INFORMATICA, 2005, Vol. 16, No. 3, 449-468 449
0 2005Institute of Mathematics and Informatics, Vilnius

An Efficient Montgomery Exponentiation
Algorithm for Cryptographic Applications

Chia-Long WU

Department of Aviation & Communication Electronics, Chinese Air Force Institute of Technology
Kaohsiung 820, Taiwan

e-mail: chialongwu@seed.net.tw

Der-Chyuan LOU, Te-Jen CHANG

Department of Electrical Engineering, Chung Cheng Institute of Technology
National Defense University

Tahsi, Taoyuan 33509, Taiwan

e-mail: dclou@ccit.edu.tw

Received: April 2005

Abstract. Efficient computation of the modular exponentiations is very important and useful for
public-key cryptosystems. In this paper, an efficient parallel binary exponentiation algorithm is
proposed which based on the Montgomery multiplication algorithm, the signed-digit-folding (SDF)
and common-multiplicand-multiplicand (CMM) techniques. By using the CMM technique of com-
puting the common part from two modular multiplications, the same common part in two modular
multiplications can be computed once rather twice, we can thus improve the efficiency of the bi-
nary exponentiation algorithm by decreasing the number of modular multiplications. By dividing
the bit pattern of the minimal-signed-digit recoding exponent into three equal length parts and
using the technique of recording the common parts in the folded substrings, the proposed SDF-
CMM algorithm can improve the efficiency of the binary algorithm, thus can further decrease the
computational complexity of modular exponentiation. Furthermore, by using the proposed parallel
SDF-CMM Montgomery binary exponentiation algorithm, on average the total number of single-
precision multiplications can be reduced by about 61.3% and 74.1% as compared with Chang-
Kuo-Lin's CMM modular exponentiation algorithm and Ha-Moon’s CMM Montgomery modular
exponentiation algorithm, respectively.

Key words: Montgomery reduction algorithm, common-multiplicand-multiplication, signed-digit
recoding, modular exponentiation, public-key cryptosystems.

1. Introduction

Modular exponentiation and modular multiplication are the cornerstone computations
performed in public-key cryptography. Taking the RSA cryptosystem (Rigesl.,
1978), for example, both the encryption and decryption operations are accomplished by
modular exponentiation. The encryption and decryption operations are accomplished by
modular exponentiation and can be described as follows. Gigdplain text),F (public

450 C.-L. Wy, D.-C. Lou, T.-J. Chang

key), D (private key), andV (modulus), compute ciphertext = A mod N for en-
cryption andM = CP mod N for decryption. Moreover, these operations are realized
by multiple modular multiplications based on the value of the expongrtsd D, where

D x Emod¢(N) = 1 andy(N) is an Euler’s totient function (Koren, 2002).

As efficient computation of the modular exponentiations is important for RSA cryp-
tosystem, we need novel algorithms such as the Montgomery modular multiplication
method (Montgomery, 1985; Set al., 1999; Tenca and Koc, 2003), addition chains
method (Kunihiro and Yamamoto, 2000), binary method (Knuth, 1997), residue num-
ber conversion method (Premkumar, 2002; Noztldl., 2003), signed-digit recoding
method (Joye and Yen, 2000; Wei al., 2002), exponent-folding method (Lou and
Chang, 1996), common-multiplicand-multiplication method (Yen and Laih, 1993a), and
key-size partitioning method (Leet al., 2002). Detailed surveys and analyses of fast
exponentiation techniques are given in (Gordon, 1998; Nedjah and Mourelle, 2002).

The rest of the paper is organized as follows. In Section 2, we first review some
related works of modular exponentiation that attempt to minimize the number of multi-
plication. The proposed parallel SDF-CMM Montgomery algorithm and its flow chart for
fast modular exponentiation are depicted in Section 3. The computational complexity of
the proposed parallel modular exponentiation algorithm is detailed analyzed in Section 4.
Finally, we conclude our work in Section 5.

2. The Cryptographic Arithmetic

The modular exponentiation is composed of repetition of modular multiplications. There-
fore, modular exponentiation can be time consuming, and is often the dominant part of
modern cryptographic algorithms for key exchange (Nedjah and Mourelle, 2002), elec-
tronic signatures (Diffie and Hellmen, 1976), and authentication (Re&tekt 1978). Two
different approaches are often used to reduce the execution time of the modular exponen-
tiation operation. One approach is simply to reduce the number of modular multiplica-
tion. The other approach is to reduce the execution time of each modular multiplication.
In this paper, we are concentrate on the first approach to effectively reduce the number of
modular multiplication.

2.1. The Binary Exponentiation Method

The binary exponentiation method is also known as the “square-and-multiply” method
(Knuth, 1997). The basic idea of binary method is to com@uté using the binary ex-
pression of exponerf. The exponentiation operation is broken into a series of squaring
and multiplication operations by the use of the binary method. Assumenotes the
bit-length of the exponent’, the exponent’ can be expressed in binary representation
asE = (ex_1ex_a...e1e0)2 andE = Y-F ' e; x 21, wheree; € {0,1}.

The binary method is important for speeding up exponentiation calculation. There
are two commonly used algorithms in binary method can convert the exponentiation of
C = M¥ mod N for RSA cryptosystem into a series of multiplications, i.e., the LSB

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 451

(least significant bit) binary algorithm and the MSB (most significant bit) binary exponen-
tiation algorithm. The LSB binary exponentiation algorithm computes the exponentiation
starting from the least significant bit position of the exporféaind proceeding to the left,
which is depicted as follows.

L SB Binary Exponentiation Algorithm
Input: Exponent:E = (ex_1ek—2...e1€9)2; MessageM
Output: Ciphertext:C' = M ¥ mod N

cC=1,58=M,
begin
fori=0tok—1do /*scan from right to left*/
begin
if (e;=1)C =C x SmodN; [*multiply*/
S =98 x SmodN, /*square*/
end;
end.

