) of variance

10 3.3784 0.0307 0.3667 0.3676 17.95 0.4089

R̂ 20 3.3439 −0.0038 0.1630 0.1630 12.07 0.1704

30 3.3465 −0.0012 0.0951 0.0951 9.22 0.0974

10 3.3487 0.0890 0.6732 0.6811 24.01 0.7701

R̂(rat) 20 3.3775 0.0298 0.2992 0.3001 16.22 0.3179

30 3.3791 0.0314 0.1745 0.1755 12.40 0.1820

10 3.4160 0.0683 0.3556 0.3603 17.57 0.3542

R̂(reg) 20 3.3468 −0.0009 0.1581 0.1581 11.88 0.1579

30 3.3521 0.0044 0.0922 0.0922 9.06 0.0926

10 3.3702 0.0255 0.3520 0.3525 17.62 0.3462

R̂(cal) 20 3.3358 −0.0119 0.1565 0.1566 11.86 0.1557

30 3.3454 −0.0023 0.0913 0.0329 9.03 0.0917

Fig. 3. Results of the estimation of the ratio in Case 1.

averages of the estimates of variances

V̂ ar (θ̂) =
1

1000

∑
V̂ ar (θ̂)

are shown in the tables. The dependence of the estimated mean square errors of the esti-
mates on the sample sizen is presented in Figs. 3, 4, 5.
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Table 2

Results of the estimation in Case 2

Esti- Sample Average Esti- Approxi- Rel Average

mator size esti- mated mate M̂SE M̂SE estimate

θ̂ n mate bias variance (%) of variance

10 3.3783 0.0306 0.3667 0.3676 17.95 0.4089

R̂ 20 3.3439 −0.0038 0.1630 0.1630 12.07 0.1704

30 3.3465 −0.0012 0.0951 0.0951 9.22 0.0974

10 3.3530 0.0053 0.1192 0.1192 10.30 0.1332

R̂(rat) 20 3.3625 0.0148 0.0530 0.0532 6.86 0.0535

30 3.3486 0.0009 0.0309 0.0309 5.25 0.0312

10 3.3313 −0.0164 0.1037 0.1040 9.68 0.1038

R̂(reg) 20 3.3504 0.0027 0.0461 0.0461 6.41 0.0446

30 3.3420 −0.0057 0.0269 0.0269 4.91 0.0264

10 3.3468 −0.0009 0.1027 0.1027 9.58 0.1026

R̂(cal) 20 3.3550 0.0073 0.0457 0.0458 6.38 0.0441

30 3.3484 0.0007 0.0266 0.0266 4.87 0.0261

Fig. 4. Results of the estimation of the ratio in Case 2.

One can see comparatively high mean square errors of the ratio estimator of a ratio in
Cases 1 and 3. Only in Case 2 it becomes less than that of the simple estimator of a ratio.
This phenomena can be explained by checking the condition (14) (see Table 4).

Condition (14) is only satisfied in Case 2, and only in this case the approximate vari-
ance of the ratio estimator of ratioR(rat) is less than the approximate variance of the
simple estimator of the ratiôR.
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Table 3

Results of the estimation in Case 3

Esti- Sample Average Esti- Approxi- Rel Average

mator size esti- mated mate M̂SE M̂SE estimate

θ̂ n mate bias variance (%) of variance

10 3.8948 0.0123 0.1270 0.1272 9.16 0.1297

R̂ 20 3.8937 0.0112 0.0564 0.0565 6.11 0.0582

30 3.8783 −0.0042 0.0329 0.0329 4.68 0.0337

10 3.9125 0.0300 0.1448 0.1457 9.76 0.1731

R̂(rat) 20 3.9144 0.0319 0.0644 0.0654 6.53 0.0704

30 3.8898 −0.0073 0.-375 0.0376 4.98 0.0394

10 3.8586 −0.0239 0.1057 0.1063 8.45 0.1122

R̂(reg) 20 3.8877 0.0052 0.0470 0.0470 5.58 0.0486

30 3.8767 −0.0058 0.0274 0.0274 4.27 0.0281

10 3.8841 0.0016 0.0733 0.0733 6.97 0.0473

R̂(cal) 20 3.827 0.0102 0.0326 0.0327 4.65 0.0269

30 3.8801 −0.0024 0.0190 0.0190 3.55 0.0169

Fig. 5. Results of the estimation of the ratio in Case 3.

5. Conclusions

1. The calibrated estimator of a ratio has the smallest mean square error among the
estimators investigated.

2. The simulation results do not show any significant bias of the estimates.
3. The ratio estimator of a ratio has to be applied carefully because its mean square

error can be larger than that of the simple estimator. Even in Case 3, when all
variables are correlated, the condition (12) is not satisfied.

4. The method of calibration of weights of the estimator of a ratio does not guarantee
the positivity of weightswk. The case of the negative weights is not attractive for
practitioners because it is thought that a sampled element could represent at least
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Table 4

Statistic for comparison of the simple and the ratio estimates of a ratio

Case 1 2 3

A(y, z, xy , xz) 330 030 −287 598 15 261

itself and its weight has to be greater or equal to 1. So, restrictions on the weights
can be put, but then the properties of the estimators would change.

5. The problem of calibration of weights may be generalized for the estimation of
some other nonlinear functions of totals. Some other distance measures between
the design weights and the calibrated weights can be used.
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Santykio vertinimas baigtinėje populiacijoje

Danuṫe KRAPAVICKAITĖ, Aleksandras PLIKUSAS

Nagriṅejami dviej↪u sum↪u santykio vertinimo b̄udai, turint iš baigtiṅes populiacijos išrinkt↪a
tikimybin ↪e imt↪i. Lyginami 4 santykio↪ivertiniai: paprastasis – Horvico–Tompsono sum↪u ↪ivertini ↪u
santykis, santykinis – santykini↪u sumos↪ivertini ↪u santykis, regresinis – regresini↪u sumos↪ivertini ↪u
santykis ir kalibruotas santykio↪ivertinys. Tiriamos ši↪u santykio↪ivertini ↪u savyḃes. Teoriniai rezul-
tatai iliustruojami modeliavimo pavyzdžiu.


