
INFORMATICA, 2005, Vol. 16, No. 3, 449–468 449
 2005Institute of Mathematics and Informatics, Vilnius

An Efficient Montgomery Exponentiation
Algorithm for Cryptographic Applications

Chia-Long WU
Department of Aviation & Communication Electronics, Chinese Air Force Institute of Technology
Kaohsiung 820, Taiwan
e-mail: chialongwu@seed.net.tw

Der-Chyuan LOU, Te-Jen CHANG
Department of Electrical Engineering, Chung Cheng Institute of Technology
National Defense University
Tahsi, Taoyuan 33509, Taiwan
e-mail: dclou@ccit.edu.tw

Received: April 2005

Abstract. Efficient computation of the modular exponentiations is very important and useful for
public-key cryptosystems. In this paper, an efficient parallel binary exponentiation algorithm is
proposed which based on the Montgomery multiplication algorithm, the signed-digit-folding (SDF)
and common-multiplicand-multiplicand (CMM) techniques. By using the CMM technique of com-
puting the common part from two modular multiplications, the same common part in two modular
multiplications can be computed once rather twice, we can thus improve the efficiency of the bi-
nary exponentiation algorithm by decreasing the number of modular multiplications. By dividing
the bit pattern of the minimal-signed-digit recoding exponent into three equal length parts and
using the technique of recording the common parts in the folded substrings, the proposed SDF-
CMM algorithm can improve the efficiency of the binary algorithm, thus can further decrease the
computational complexity of modular exponentiation. Furthermore, by using the proposed parallel
SDF-CMM Montgomery binary exponentiation algorithm, on average the total number of single-
precision multiplications can be reduced by about 61.3% and 74.1% as compared with Chang-
Kuo-Lin’s CMM modular exponentiation algorithm and Ha-Moon’s CMM Montgomery modular
exponentiation algorithm, respectively.

Key words: Montgomery reduction algorithm, common-multiplicand-multiplication, signed-digit
recoding, modular exponentiation, public-key cryptosystems.

1. Introduction

Modular exponentiation and modular multiplication are the cornerstone computations
performed in public-key cryptography. Taking the RSA cryptosystem (Rivestet al.,
1978), for example, both the encryption and decryption operations are accomplished by
modular exponentiation. The encryption and decryption operations are accomplished by
modular exponentiation and can be described as follows. GivenM (plain text),E (public

450 C.-L. Wu, D.-C. Lou, T.-J. Chang

key), D (private key), andN (modulus), compute ciphertextC = ME mod N for en-
cryption andM = CD mod N for decryption. Moreover, these operations are realized
by multiple modular multiplications based on the value of the exponentsE andD, where
D × E mod ψ(N) = 1 andψ(N) is an Euler’s totient function (Koren, 2002).

As efficient computation of the modular exponentiations is important for RSA cryp-
tosystem, we need novel algorithms such as the Montgomery modular multiplication
method (Montgomery, 1985; Suet al., 1999; Tenca and Koc, 2003), addition chains
method (Kunihiro and Yamamoto, 2000), binary method (Knuth, 1997), residue num-
ber conversion method (Premkumar, 2002; Nozakiet al., 2003), signed-digit recoding
method (Joye and Yen, 2000; Weiet al., 2002), exponent-folding method (Lou and
Chang, 1996), common-multiplicand-multiplication method (Yen and Laih, 1993a), and
key-size partitioning method (Leeet al., 2002). Detailed surveys and analyses of fast
exponentiation techniques are given in (Gordon, 1998; Nedjah and Mourelle, 2002).

The rest of the paper is organized as follows. In Section 2, we first review some
related works of modular exponentiation that attempt to minimize the number of multi-
plication. The proposed parallel SDF-CMM Montgomery algorithm and its flow chart for
fast modular exponentiation are depicted in Section 3. The computational complexity of
the proposed parallel modular exponentiation algorithm is detailed analyzed in Section 4.
Finally, we conclude our work in Section 5.

2. The Cryptographic Arithmetic

The modular exponentiation is composed of repetition of modular multiplications. There-
fore, modular exponentiation can be time consuming, and is often the dominant part of
modern cryptographic algorithms for key exchange (Nedjah and Mourelle, 2002), elec-
tronic signatures (Diffie and Hellmen, 1976), and authentication (Rivestet al., 1978). Two
different approaches are often used to reduce the execution time of the modular exponen-
tiation operation. One approach is simply to reduce the number of modular multiplica-
tion. The other approach is to reduce the execution time of each modular multiplication.
In this paper, we are concentrate on the first approach to effectively reduce the number of
modular multiplication.

2.1. The Binary Exponentiation Method

The binary exponentiation method is also known as the “square-and-multiply” method
(Knuth, 1997). The basic idea of binary method is to computeME using the binary ex-
pression of exponentE. The exponentiation operation is broken into a series of squaring
and multiplication operations by the use of the binary method. Assumek denotes the
bit-length of the exponentE, the exponentE can be expressed in binary representation
asE = (ek−1ek−2 . . . e1e0)2 andE =

∑k−1
i=0 ei × 2i, whereei ∈ {0, 1}.