Different from the LSB binary exponentiation algorithm, the MSB binary exponentia-
tion algorithm computes the exponentiation starting from the most significant bit position
of the exponent’ and proceeding to the right, which is depicted as follows.

M SB Binary Exponentiation Algorithm
Input: ExponentE = (ex_1ex—2 ...e1e0)2; MessageM
Output: Ciphertext:M* mod N

c=1;
begin
for i = k — 1 downto 0 do /*scan from left to right*/
begin
C =CxCmodN; /*square*/
if (e;=1) C=Cx MmodN; [*multiply*/
end;
end.

We should note that as the LSB and MSB binary exponentiation algorithms have the
same computations for both multiplication and squaring operations, therefore they share
the same computational complexity. The computational complexities for both LSB and
MSB binary exponentiation algorithms ae (k/2) +1 x (k/2) = 1.5k multiplications
to evaluateM ¥ mod N, wherek is the bit-length of the exponeift.

2.2. The Common-Multiplicand-Multiplication Exponentiation Method

Yen and Laih (1993) developed the common-multiplicand-multiplication (CMM) expo-
nentiation algorithm to enhance the exponentiation performance of the LSB binary al-
gorithm. The basic idea of the CMM technique is to extract the common parts of multi-
plicands, and then save the number of binary additions for the computation of common

452 C.-L. Wy, D.-C. Lou, T.-J. Chang

parts. The variable¥.,,,,, (recording the common parts) ai@. (recording the differ-
ent parts) required in the CMM exponentiation algorithm are defined as follows (where
AND andXOR are the bitwise logical operators):

chomm = AND2:1Y;7 (1)
Yo=Y XOR Yeomm, fori=1,2,... ¢t (2)

Hence,Y; can be represented as
1/i = }/i,c + Ycomm- (3)

Therefore, the common-multiplicand multiplicatiots x Y; (: = 1,2,...,t) can be
computed with the assistance 8fx Y., as

XxY,=XxY o+ X XYeomm fori=12... ¢t (4)

By using the CMM method, the computations of {x Y7, X x Y5} can be repre-
sented as X x Y1 .+ X X Yeomm, X X Yoo + X X Yeomm}. Let both X andY;s
be k-bit integers, on average the Hamming weight¥0fY....., andY; . arek/2, k/2¢
and (k/2 — k/2), respectively. The total number of binary addition for the common-
multiplicand-multiplication of X xY; | i = 1,2,....,t; t > 2}isk/2 +tx (k/2—k/2).
Hence, the performance improvement of the CMM algorithm can be denoted as

(kxt)/2 _ 1 _ t .
k/2t +t x (k/2 —k/2t) 2/(t x 2t) + (1 —1/2t1) (1 —¢t) x 21-t + ¢ ®)

Based on (Yen and Laih, 1993b), the optimal performance of Yen-Laih’s CMM al-
gorithm can be obtained @Whent = 2 which implies we need 1.5 multiplications by
using the CMM algorithm for evaluating x Y; andX x Y5. Moreover, by applying the
CMM algorithm and the LSB binary exponentiation algorithm, the exponentiation can
be computed by usiné“’QLl)k = 1.25k multiplications for exponenE being ak-bit
integer.

2.3. The Montgomery Modular Reduction Algorithm

Modular multiplication is normally considered to be a complicated arithmetic operation
because of the inherent multiplication and division operations. Montgomery (1985) intro-
duced the modular reduction algorithm for multiplying two integers (caNetesidues)
moduloN while avoiding division byN. This algorithm reverses the order of processing
the digits of the multiplicand using the least significant bits of the intermediate result to
perform an addition rather than a subtraction.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 453

The Montgomery reduction algorithm speeds up the modular multiplications and
squarings required for exponentiation. Suppose that we want to comput8 mod N,
whereA, B and N aren-digit integers represented in base 2. Hence,

n—1 n—1 n—1

A=) "A;ix2, B=) B;x2, N=>» N;x2, (6)
=0 =0 =0

whereA;, B; andN; are elements of0, 1} for all 7.

Dusse and Kaliski (1990) proposed a modified Montgomery redud®BDC) algo-
rithm to perform both multiplication and modular reduction simultaneously. This efficient
MontgomeryREDC algorithm is processed iV-residue and allows the precomputa-
tion of N} = —N; ' mod 2 instead of N/ = —N~! mod 2". Assume we denot&’
asA x Bmod N, whereA, B, X and N aren-digit integer, the Montgomery modular
REDC algorithm can be depicted as follows.

Montgomery Modular Reduction (REDC) Algorithm

Input: A, B, N /*A, B andN aren-digit integers in base 2*/
Output: X /*X = REDC(AB)*/
X =0; FX = (X, Xno1...X1X0)2*
begin
for i=0ton—1do /*scan from integer right to left*/
begin
X=X+ Ai x B;
k=X x N} mod 2; I* Nj=—N; ' mod 2 andN'=—N~" mod 2"*/
X=(X+kxN)x27h
end;
if(X>N)X=X-N; X = A x B x 2 "mod N*
end.

From the Montgomery modulaREDC algorithm depicted above, note that both
(27" mod N) and (N~! mod N) can be precomputed using the Euclidean algorithm
(Knuth, 1997). Moreover, the MontgomeREDC algorithm allows the precomputa-
ton of N = N,_1 x 2" 1 4+ N9 x 2" 2 4+ ...+ Ny x 2+ Ny and X =
Xpog x 207V X, o x2" 2 4 .+ X; x 2+ X, we can computeX one digit
X in every modular reduction step instead of computing the wkokg one time.

