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Abstract. The conjugate gradient method is an iterative technique used to solve systems of linear
equations. The paper analyzes the performance of parallel preconditioned conjugate gradient algo-
rithms. First, a theoretical model is proposed for estimation of the complexity of PPCG method and
a scalability analysis is done for three different data decomposition cases. Computational experi-
ments are done on IBM SP4 computer and some results are presented. It is shown that theoretical
predictions agree well with computational results.
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1. Introduction

Solution of many real-world and applied problems is reduced to the solution of large
sparse systems of linear equations. Very often matrices of the systems have an additional
regularity of non-zero coefficients, e.g., they are banded or block tridiagonal. Such kind
of matrices is obtained after discretization of multidimensional self-adjoint elliptic partial
differential equations via finite difference or finite volume methods.

Most frequently sparse systems of linear equations are solved by iterative methods
such as the Conjugate Gradient (CG) algorithm. It is well-known that iterative methods
can be parallelized much more simply than the direct methods. Therefore many papers
are devoted to the development and analysis of parallel CG algorithms.

It follows from theory of iterative algorithms, that the most effective methods are pre-
conditioned iterative algorithms. Let us assume that we solve a system of linear equations

AX = F , (1)

whereA is anN×N symmetric positive definite matrix,X andF areN×1 vectors. Then
the preconditioned iterative method can be defined as a basic iterative method applied to
the preconditioned system

B−1AX = B−1F .
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This requires solving the system

BY = G , (2)

where matrixB is called a preconditioner. A good parallel preconditioner needs to satisfy
the following three requirements:

• Matrix B should be a good approximation ofA in a sense that the condition

number
µu

µl
, whereµl, µu satisfy the estimates

µlB � A � µuB ,

is much smaller than the condition number of the original matrixA.
• System (2) should be easy to solve, i.e., the number of arithmetical operations is

of orderO(N), whereN is the number of equations in the system.
• The algorithm for solving (2) should have enough parallelism in order to be

implemented efficiently on parallel computers with large number of processors.

In this paper we consider a system of linear equations arising from the three-
dimensional Puasson problem




−
3∑

α=1

∂

∂xα

(
k(x)

∂u

∂xα

)
= f, x ∈ Q := (0, 1) × (0, 1) × (0, 1) ,

u(x) = g, x ∈ ∂Q .

(3)

via discretization by the finite-volume method on the uniform grid:

−ai+1,j,kUi+1,j,k − ai−1,j,kUi−1,j,k − ai,j+1,kUi,j+1,k − ai,j−1,kUi,j−1,k

−ai,j,k+1Ui,j,k+1 − ai,j,k−1Ui,j,k−1 + aijkUijk = Fijk, 1 � i, j, k � N .

The 7-point stencil is used for the approximation. The resulting system of equations may
be written as

AU = F,

whereA is a symmetric positive definite matrix. More details about the properties of such
discrete approximations are given by Samarskii (2002), Golub and Van Loan (1996). For
the following analysis it is sufficient to note that the obtained matrixA is block five-
diagonal and there are seven non-zero elements in each row of the matrix.

First we develop a theoretical model, which estimates the complexity of the parallel
PCG (PPCG) algorithm. Such performance tools are investigated for many parallel linear
algebra algorithms, e.g., performance prediction tools for parallel Gauss algorithms are
investigated by̌Ciegiset al. (2000). The main research efforts in this area are focused on
heuristic methods for obtaining near-optimal solutions in a reasonable time ( see Amoura
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et al., 1998; Djordjevíc and Tošíc, 1996). The scalability analysis of PPCG method was
done in Guptaet al. (1997), where in particular a discretization of two-dimensional ellip-
tic problem was investigated. Our goal is to generalize these results for three-dimensional
problem and to test the accuracy of obtained theoretical estimates.