As modular multiplication using the Montgomery moduREDC algorithm requires
the transformation of both multiplier and multiplicand into tNeresidue, therefore mod-
ular multiplication using thisREDC algorithm requires a longer processing time than
other methods. If2~" mod N) has been precomputed and stored before we using the
Montgomery reduction algorithrd; and B’ in the N-residue can be easily computed
from REDC(A x (27" mod N)) andREDC(B x (27" mod N)) respectively as fol-
lows.

A’ = REDC(A x (27" mod N)) = A x (2") "' mod N, 7)

454 C.-L. Wy, D.-C. Lou, T.-J. Chang

B' = REDC(B x (27" mod N)) = B x (2*) ' mod N, (8)
X=AxB =Ax(2") "' xBx(2") ' modN, 9)
C' =REDC(X) = A x B x 27" mod N, (10)
C =REDC(C’") = A x Bmod N. (12)

Notice that, Egs. 7 to 11 shown above describe modular multiplication using the
MontgomeryREDC algorithm require a longer processing time than other methods due
to the residue transformation of the multiplier and the multiplicand. For example, the
modular multiplication using Eq. 7 to 11 requires?7+ 4n multiplications since every
reduction operation takes> + n multiplications. The classical Montgomery reduction
algorithm only requires 22 + n multiplications andm divisions (Dusse and Kaliski,
1990).

3. TheProposed Algorithm

In the following, we will first introduce the basic concept of minimal-signed-digit recod-
ing arithmetic, and then we will summarize some important mathematical preliminar-
ies including formulas for the common-multiplicand-multiplication (CMM) and signed-
digit-folding (SDF) technique. Finally, we will give detailed description for the proposed
parallel SDF-CMM Montgomery binary algorithm for fast exponentiation.

3.1. Sgned-Digit Recoding Arithmetic

A signed-digit (SD) representation of an integeiin radix r is a sequence of digits
a = (ag,...,as,a1,a0)sp, With a; € {0,+1,...,+(r — 1)} andr is the radix number
for k > i > 0 such thats = Zf:o a; x r'. The signed-digit (redundant) representations
number system was first proposed by Avizienis (Avizienis, 1961) to make it possible to
perform carry-free addition. Recently, redundant representations of this form have been
used successfully in various arithmetic applications and many signed-digit number sys-
tems have been used to increase the efficiency of computer arithmetic (DeBetiahger
2002; Syutcet al., 2002).

Arno and Wheeler (1993) proposed the signed-digit representations for minimal ham-
ming weight arithmetic. Assume we refer.$p as the set of all signed digit radixrep-
resentations of elements of Z, the mappings,, —Z defined by

m(a) = i airt (12)
i=0

associates an integer with each elemest ...
Let a,b € S,, we define negative digit by — sgn (z) x r, wheresgn (z)
is 0, 1, —1 depending on whether is zero, positive, or negative, respectively. If

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 455

a = (ag,...,a2,a1,a9) andb = (bg,...,bs,b1,bo), then we define the addition of
c=a+b=(ck,...,02,c1,¢0) NS, wheree_; = 0 as

& =0 if —r<ai+b+e-1<r

¢ = a; +bz +ei1 7 7 i—1)

(13)
—g S+ b . .

e = sgn (@i +bi+ i) }otherwse

ci=a;+b;+ei_1—¢g Xr

We denote the generic notation of the packet of dataa:+1,¢:) as (z,y,¢) and
produce the output digiy and the new carry¥, and the new data packet becomes
(at+1,a142,€141). Therefore, the output digit and the carry are generated as

£=0 _
g:ai‘Fbi—‘rE} if (a; +b; +&)(+sgn (a; + bi +¢)) #0,

3 (14)
é:: sgn (ai +b; +AE) } otherwise

y=a;+b;,+e—£ExXr

The problem of finding minimal binary representations is usually referred to as
“canonical Booth recoding” (DeBrunneral., 2002). The signed-digit recoding is canon-
ical if its signed-digit representation contains no adjacent nonzero digits. The canonical
signed-digit recoding is unique if its binary representation is viewed as padded with an
initial zero. Based on (Arno and Wheeler, 1993), the MSD recoding algorithm for gener-
ating the signed-digit representation of minimal-Hamming-weight is depicted as follows.

Minimal-Signed-Digit (M SD) Recoding Algorithm

Input: ¢ € S, with 7(a) = n; /*ais redundant representation:of/

Output: A(a) € S,; * A(a) denotes the action of this algorithm afY

t=0;
while (..., at42,at11,a¢) # (...,0,0,0) do
begin
if a; # 0then
begin
b= (...,sgn(at),—sgn(a;) xr,0,...,0) [*nonzeros at andt + 1*/
c=a+b;
if cex1=0a=c¢
end;
t=1t+1,
end.

If we take signed-digit recoding system with radixs2= 2) for example, three sym-
bols {1,0, 1} are allowed for the digit set, in which 1 andn digit positionk represent
+2% and —2*, respectively. Based on MSD recoding arithmetic algorithm show above,
the signed-digit arithmetic representation can be depicted as follows.

Notice that, in order to obtain signed-diditfor our signed-digit representation in
Fig. 1, the subtraction operation executed betweeariir is a “no-borrow (carry) sub-

456 C.-L. Wy, D.-C. Lou, T.-J. Chang

2r = (Th=15Tk=2,Tk=3,---,71,70,0)2

4+ r= (Pk—1,Tk—2,---,T2,T1,70)2

31 = (SksSk—1,S5k—2,Sk—35---551,50,70)2

“no-borrow subtraction™ — r = (TPhe1,Th=2, .-, T2,T1,70)2
2r = (eg, €k—1,€k—2, €k—3, . - -, €1, €0,0)sD2

Fig. 1. Signed-digit arithmetic representation.

traction”. On average, the probability of the digit “0” appearance is “2/3”, and the total
occurrence probability of nonzero digits “1” anéis “1/3” (Arno and Wheeler, 1993).

3.2. Mathematical Preliminaries

The basic idea of our proposed SDF-CMM Montgomery binary exponentiation algorithm
is try to extract the common substring of the signed-digit recoding expdieatd then
save the number of required for the computation of common substring. Let the exponent
E have the radix-2 representatit¢,_iex—2 . .. e1€0)2, .., E = Zf;ol e; x 2¢, where
e; € {0,1,1} andk is the bit-length of the signed-digit recoding expon&hi s .

In the first phase of exponent-folding method, by folding the signed-digit recoding
exponentt, s p in halfn times, and®), s p is then divided int@™ equal sized substrings.
Let each substring of signed-digit recodifg;sp be denoted ag’; fori =1,2,...,2",

i.e., Exysp = Faon || Ean_q || Eon_so || ... || E2 || E1, where]| is the concatenation
operator. Hence
27’L
; k
ME = HS(Zfl)(ﬁ)(MEi)’ (15)

=1
whereS(™)(z) represents performing squares on the related valueandE; is denoted
k

Fr—1 g —2 1.0
as(e?” e; co.eed)a.

In the second phase of exponent-folding method, we define the following:

Ecomm._i :Ecomm,(i—&-l) =F; AND Ei+1 for iil, 3, RN M _ 3, n _ 1, (16)
Eerer i = Ecomm_i XOR E; for i = 1,2,..., 2", (17)

whereAND andXOR are the bitwise logical operators. Thdr, can be denoted as

Ei = Ecomm,i + Eezcl,'b (18)
In the third phase of exponent-folding method, the exponentiation of the consecutive
pairs of M Fz» M F2r—1 M Pr can be computed as follows:
ME: = ppBeomm-i MEc:r:cl_i7 (19)

and

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 457

MPEi+t = pFeommai s NpFeseion for §=1,3,...,2" —3,2" — 1. (20)

The E....m_; Operation will record the common part for every two consecutive seg-
mentsE; andE; . Note, we record the differences fat; andE.op,m_;” @nd “FE; 1 and
Eecomm_i" N Eege_i aNdEe,e1_i41), respectively. We define the logical operatiéxsD
andXOR operators over the set {0, 1L, for the SDF-CMM Montgomery exponentiation
algorithm in Table 1.

By using signed-digit-folding technique, the CMM binary exponentiation algorithm
(depicted in Section 2.2) can be generalized as follows.

Let

Y omm = ANDL, Y, (21)
and
Yereii = Yeomm_i XOR Y

comm

fori=1,2,...,2"™. (22)
Thus, eacl.ommon_i Can be represented as
}/comm_i = }/cf)mm + }/Ewcl_i- (23)

Suppose that’}, .., is folded n-times, and every part oY . is denoted as
Yeomm_i(i = 1,2,...,2"), whereYeomm = Yeomm_ill - [[Yeomm_2n—1||Yeomm_2n-
Therefore, the generalized common-multiplicand multiplications algorithm using the
signed-digit-folding technique can computex Y;(i = 1,2,...,2") with the assistance
of X X Yeommon @S

on

X x)/comm = Z S<m/2n)(2n7i) (X X }/ea:cl,i + X x)/;)m»,n)a (24)

i=1

whereS(™ (%) function represents performing squares (or left shift ofr bits) on the
related value.

For example, foY.,...,, is folded exact one-time (i.en, = 1), we can obtain the
following relation from the Eq. 4 defined previously in Section 2.2:

2
X X Yeomm = STPEN(X X Vg s + X X Y

(/()’"L’H’I,)

i=1
Table 1
Bitwise logical operator&aND andXOR

AND 1 0 1 XOR 1 0 1
1 T10]o0 1 o| T |oO
0 0 0 0 0 1 0 1
1 0 0 1 1 0 1 0

458 C.-L. Wy, D.-C. Lou, T.-J. Chang

— S/ (X Y, + X X Y

comm)

+ 8/DED(X X Voper o+ X X YViom)- (25)
Hence, the computations{ x Y7, X x Y2} can be identically represented as

{X X V1ot X X Veger ot X XY +S/D (X x Vi1 + X x V0

comm (/O’H’L’UL))

comm

X% Voot X5 Yage 2+ Xx V5 + 80/ (Xx Viger 1+ X x Y;;mm)}. (26)

Here we respectively introduce three lemmas to give the MSD representation with
minimal-weight, to efficiently calculate the modular inverse result for handling the neg-
ative signed-digits, and to better describe the expected value of signed-digit recoding
number based on the probability distribution property as follows.

Lemmal. Let S be a string and the sequence [S]' denote S, S, ..., S (repeat I times),
in order to find the canonical representation of minimal Hamming weight for exponent
Envsp, the following two equivalences exist in our radix-2 signed-digit representation:
(1) ([O’ 1]la 1)SD2 = (17 [OaT]l)SDzl
(2 ([Ovﬂlﬂi)SDz = (Tv [0, 1]Z)SD2'

Proof. (1) Based on the minimal-Hamming-weight signed-digit recoding arithmetic rep-
resentation defined in Section 3.1, we can have the following result:

! l
([07 1]17 1)SD2 =1+ Z 22i—1 — 22l — 2221-_2.
=1 i=1

However,22 — 3! 221~2 can also be represented@s|0, T)!)sp, .

Therefore, the first equivalenéf, 1)', 1)sp, = (1, [0, 1]")sp, holds.