Second, we want to study the efficiency of some popular parallel preconditioners for
solution of the obtained large sparse systems. We will consider the diagonal and the in-
complete factorization IC preconditioning. The parallel version of IC is obtained by doing
the factorization of a local part of the matrix at each processor. It is well known that such
strategy reduces the convergence rate of the PCG algorithm, but a parallelism of the ob-
tained preconditioner is the same as for the diagonal one. There have been many studies
of the use of various ordering techniques to overcome the trade-off between parallelism
and convergence in incomplete factorization. Some new multicolor orderings are pro-
posed by D’Azevedoet al. (1992), Doi and Washio (1999), Monga–Made and Van der
Vorst (2001). The comparison of parallel preconditioners for non-symmetric sparse linear
systems is done by Ma (2004).

An exhaustive parallel library of sparse iterative methods and preconditioners in HPF
and MPI was developed by Blancoet al. (2004). A model for predicting the performance
of these codes is presented. The information offered by this model combines theoretical
features of the methods and preconditioners in addition to certain practical considerations
and predictions about aspects of the performance of their execution in distributed memory
multiprocessors.

Software tools. A software package PCG is developed by Jourbert and Carey (1993)
for solving systems of linear equations by means of preconditioned conjugate gradient-
type iterative methods on a variety of computer architectures. The software is designed to
give high performance with nearly identical user interface across different scalar, vector
and parallel platforms as well as across different programming models such as shared
memory, data parallel, and message passing programming interfaces.

Portable Library of Parallel Sparse Iterative Solvers (PSPARSLIB) is developed by
Saadet al. (1998). It is a set of tools for solving large sparse linear systems on the
distributed-memory computers. The library consists of the four major parts, the accel-
erators, preprocessing tools, preconditioning routines, and message-passing tools. The
accelerators are based on the Krylov subspace methods, including CG method. The pre-
conditioners provided with the library are tailored for preconditioning distributed sparse
matrices, such as overlapping block Jacobi, multicolor block SOR, distributed ILU(0),
approximate inverse preconditioners.

We also mention one more very interesting tool PETSc, which is developed by Balay
et al. (2004). PETSc is a suite of data structures and routines for the scalable (parallel)
solution of scientific applications modeled by partial differential equations. It employs the
MPI standard for all message-passing communication. It includes many parallel solvers
for systems of sparse linear equations.

Applications. Parallel PCG method is used to solve systems of linear equations in many
applied projects. Here the main goal is to solve systems as large as possible in order to



320 R. Čiegis

obtain interesting simulation results. The efficiency of the parallel algorithm is not the
prime interest in such studies. An example is given by Thiagarajan and Aravamuthan
(2002). They describe a parallel implementation of an unstructured finite-element solver
using the preconditioned PCG method. High-performance Fortran has been used for the
implementation of the code. The PCG solver is set up for the element-by-element method.
While this is a highly suitable method for the solution of very large problems, it is not
inherently parallelizable in a distributed memory environment.

CG and parallel CG methods were used for numerical image smoothing by nonlinear
diffusion filters (seěCiegiset al., 2005).

We should mention that domain-decomposition (or data-decomposition) method is
very popular in parallel computing. Many interesting industrial applications deal with
solving optimization problems, e.g., global optimization, combinatorial optimization or
more general discrete optimization problems. Parallel algorithms for solution of such
problems are desribed by Pardaloset al. (1992), Pardaloset al. (1996). Very attractive are
also randomized parallel algorithms, see, e.g., Pardalos and Rajasekaran (1999).

Our paper is organized as follows. In Section 2, we formulate the parallel precondi-
tioned conjugate gradient method. The complexity analysis of PPCG method and scala-
bility analysis of different data decompositions is presented in Section 3. In Section 4 the
results of computational experiments with different preconditioners are presented. The
test matrices were generated by the finite-volume approximation of the three dimensional
Puasson equation. Some final conclusions are given in Section 5.