(2) Again, based on the minimal-Hamming-weight signed-digit recoding arithmetic
representation defined in Section 3.1, we know

l l

([O,T]I,T)SD2 =-1- ZQQi—l — 2221'—2 _ 92

i=1 i=1

However,>"!_, 22-2 — 22! can also be represented(@s|0, 1')sp, .
Therefore, the second equivaler(@@ 1)’, T)sp, = (1, [0, 1])sp, holds.

By using Lemma 1 shown above, we can find the canonical representation for radix-2
signed-digit representation of minimal Hamming weight.

Lemma 2. The modular arithmetic relation “a~! = r~'mod N” holds as “r =
amod N”.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 459

Proof. As from the extended Euclid algorithm (Knuth, 1997), yields
a'modN =z armodN=1<axz——Nxy=1.

Assumer = amod N, henceg = Q x N +r.
Asa x a~! =1mod N, we haver x a—! = 1 mod N.

crxr '=1modN,

1

rxa l=rxr 'modN,

henceg™! =z = r~mod N.

By using Lemma 2, we know as long as the relatioa- @ x N + r holds, we can
have the modular equivalence relatioruof' = »—! mod N.

Lemma 3. Let &k, bearandom variable on the space of m-digit radix-r integers denoting
the radix-r signed-digit representation of minimal Hamming weight. As E,,,(a) denote
the expected value of a, we can have the expected value of k,. as

(r—1)
r+1

Eyp(ky) = m (where m — o0).

Proof. Letn be a randomn-digit radix-r integer with0 < n<r™, whose standard rep-
resentation is given by = (...,0, am, Gm-1,Gm—2,...,a1,aq), and whose minimal-
weight representation is given ldy= (..., 0, Gy, Gm—1, Gm—2, - - ., a1, Go)-

Let P.,»(a) denote the probability distribution af. Assume we have the input to
signed-digit recoding algorithm is the standard racbepresentation of.. Let w;!, and
w,, denote the number of positive digits and the number of negative digitsreEpec-
tively.

Based on (Arno and Wheeler, 1993), we can have the following

(r—1)>2

Prop(wh) = and P, (w,,) = 11 (where m — o). (27)
T

r(r+1)

Therefore, we can have the following expected values as

(r—1)>2

E:L’P(w+) = ’I"(’I"—|— 1)

m

m, Erp(w;z) =

m (where m — o0). (28)

We should note thak,. is independent of the radix-signed-digit representation as
defined in (Arno and Wheeler, 1993), thus we hayve= w;’ +w,, and we can therefore
have the following equivalence:

Eap(wm) = Exp(wy,) + Eap(wy,). (29)

460 C.-L. Wy, D.-C. Lou, T.-J. Chang

Therefore, we have

_(r—1)? (r—1) (r—1) _
Eup(ky) = r(r—i—l)erT(T—&-l)mi (r+1)m (where m — o0). (30)

By using Lemma 3, we can better describe the expected value of minimal-signed-digit
recoding number based on the probability distribution property.

3.3. The Proposed SDF-CMM Montgomery Binary Exponentiation Algorithm

After we have introduced the definitions and lemmas shown above, we here propose a
fast parallel Montgomery modular exponentiation algorithm using Montgomery modular
reduction algorithm, SDF technique, and CMM method as follows.

SDF-CMM Montgomery Binary Exponentiation Algorithm
Input: M, Eyrsp, N, R [*M, R andN aren-digit integers in base 2*/
Output: C = MPEmsp mod N I*Eysp = (emem_l - 6160), wheree; € {O, 1,T}*/
begin

S=MxR,C=RmodN; [*R=2"*

01 = Cl = 01 =1;

forb=1tok/2™ do /[*scanthe MSD recoding exponent from right to left*/

begin
if (2, ;=1)Cy =REDC(SC,); /[*handle the common part*/
if (€2,,m.i=1)C1 =REDC(S~'Cy); [*handle the common part*/
if (¢4, ; =1) Co = REDC(SC»); /[*handle the positive digit*/
if (e2,.,; =1) Co =REDC(S~1C3); /*handle the negative digit*/
if (6zxcz_(i+1) =1) C3 = REDC(SCs); [*handle the positive digit*/
if (€0,_i41) = 1) then C3 = REDC(S~'C3); /*handle the negative digit*/
S = REDC(SS);
end;
C2 = REDC(Cng), /*C2 = MEMSDU] mod N, 0 < C < N*/
C3 = REDC(CC3); [*Cy = Mo mod N, 0 < C' < N*/
C = REDC(C,,C3); [*Cy = MPmsp@ mod N, 0 < C < N*/

end.

Note, as the modular multiplication operation and the modular inversion operation
in this improved exponentiation algorithm can be concurrently executed, we can further
have the proposed SDF-CMM algorithm work more efficient for evaluadify using
parallel computing technique.

3.4. Parallel Processing of The Proposed Algorithm

As we can execute the modular multiplication (for positive digits of folding-exponent)
and the multiplicative inverse (for negative digits of folding-exponent) operations sep-
arately, we can apply the “parallel-processing” technique on the improved SDF-CMM
algorithm to speed up the total exponentiation efficiency as follows.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 461

g,

Yo Mk

1 .
Hul L Mo _I
- i
e - ., -
__.-" "‘-\..\. _."'. T, __.-"
L " —q’_\H 3
ﬂmmnp - Stop - HHE'-I
o

Accurmlator _..I MM ...| W e uaummm|

L
- L Mt Modutar Multpication
I: Cutput l:l M- Musitigbcaiive Invarss
+ - MI: Modular Squaring

Fig. 2. Flow chart of the parallel SDF-CMM algorithm.

The parallel computing flow chart of the SDF-CMM binary exponentiation algorithm
is depicted in Fig. 2.