2. Formulation of the Parallel PCG Method

The serial PCG algorithm for solving a system of linear equations (1) can be formulated
as follows (see Golub and Van Loan, 1996):

procedure The serial PPCG algorithm
begin

(1) X0, n = 0, R0 = AX0 − F,

(2) BW 0 = R0, P 0 = W 0 .

(3) while
(
(Wn, Rn) > ε (W 0, R0)

)
(4) Gn = APn ,

(5) τn+1 =
(Wn, Rn)
(Gn, Pn)

,

(6) Xn+1 = Xn − τn+1P
n ,

(7) Rn+1 = Rn − τn+1G
n ,

(8) BWn+1 = Rn+1 .

(9) βn =
(Wn+1, Rn+1)

(Wn, Rn)
,

(10) Pn+1 = Wn+1 + βnPn ,

(11) n := n + 1 .

(12) end while
end
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Parallel PCG algorithm is obtained by using the data decomposition paradigm Kumar
et al. (1994). We distribute vectorX among processors, the vectorF is aligned withX

and distributed analogically. Then each processor is responsible for computations of the
local part of vectorX. Thus the parallel implementation of PCG method is identical to its
serial implementation. As we will see the implementation of the parallel preconditioner
can be different from the serial one.

Different operations of PPCG algorithm require different data communications be-
tween processors:

• Vectorsaxpy operations (see Steps (6), (7) and (10)) can be computed in parallel,
when parametersτn+1, βn are given. No communication between processors is
needed, since all required data is locally available on each processor.

• Implementation of the matrix – vector multiplication requires additional informa-
tion when boundary nodes of the local part of the vectorX are updated (note, that
these nodes are inner nodes in the global grid). Such information is obtained by
exchanging data with neighbour processors in the specified topology of processors
and the amount of data depends on the grid stencil, which is used to discretize the
PDE model. We note that the communication step can be done in parallel. When all
required information is saved in the local memory, the multiplication is performed
locally on each processor.

• The computation of the inner product of two vectors require a global communi-
cation of all processors: first all processors compute inner products of local parts
of vectors and then all local products are summed up. Different algorithms can be
used to implement the global reduction step. We note that in MPI there exists a
special functionMPI_ALLREDUCE, which computes a sum and distributes it to
all processors. It is assumed that MPI library is optimized for each type of super-
computer, taking into account specific details of the computer network.

• Parallelization of the algorithm for solving the systemBW = R depends on the
structure of matrixB. If B is a diagonal preconditioner, then this step does not re-
quire any data communication and all computations are done locally and in paral-
lel. If solving B−1R requires matrix-vector multiplications, then algorithms given
above should be used.

3. Theoretical Model and Scalability Analysis

In this section we will develop a performance prediction model of the PPCG algorithm.
It can help to answer the following questions:

• What type of data distribution between all processors is most effective for a given
size of the problemN and number of processorsp?

• What number of processors is optimal for a given system of linear equations and
parallel computer?

• How scalable is the PPCG algorithm, i.e., how should the size of problem be in-
creased with respect to the number of processors in order to maintain a certain
efficiency?
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3.1. Complexity of the Serial PCG Algorithm

As it follows from the given PCG algorithm, at each iteration we should compute two
vector inner products at Steps (5) and (9), one matrix-vector multiplication at Step (4),
and three vectorsaxpy operations (a combination of scalar-vector multiplication and vec-
tor addition) at Steps (6), (7), (10).

We will estimate the complexity of the PCG algorithm by counting the scalarsaxpy
operations (a combination of scalar-scalar multiplication and scalar addition).

Let assume that the size of the matrixA is N ×N and there arem non-zero elements
in each row of the sparse matrix. For the matrix, obtained by discretization of 3D elliptic
problem, we haveN = n3, m = 7.

• The complexity of one vectorsaxpy operation isN .
• The vector inner product requiresN operations.
• The matrix-vector multiplication can be performed inmN time.
• Let assume that the complexity of solving a system with preconditioning matrixB

is bN (e.g., ifB is a diagonal matrix, thenb = 1).

As a result, the total complexity of the serial PCG algorithm can be expressed as

W = (5 + m + b)N . (4)

3.2. Complexity of the Parallel PCG Algorithm

The nodes of the 3D grid can be partitioned among the processors by using different
mappings. We will consider only simple Cartesian mappings, when the grid nodes are
ordered naturally.

1D Mapping
The nodes of thex1-dimension are distributed among processors by using a block distri-
bution scheme. Then the size of largest local grid part, given to one processor, is equal to⌈n

p

⌉
× n × n, where�x� denotes a smallest integer number not smaller thanx.

The complexity of one parallel vectorsaxpy operation is given by

T1,p(n) =
⌈n

p

⌉
× n × n .

During matrix-vector multiplication each processor exchanges vector elements cor-
responding to its local boundary grid points inx1-dimension with its two neighbouring
processors. A total amount of data, exchanged between two processors, is equal ton2

elements. This can be done inα + βn2 time, by using theodd-even data exchange algo-
rithm. Hereα is the message startup time andβ is the time required to send one element
of data.

Thus the complexity of the parallel matrix-vector multiplication is given by

T2,p(n) = m
⌈n

p

⌉
× n × n + α + βn2 .
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Parallel computation of the inner product of two vectors requires global communica-
tion among all processors during summation of local parts of the product. The complexity
of such reduce operation depends strongly on the architecture of the parallel computer
(see Hockney, 1991; Guptaet al., 1997;Čiegis and Starikovičius, 2003).

We estimate the cost of broadcasting/reducingn items of data betweenp processors
by

B(n, p) = R(p)(αb + βbn),

whereR(p) depends on the algorithm used to implement theReduceAll operation and
the architecture of the computer. For the simplest algorithm we haveR(p) = p. Thus the
complexity of the parallel inner-product multiplication is given by

T3,p(n) =
⌈n

p

⌉
× n × n + R(p)(αb + βb) .

Let assume that we use a diagonal preconditionerD, then the complexity of solving
a system withB = D is estimated by

T4,p(n) =
⌈n

p

⌉
× n × n .

Summing up the obtained estimates we compute the complexity of the parallel PCG
algorithm

Tp(n) = (6 + m)
⌈n

p

⌉
× n × n + α + βn2 + R(p)(αb + βb) . (5)

This complexity estimate can be used as a performance prediction tool for the PPCG
algorithm. Using the well-known Amdahl law (see, Lewis and El-Rewini 1992) we expect
that the efficiency of a parallel algorithm should improve when a size of the problem is
increased. It follows from (5) that the efficiency of the PPCG algorithm depends on the
disbalance of sizes of the distributed local subgrids. Thus a size of the problem can grow,
but the efficiency will degrade. Such situation will be illustrated in the next section, where
results of computational experiments are presented.

Scalability Analysis
According to the definition of the isoefficiency function, we should find the rate at which
the problem sizeW needs to grow withp for a fixed efficiency of the algorithm.

Let H(p, W ) = pTp − W be the total overhead of a parallel algorithm. Then the
isoefficiency functionW = g(p, E) is defined by the implicit equation (see Kumaret al.,
1994)

W =
E

1 − E
H(p, W ) . (6)
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For simplicity of notation we takeE = 0.5. The scalability analysis is a very useful tool
to predict the performance of the parallel algorithm (see, e.g.,Čiegis et al., 2004).

The total overhead of the parallel PCG algorithm is given by

H(p, W ) = (m + 6)pn2 + αp + βpn2 + R(p)p(αb + βb)

= αp + (m + 6 + β)p
(

W

m + 6

) 2
3

+ R(p)p(αb + βb) .

The first term on the right-hand side of the equality arises due to the simple estimate

p
⌈n

p

⌉
− n � p − 1 .

Since it is impossible to get the isoefficiency function in a closed form as a function of
p, we will analyze the influence of each individual term. The component that requires the
problem size to grow at the fastest rate determines the overall asymptotic isoefficiency
function (see, Guptaet al., 1997). After simple computations we get the following three
isoefficiency functions

W = O(p), W = O(p3), W = O
(
pR(p)

)
.