By adopting lemma 1 shown in Section 3.2, we can therefore transform the original
multiplicative inverse operation into normal positive (multiplication) calculation, and use
the operation result for our original multiplicative inverse calculation. Here we can speed
the whole modular exponentiation process as we let the multiplicative inverse operation
performed only once in the last step before our final output result for the improved SDF-
CMM Montgomery algorithm.

Here we put an example to explain how the SDF-CMM Montgomery binary expo-
nentiation algorithm works.

EXAMPLE. Let N = 37 x 41 = 1517.
By folding the signed-digit exponent one time, we can get the optimal computational
complexity (Lou and Chang, 1996), i.e.= 1.
Messagell = 127,
E = 1213 = (10010111101)5 = (10100200101)sp.

By using the concatenation operation, yields

E = E, || By = (101002)sp || (000101)sp.

462 C.-L. Wy, D.-C. Lou, T.-J. Chang

For positive folding-exponent,

Cy = M101000)sp (1o q N) = MO0 (mod N);
Cy = MO0 (16d N) = M1 (mod N).

For negative folding-exponent,

Dy = M(000002)sp (16d N) = M P10 (mod N);
Dy = M1 (11od N) = MW10 (mod N).

Similarly, we can also have

E = (10100000001)sp + (02000100)sp
= (10100000001); — (1000100); = A — B.

Hence,A = (10100000001), = 1281, B = (1000100) = 68.

Using the proposed SDF method shown below, we can olté&fhmod N =
1271213 mod 1517 = 1048.

o (k= 5)

rya = C x Cy(modN),

= rya = (12742 x 127" (mod N) = 127128 (mod 1517).
rars = D2 % Dy(mod),

= rye = (12727 x 1274 (mod N) = 1278 (mod 1517).

S MA mod N = rya = 12728 mod 1517 = 988,

S MP mod N = rys = 127% mod 1517 = 551.

Based on the calculation shown above, we can have:
(MP)~' mod N =r},’s mod N = 551" mod 1517 = 1082.
Finally,

- MP mod N = M4~% mod N,
(M*A mod N)(M~2 mod N) mod N = rya x (rp5)~ ! mod N.

Therefore, we obtaid/” mod N = 988 x 1082 mod 1517 = 1048. This example

shown that we can obtain the correct result using the proposed SDF-CMM Montgomery
method.

We should note that, by using the computation over Galois Field, the time complex-
ity of multiplicative inverse operation is equivalence to the bit shift operation @tee
al., 2002). To further speed up the SDF-CMM algorithm, we can put the multiplicative

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 463

inverse operation in SDF-CMM algorithm over a finite filed (such as GF(2/u and
Chang, 1995; Yen, 1997). The detailed computational complexity analyses will be given
in Section 4 as follows.

4. Complexity Analyses

In this section, we will detailed describe the theoretical analyses for the performance
of the proposed parallel SDF-CMM algorithm in public key cryptography. We use the
number of modular multiplications to express the speed-up efficiency. By using the pro-
posed SDF-CMM algorithm to evaluate the modular exponentiation computatitifof
(mod N) whereF is thek-bit minimal-signed-digit exponent.

Based on the lemma 2 given in Section 3.2, the probability for the occurrence of
positive digit “r” and negative digit#” (or “ —r") is i’g;j)lj and T((Trjrll)), respectively, and
the probability for the occurrence of digit “0” i ril)' Assume that the two possible
nonzero digits, “1” and ¥, occur with equal probability (Nozalet al., 2003), then we
can have the occurrence probability for each element recordgeir@®) = 2/3,Pr(1) =
Pr(1) = 1/6}.

Let the threem-bit exponent segments (decompositions) in the parallel SDF-CMM
algorithm be denoted a&;, F;,1 and F; -, based on the bit level arithmetic defined
in Section 3.2, we can compute.,,,mon Using “E; AND FE;.1 AND E;.>" where for
i=1,2,...,2™ andn is the exponent-folding times. Hendg,, ..., Will be equal to 1
(or1) if and only if for E;, E;,1 andE; » are all equal to 1.

Based on Eqg. 22, on average, we have the following occurrence probabilities:

_ 113
Prov(Ecommon = 1) = Prop(Ecommon = 1) = (6) .

Based on Egs. 23, 24, and 25, on average, we have:

3
Prob(Eiig1=1)=Prop(Eiiya=1)=Prop(Eiy1i42=1)= (Prop(1))* = (_) '
Based on Egs. 26, 27, and 28, on average, we have:

Pr()b (Ei,common - 1) - Prob(Ei-i-l,com’mon - 1)

. 1\3
= rob(Ei+2,com7non = 1) = (Prob(]-))s = (6) .

In the parallel SDF-CMM binary exponentiation algorithm, the exponentiations
MEconwnon, MEMJA’ MEi,'i+2, ME'i+1.'i+2, ME'i,co'mmon,]\/[E'i+1.comrnon, M Ei+2,common
for processing positive signed-digit bits and negative signed-digit bits are performing in
parallel. We can check that the parallel SDF-CMM exponentiation algorithm has its op-
timal performance when the minimal-signed-digit recoding expoierg folded exact
one time(n = 1).

464 C.-L. Wy, D.-C. Lou, T.-J. Chang

On average the probability of performing one, two, three, or four multiplications in
each iteration args, 2, &, and g, respectively. The SDF-CMM binary algorithm there-
fore takes| &5 + 253 + 3%2 4+ L] x m + 9 multiplications to obtain all exponentiation
results of M i MFi+1 MFi+2, Given these three partial results, when applying Eq. 21,
the parallel SDF-CMM algorithm takes2+ 2 additional multiplications to perform the
squaring operation in each bit position and get the final result &t

The entire computation in the parallel SDF-CMM algorithm needs on average
(& + 22+ 33+ & +2] xm+11 = (£22)m ~ 2.0926m + 11 ~ 0.6975k + 11 mul-
tiplications (wheré is the bit-length of exponent and = k/3). The proposed parallel
SDF-CMM exponentiation algorithm outperforms both the Wu-Chang’s exponentiation
algorithm in (Wu and Chang, 1995) which needs totally 1R2d@iltiplications plus some
extra additions and shift operations and the Yen's exponentiation algorithm in (Yen, 1997)
which needs totally 1.292+ 11 multiplications.