Even for the most simpleReduceAll algorithm, when all processors send their local inner
products to the master processor, which computes the sum and broadcasts the result to
the other processors, the functionR(p) = p. Thus the overall asymptotic isoefficiency
functionW = O(p3) is determined by the second term (overheads due to matrix-vector
multiplication and due to disbalances of sizes of local subgrids). It requires a cubic growth
of problem size (or linear growth ofn) with respect top to maintain a certain efficiency.

2D Mapping
The nodes of thex1, x2-dimensions are distributed among processors using a block dis-
tribution scheme. Then the size of largest local grid part, given to one processor, is equal

to
⌈ n
√

p

⌉
×

⌈ n
√

p

⌉
× n .

The complexity of one parallel vectorsaxpy operation is given by

T1,p(n) =
⌈ n
√

p

⌉
×

⌈ n
√

p

⌉
× n .

During matrix-vector multiplication each processor exchanges vector elements corre-
sponding to its local boundary grid points inx1, x2-dimensions with its four neighbour-
ing processors. A total amount of data, exchanged between two processors, is equal to⌈ n
√

p

⌉
× n elements. Thus the complexity of the parallel matrix-vector multiplication is

given by

T2,p(n) = m
⌈ n
√

p

⌉
×

⌈ n
√

p

⌉
× n + 2

(
α + β

⌈ n
√

p

⌉
× n

)
.
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The complexity of a parallel inner-product multiplication is given by

T3,p(n) =
⌈ n
√

p

⌉
×

⌈ n
√

p

⌉
× n + R(p)(αb + βb) .

The complexity of solving a system with a diagonal preconditionerB = D is esti-
mated by

T4,p(n) =
⌈ n
√

p

⌉
×

⌈ n
√

p

⌉
× n .

Summing up the obtained estimates we compute the complexity of the parallel PCG
algorithm

Tp(n) =
(
m + 6

)⌈ n
√

p

⌉
×

⌈ n
√

p

⌉
× n + 2

(
α + β

⌈ n
√

p

⌉
× n

)
+ R(p)(αb + βb) .

Scalability Analysis
The total overhead of the parallel PCG algorithm is given by

H(p, W ) = 2αp + (m + 6 + 2β)pn + 2(m + 6 + β)
√

pn2 + R(p)p(αb + βb)

= 2αp + (m + 6 + 2β)p
(

W

m + 6

) 1
3

+ 2β
√

p

(
W

m + 6

) 2
3

+ R(p)p(αb + βb) .

We will analyze the influence of each individual term. After simple computations we get
the following four isoefficiency functions

W = O(p), W = O(p1.5), W = O(p1.5), W = O
(
pR(p)

)
.

If again we use a simpleReduceAll algorithm withR(p) = p, then the overall asymp-
totic isoefficiency functionW = O(p2) is determined by the overheads of the inner
product computations.

Assuming that processors are connected by two-dimensional mesh
√

p×√
p, first all

processors reduce local inner products along rows of the mesh, then the processors be-
longing to the first column of the mesh reduce their local sums along this column. The fi-
nal result is broadcasted to all processors in inverse order. For such algorithmR(p) =

√
p

and the overall asymptotic isoefficiency function improves toW = O(p1.5). It requires
growth ofn with respect top asn = O(

√
p) to maintain a certain efficiency.

3D Mapping
The nodes of all three dimensions are distributed among processors using a block distri-
bution scheme. Then the size of largest local grid part, given to one processor, is equal to⌈ n

1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
.
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The complexity of one parallel vectorsaxpy operation is given by

T1,p(n) =
⌈ n

1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
.

During matrix-vector multiplication each processor exchanges vector elements cor-
responding to its local boundary grid points in three dimensions with its six neighbour-
ing processors. A total amount of data, exchanged between two processors, is equal to⌈ n

1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
elements. Thus the complexity of the parallel matrix-vector multipli-

cation is given by

T2,p(n) = m
⌈ n

1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
+ 3

(
α + β

⌈ n
1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉)
.

The complexity of a parallel inner-product multiplication is given by

T3,p(n) =
⌈ n

1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
+ R(p)(αb + βb) .

The complexity of solving a system with a diagonal preconditionerB = D is esti-
mated by

T4,p(n) =
⌈ n

1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
×

⌈ n
1/3
√

p

⌉
.

Summing up the obtained estimates we compute the complexity of the parallel PCG
algorithm

Tp(n) =
(
m + 6

)⌈ n
1/3
√

p

⌉3

+ 3
(

α + β
⌈ n

1/3
√

p

⌉2 )
+ R(p)(αb + βb) .

Scalability Analysis
The total overhead of the parallel PCG algorithm is given by

H(p, W ) =
(
m + 6 + 3(α + β)

)
p + 3(m + 6 + 2β)p

2
3

(
W

m + 6

) 1
3

+ 3(m + 6 + β)p
1
3

(
W

m + 6

) 2
3

+ R(p)p(αb + βb) .

We will analyze the influence of each individual term. The first three terms are balanced if
W = O(p), and the isoefficiency function due to overheads of the inner product is given
by W = O

(
pR(p)

)
. Thus the the overall asymptotic isoefficiency function is defined by

the overheads of the parallel inner-product algorithm.
Let us assume that processors are connected by three-dimensional mesh1/3

√
p ×

1/3
√

p× 1/3
√

p. Then the globalreduce andbroadcast operations can be implemented with
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R(p) = 1/3
√

p. Thus the problem sizeW has to grow asO
(
p

4
3
)

to maintain a certain
efficiency.

The obtained scalability results show that the parallel PCG is a highly scalable algo-
rithm. The efficiency of the algorithm is largest when we use three-dimensional mesh of
processors. Then the asymptotic isoefficiency function is defined by the overheads of the
parallel inner-product algorithm.

In applications the presented estimates of the complexity of PPCG algorithm can be
used as a performance prediction tool to find the optimal topology of processors.

4. Computational Experiments with Different Parallel Preconditioners

In this section we present some results of computational experiments. Computations were
performed on IBM SP4 computer at CINECA, Bologna. In all experiments we solved a
system of linear equations which is obtained after the discretization of the three dimen-
sional Puasson problem (3) by the finite-volume method.

Table 1 presents experimental speedupSp(n) and efficiencyEp(n) values for solving
problems of different size using the diagonal preconditionerB = D, whereD is the main
diagonal of the matrixA. 1D data decomposition was used in all computations.

As predicted by the scalability analysis, the efficiency of the PPCG algorithm de-
grades in the case ofp = 16 processors for problems withn = 39 andn = 119, since the
workload is divided not uniformly between processors. It also follows from the scalabil-
ity analysis, that the efficiency should improve forn = 127, the results of computations
confirm this theoretical prediction

S16(127) = 13.4, E16(127) = 0.84 .

Next we have tested how the efficiency of parallel PCG algorithm depends on multi-
dimensional data mappings. The computations were performed on Intel Pentium 4 3.2
GHz PC clusterVilkas at Vilnius Gediminas technical university. Our goal was to in-
vestigate how the efficiency of the parallel CG algorithm depends on the type of data
decomposition for most simple communication networks. Table 2 presents CPU times

Table 1

Speedup and efficiency for the diagonal preconditioner: CPU time of the sequential PPCG algorithm (ins)
T1(39) = 1.38, T1(79) = 22.7, T1(119) = 117.1, and numbers of iterationsK(39) = 81, K(79) = 161,
K(119) = 226.

p Sp(39) Ep(39) Sp(79) Ep(79) Sp(119) Ep(119)