Furthermore, by using the proposed parallel SDF-CMM Montgomery binary expo-
nentiation algorithm, on average the total number of single-precision multiplications can
be reduced by about 61.3% and 74.1% as compared with Chang-Kuo-Lin's CMM mod-
ular exponentiation algorithm (Ha and Moon, 1998) and Ha-Moon’s CMM Montgomery
modular exponentiation algorithm (Chadgl., 2003), respectively.

5. Conclusions

As we know the modular exponentiation is on of the most important operations in
public-key cryptography. In this paper, an efficient parallel modular exponentiation algo-
rithm is proposed which based on both the common-multiplicand-multiplicand (CMM)
and signed-digit-folding (SDF) techniques. By dividing the bit pattern of the minimal-
signed-digit recoding exponeift into three equal length parts and using the technique
of recording the common parts in the folded substrings, the proposed SDF-CMM Mont-
gomery algorithm can improve the efficiency of both the binary algorithm and common-
multiplicand-multiplication algorithm, thus can further decrease the computational com-
plexity of modular exponentiation.

By adopting the parallel processing technique for signed-digit recoding expéhent
we can further enhance our SDF-CMM Montgomery algorithm and obtain the optimal
overall computational complexity 8&6975k-+11 multiplications by folding the minimal-
signed-digit radix-2 recoding exponeht exactly one time wheré denotes the digit-
length of the exponent. We can check that the SDF-CMM Montgomery algorithm out-
performs other existing exponentiation methods. Moreover, as the multiplicative inverse
operation in GF(2) finite field can be done by a simple shift operation (Talkaigl .,

2001; Watanabet al., 2002), in the proposed SDF-CMM Montgomery algorithm, we
can further decrease the overall computational complexity.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 465

References

Arno, S., and F.S. Wheeler (1993). Signed digit representations of minimal hamming Wekgaransactions
on Computers, 42(8), 1007-1010.

Avizienis, A. (1961). Signed digit number representation for fast parallel arithmBECTransactions on Elec-
tronic Computers, EC-10(3), 389—400.

Chang, C.-C., Y.-T. Kuo and C.-H. Lin (2003). Fast algorithms for common-multiplicand multiplication and
exponentiation by performing complements. Rroceedings of the 17th IEEE Symposium on Advanced
Information Networking and Applications. pp. 807-811.

DeBrunner, L.S., V.E. DeBrunner and D. Bhogaraju (2002). Defining canonical-signed-digit number systems
as arithmetic codes. IRroceedings of the 36th Asilomar Conference on Signals, Systems and Computers,
vol. 2. pp. 1593-1597.

Diffie, W., and E. Hellmen (1976). New directions in cryptogragi8EE Transactions on Information Theory,

22(6), 644—654.

Dusse, S.R., and B.S. Kaliski (1990). A cryptographic library for the Motorola DSP 560@0oteedings of
EUROCRYPT Workshop on Theory and Application of Cryptographic Techniques, Advancesin Cryptology,
LNCS473. Springer-Verlag. pp. 230-244.

ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logHEHENS.
Transactions on Information Theory, 31(4), 469-472.

Joye, M., and S.-M. Yen (2000). Optimal left-to-right binary signed-digit recodEigE Transactions on Com-
puters, 49(7), 740-748.

Ha, J.-C., and S.-J. Moon (1998). A common-multiplicand method to the Montgomery algorithm for speeding
up exponentiationinformation Processing Letters, 66(2), 105-107.

Gordon, D.M. (1998). A survey of fast exponentiation methddarnal of Algorithms, 27(1), 129-146.

Knuth, D.E. (1997)The Art of Computer Programming, Vol. Il: Seminumerical Algorithms, 3rd edition. MA:
Addison-Wesley.

Koren, I. (2002) Computer Arithmetic Algorithms, 2nd edition. A.K. Peters, Natick, MA.

Kunihiro, N., and H. Yamamoto (2000). New methods for generating short addition cHaliG& Transactions
on Fundamentals, E83-A(1), 60—67.

Lee, S.-Y,, Y.-J. Jeong and O.-J. Kwon (2002). A faster modular multiplication based on key size partitioning
for RSA public-key cryptosystenhEI CE Transactions on Information and Systems, E85-D(4), 789-791.

Lou, D.-C., and C.-C. Chang (1996). Fast exponentiation method obtained by folding the exponent in half.
Electronics Letters, 32(11), 984-985.

Montgomery, P.L. (1985). Modular multiplication without trial divisidiathematics of Computation, 44(170),
519-521.

Nedjah, N., and L.M. Mourelle (2002). Efficient parallel modular exponentiation algorithfrdeceedings of
the 2nd Advances in Information Systems (ADVIS) International Conference. pp. 405-414.

Nozaki, H., A. Shimbo and S. Kawamura (2003). RNS Montgomery multiplication algorithm for duplicate
processing of base transformatioHs.CE Transactions Fundamentals, E86-A(1), 89-97.

Premkumar, A.B. (2002). A formal framework for conversion from binary to residue nunifE. Transac-
tions on Circuits and Systems |1: Analog and Digital Sgnal Processing, 49(2), 135-144.

Rivest, R.L., A. Shamir and L. Adleman (1978). A method for obtaining digital signatures and public key
cryptosystemsCommunications of the ACM, 21(2), 120-126.