2 1.76 0.88 1.82 0.91 1.92 0.96

4 3.37 0.84 3.51 0.88 3.69 0.92

8 5.13 0.64 6.65 0.83 6.88 0.86

16 7.68 0.48 11.56 0.72 9.43 0.59
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Table 2

CPU times for the diagonal preconditioner and1D, 2D and3D domain decompositions

p Tp(120) Tp(240) Tp(360)

8× 1× 1 10.08 98.99 481.9

4× 2× 1 9.26 91.12 466.3

2× 2× 2 9.48 93.34 472.8

12× 1× 1 7.70 68.97 324.3

6× 2× 1 6.92 63.13 315.3

4× 3× 1 6.86 62.80 315.7

3× 2× 2 6.87 63.93 322.9

Tp(n) for solving problems of different size by using the diagonal preconditionerB = D

and different data decompositions. The sizes of the discrete problems are selected such
that no load disbalance between local subproblems asigned to processors have arised.

It follows from the presented results, that the efficiency of the parallel CG algorithm
is better for multidimensional data decompositions, but the dependence is not strong.

The IC Preconditioner
It is well known (see, Golub and Van Loan, 1996) that a diagonal preconditioner is not
optimal. The number of iterations required to solve the system of linear equations can
be reduced if a good preconditionerB is selected. In this section we consider one type
of commonly used preconditioning matrixB, which is represented by the incomplete
factorizationB = (D + L)D−1(D + LT ) , hereL andD are the lower triangular and
diagonal parts of the matrixA (for the other possible factorizations see Golub and Van
Loan, 1996; Monga–Made and Vorst, 2001).

In practice the solution of systemBY = G is obtained first by solving a system
(D + L)V = G with a lower triangular matrix, and then by solving(D + LT )Y = DV

with an upper triangular matrix. For the natural ordering of unknowns inY both parts
of the algorithm are fully sequential. A number of techniques were developed to attain
parallelism in the solution of such systems. Mainly they are based on the reordering the
systemAX = F and constructing an incomplete factorization for the reordered system
(see, Monga–Made, 1995; Doi and Washio, 1999; Duff and Vorst, 1999; Monga–Made
and Vorst, 2001).

First we consider a simple parallel version of IC preconditioner, when each proces-
sor computes the required factorization by using only its local part of the matrixA.
Obviously, such algorithm can be implemented in parallel, but the convergence rate is
decreased. We investigate experimentally the efficiency of such IC preconditioner. In Ta-
ble 3, we give the performance of PPCG algorithm with the local IC preconditioner.

We see that the number of iterations for the PPCG algorithm with the local IC pre-
conditioner grows up comparing it with the global IC preconditioner. As expected the
spectral condition number of the matrixB−1A is bounded byO(n2), while for the global
IC preconditioner this number is of orderO(n).
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Table 3

Iteration numbersKp and CPU timesTp for PPCG with the local IC preconditioner

p Kp(39) Tp(39) Kp(79) Tp(79) Kp(119) Tp(119)

1 19 0.72 29 8.78 36 45.81

2 38 0.68 73 11.2 101 56.26

4 31 0.30 60 4.77 86 23.9

8 28 0.15 54 2.31 78 10.6

Table 4

CPU times for PPCG with the diagonal preconditionerTp,D(n) and the local IC preconditionerTp,IC(n)

p Tp,D(39) Tp,IC(39) Tp,D(79) Tp,IC(79) Tp,D(119) Tp,IC(119)

1 1.38 0.72 22.7 8.78 117. 45.8

2 0.79 0.68 12.6 11.2 61.2 56.3

4 0.41 0.30 6.51 4.77 31.7 23.9

8 0.27 0.15 3.42 2.31 17.1 10.6

The implementation of one iteration of the PPCG algorithm with IC preconditioner
requires approximately twice more CPU time than for a diagonal preconditioner. But the
parallel computation time of PPCG with the local IC preconditioner was smaller than the
computation time using the diagonal preconditioner for all sizes of tested problems and
numbers of processors. Some results are presented in Table 4.