Su, C.-Y., S.-A. Hwang, P.-S. Chen and C.-W. Wu (1999). An improved Montgomery’s algorithm’s for high-
speed RSA public-key cryptosystehEEE Transactions on Very Large Scale Integration (VL) Systems,

7(2), 280-284.

Syuto, M., E. Satake, K. Tanno and O. Ishizuka (2002). A high-speed binary to residue converter using a
signed-digit number representatid&l CE Transactions on Information and Systems, E85-D(5), 903-905.

Takagi, N., J. Yoshiki and K. Takagi (2001). A fast algorithm for multiplicative inversion in GJ{&ing
normal basislEEE Transactions on Computers, 50(5), 394-398.

Tenca, A.F., and C.K. Koc (2003). A scalable architecture for modular multiplication based on Montgomery’s
algorithm.|EEE Transactions on Computers, 52(9), 1215-1221.

Watanabe, Y., N. Takagi and K. Takagi (2002). A VLSI algorithm for division in GF(dased on extended
binary GCD algorithmI EICE Transactions on Fundamentals, E85-A(5), 994-999.

Wei, S., S. Chen and K. Shimizu (2002). Fast modular multiplication using booth recoding based on signed-

466 C.-L. Wy, D.-C. Lou, T.-J. Chang

digit number arithmetic. IfProceedings of the 2nd |EEE Asia-Pacific Conference on Circuits and Systems.
pp. 31-36.

Wu, T.-C., and Y.-S. Chang (1995). Improved generalization common-multiplicand multiplications algorithm
of Yen and Laih Electronics Letters, 31(20), 1738-1739.

Yen, S.-M. (1997). Improved common-multiplicand multiplication and fast exponentiation by exponent decom-
position.|EICE Transactions on Fundamentals, E80-A(6), 1160-1163.

Yen, S.-M., and C.-S. Laih (1993a). Common-multiplicand multiplication and its applications to public key
cryptographyl EE Electronics Letters, 29(17), 1583—-1584.

Yen, S.-M., and C.-S. Laih (1993b). Common-multiplicand multiplication and its applications to public key
cryptographyElectronics Letters, 29(17), 1583-1584.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 467

C.-L. Wu was born in Kaouhsiung, Taiwan, Republic of China, 1965. He received his BS
degree in electrical engineering from the Chung Cheng Institute of Technology, Taiwan,
Republic of China, in 1988, and the MS degree in computer science from the United
States Air Force Institute of Technology, Dayton, Ohio, in 1995. He received his PhD
degree in the Department of Electrical Engineering at the Chung Cheng Institute of Tech-
nology, National Defense University, Taiwan (Republic of China). He is currently an as-
sistant professor at the Department of Avionics Communication & Electronics, Chinese
Air Force Institute of Technology (AFIT), Taiwan. He is also a member of Computer
Security Committee of Crisis Management Society of Taiwan, R.O.C. His research in-
terests include information security, cryptography, number theory, information system,
algorithm design, complexity analysis, cryptography, computer arithmetic and parallel
and distributed computing.

D.-C. Lou was born in Chiayi, Taiwan, Republic of China, 1961. He received the BS
degree from Chung Cheng Institute of Technology (CCIT), National Defense Univer-
sity, Taiwan, R.O.C., in 1987, and the MS degree from National Sun Yat-Sen University,
Taiwan, R.O.C., in 1991, both in electrical engineering. He received the PhD degree in
1997 from the Department of Computer Science and Information Engineering at National
Chung Cheng University, Taiwan, R.O.C. Since 1987, he has been with the Department
of Electrical Engineering at CCIT, where he is currently a professor and the Director of
Computer Center of CCIT. His research interests include cryptography, steganography,
algorithm design and analysis, computer arithmetic, parallel and distributed system. Prof.
Lou is currently an Area Editor for Security Technology of Elsevier Science’s Journal of
Systems and Software. He is an honorary member of the Phi Tau Phi Scholastic Honor
Society. He is a member of the IEICE Society and the Chinese Cryptology and Informa-
tion Security Association. He is the owner of the eleventh AceR Dragon PhD Dissertation
Award. He has been selected and included in the fifteenth and eighteenth edition of Who,s
Who in the World which has been published in 1998 and 2001, respectively.

T.-J. Chang was born in Taichung, Taiwan, Republic of China, 1970. He received his

BS degree in electrical engineering from the Chung Cheng Institute of Technology, Tai-
wan, Republic of China, in 1993, and the MS degree in electrical engineering from the
Chung Cheng Institute of Technology, National Defense University, Taiwan, Republic of
China, in 2001. He is currently studying his PhD degree in the Department of Electrical
Engineering at the Chung Cheng Institute of Technology, National Defense University,
Taiwan (Republic of China). His research interests include information security, number
theory, cryptography, computer arithmetic, complexity analysis, and parallel computing.

468 C.-L. Wy, D.-C. Lou, T.-J. Chang

Efektyvus Montgomerio kelimo laipsniu algoritmas kodavimui
Chia-Long WU, Der-Chyuan LOU, Te-Jen CHANG

Efektyvus modulinis klimas laipsniu yra labai svarbus ir naudingas atviro rakto kodavimo
sistemoms. Siame straipsnyje yra jphgias efektyvus lygiagretus dvinariglkmo laipsniu al-
goritmas, pagstas Montgomery daugybos algoritmu, skaitmesu Zenklu su@rimo ir bendro-
daugiklio-daugiklio technikas. Pasytas algoritmas naudoja vidutiniskai 61,3% ir 74,1% maziau
viengubo tikslumo daugybnegu Chang-Kuo-Lin ir Ha-Moon bendro-daugiklio-daugiklio Mont-
gomerio modulinio klimo laipsniu algoritmai atitinkamai.