Approximate IC Factorization
Let us consider one interesting modification of the IC factorization preconditioner. Kumar
et al. (1994) proposed to increase the parallelism in IC factorization algorithm by using
the truncated series

(I − L)−1F ≈ Y + LF + L2F + . . . + LmF,

whereI is the identity matrix andL is a strictly lower triangular matrix. Thus a solu-
tion of the system(I − L)Y = F is changed tom matrix-vector multiplications. Such
multiplications can be computed efficiently in parallel on most parallel systems.

A similar approach was used also by Akcadogan and Dag (2003), where the CG
method was accelerated with an approximate inverse matrix preconditioner obtained from
a linear combination of matrix-valued Chebyshev polynomials. We note that the largest
eigenvalue ofA should be known to implement this algorithm and the Power Method was
employed to find an approximation of this eigenvalue.

Our goal is to test experimentally the quality of the obtained approximate IC pre-
conditioner by solving the system of equations approximating 3D elliptic problem. In
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Table 5

CPU timesT1(n) and iteration numbersK1(n) for PPCG with the the approximate IC preconditioner, herem
is a number of terms in truncated series

m K1(79) T1(79) K1(119) T1(119)

1 86 29.9 122 149.6

2 75 41.8 106 192.7

4 61 52.2 75 204.7

8 52 73.9 75 359.0

16 43 109.3 61 639.8

32 38 185.0 51 1044.

Table 6

CPU timesTp, speedupsSp and efficiencyEp for PPCG with the the approximate IC preconditioner, here
m = 4

p Tp(119) Sp(119) Ep(119)

2 119.6 1.71 0.86

4 63.67 3.22 0.81

8 32.27 6.34 0.79

16 19.17 10.68 0.67

Table 5, we present CPU times and numbers of iterations for different values ofm. All
computations were done for a serial version of the algorithm.

We see that for growingm the decrease in numbers of iterations do not compensate
the increase in complexity of the one iteration, therefore the optimal value ism = 1.
Nevertheless the parallelism of this preconditioner is quite good, as it follows from results
presented in Table 6.

5. Conclusions

As it follows from computational results given above the measured speedups of the paral-
lel PCG algorithm agree well with the predictions given by the theoretical model, which
was developed to estimate the complexity of PPCG method. The scalability analysis
shows that a three dimensional data decomposition should be used for computations with
a large number of processors. A special attention should be given for the parallel imple-
mentation of the inner product of two vectors, since this part of the algorithm determines
the overall asymptotic isoefficiency function.

Our results show that a parallel modification of the IC factorization preconditioner,
which is constructed by using only the local part of the matrixA, is more efficient than
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a simple diagonal precondioner. The implementation of such modification is based on a
serial version of the IC factorization algorithm.

The IC factorization preconditioner which is based on truncated series is high scal-
able, but the overall efficiency of the obtained algorithm is worse than using the diagonal
preconditioner.
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Lygiagrečiojo jungtini ↪u gradient ↪u algoritmo analizė

RaimondašCiegis

Jungtini↪u gradient↪u metodas yra iteracinis algoritmas, kuris naudojamas tiesini↪u simetrini↪u
lygči ↪u sistem↪u sprendimui. Šiame darbe nagrinėjame lygiagret↪uj ↪i neišreikštin↪i jungtini ↪u gradi-
ent ↪u algoritm↪a. Pirmiausia pateiktas teorinis modelis, leidžiantis↪ivertinti šio metodo skaičiavimo
suḋetingum↪a ir atlikta algoritmo išplěciamumo analiże, kai duomen↪u matrica skaidoma naudojant
vienmat↪e, dvimat↪e ir trimat↪e topologijas. Skaičiavimo eksperimentai atlikti IBM SP4 kompiuteriu,
pateikiami ši↪u eksperiment↪u rezultatai. Parodyta, kad jie artimi teorinio modelio prognozėms.