The binary method is important for speeding up exponentiation calculation. There
are two commonly used algorithms in binary method can convert the exponentiation of
C = ME mod N for RSA cryptosystem into a series of multiplications, i.e., the LSB

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 451

(least significant bit) binary algorithm and the MSB (most significant bit) binary exponen-
tiation algorithm. The LSB binary exponentiation algorithm computes the exponentiation
starting from the least significant bit position of the exponentE and proceeding to the left,
which is depicted as follows.

LSB Binary Exponentiation Algorithm
Input: Exponent:E = (ek−1ek−2 . . . e1e0)2; Message:M
Output: Ciphertext:C = ME mod N

C = 1; S = M ;
begin

for i = 0 to k − 1 do /*scan from right to left*/
begin

if (ei = 1) C = C × S mod N ; /*multiply*/
S = S × S mod N ; /*square*/

end;
end.

Different from the LSB binary exponentiation algorithm, the MSB binary exponentia-
tion algorithm computes the exponentiation starting from the most significant bit position
of the exponentE and proceeding to the right, which is depicted as follows.

MSB Binary Exponentiation Algorithm
Input: Exponent:E = (ek−1ek−2 . . . e1e0)2; Message:M
Output: Ciphertext:ME mod N

C = 1;
begin

for i = k − 1 downto 0 do /*scan from left to right*/
begin

C = C × C mod N ; /*square*/
if (ei = 1) C = C × M mod N ; /*multiply*/

end;
end.

We should note that as the LSB and MSB binary exponentiation algorithms have the
same computations for both multiplication and squaring operations, therefore they share
the same computational complexity. The computational complexities for both LSB and
MSB binary exponentiation algorithms are2× (k/2)+1× (k/2) = 1.5k multiplications
to evaluateME mod N , wherek is the bit-length of the exponentE.

2.2. The Common-Multiplicand-Multiplication Exponentiation Method

Yen and Laih (1993) developed the common-multiplicand-multiplication (CMM) expo-
nentiation algorithm to enhance the exponentiation performance of the LSB binary al-
gorithm. The basic idea of the CMM technique is to extract the common parts of multi-
plicands, and then save the number of binary additions for the computation of common

452 C.-L. Wu, D.-C. Lou, T.-J. Chang

parts. The variablesYcomm (recording the common parts) andYi,c (recording the differ-
ent parts) required in the CMM exponentiation algorithm are defined as follows (where
AND andXOR are the bitwise logical operators):

Ycomm = ANDt
i=1Yi, (1)

Yi,c = Yi XOR Ycomm, for i = 1, 2, . . . , t. (2)

Hence,Yi can be represented as

Yi = Yi,c + Ycomm. (3)

Therefore, the common-multiplicand multiplicationsX × Yi (i = 1, 2, . . . , t) can be
computed with the assistance ofX × Ycomm as

X × Yi = X × Yi,c + X × Ycomm for i = 1, 2, . . . , t. (4)

By using the CMM method, the computations of {X × Y1, X × Y2} can be repre-
sented as {X × Y1,c + X × Ycomm, X × Y2,c + X × Ycomm}. Let bothX andYis
bek-bit integers, on average the Hamming weights ofYi, Ycomm andYi,c arek/2, k/2t

and (k/2 − k/2t), respectively. The total number of binary addition for the common-
multiplicand-multiplication of {X×Yi | i = 1, 2, . . . , t; t � 2} isk/2t+t×(k/2−k/2t).
Hence, the performance improvement of the CMM algorithm can be denoted as

(k × t)/2
k/2t + t × (k/2 − k/2t)

=
1

2/(t × 2t) + (1 − 1/2t−1)
=

t

(1 − t) × 21−t + t
. (5)

Based on (Yen and Laih, 1993b), the optimal performance of Yen-Laih’s CMM al-
gorithm can be obtained as43 whent = 2 which implies we need 1.5 multiplications by
using the CMM algorithm for evaluatingX ×Y1 andX ×Y2. Moreover, by applying the
CMM algorithm and the LSB binary exponentiation algorithm, the exponentiation can
be computed by using(1.5+1)

2 k = 1.25k multiplications for exponentE being ak-bit
integer.

2.3. The Montgomery Modular Reduction Algorithm

Modular multiplication is normally considered to be a complicated arithmetic operation
because of the inherent multiplication and division operations. Montgomery (1985) intro-
duced the modular reduction algorithm for multiplying two integers (calledN -residues)
moduloN while avoiding division byN . This algorithm reverses the order of processing
the digits of the multiplicand using the least significant bits of the intermediate result to
perform an addition rather than a subtraction.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 453

The Montgomery reduction algorithm speeds up the modular multiplications and
squarings required for exponentiation. Suppose that we want to computeA × B mod N ,
whereA, B andN aren-digit integers represented in base 2. Hence,

A =
n−1∑
i=0

Ai × 2i, B =
n−1∑
i=0

Bi × 2i, N =
n−1∑
i=0

Ni × 2i, (6)

whereAi, Bi andNi are elements of{0, 1} for all i.
Dusse and Kaliski (1990) proposed a modified Montgomery reduction (REDC) algo-

rithm to perform both multiplication and modular reduction simultaneously. This efficient
MontgomeryREDC algorithm is processed inN -residue and allows the precomputa-
tion of N ′

0 = −N−1
0 mod 2 instead ofN ′ = −N−1 mod 2n. Assume we denoteX

asA × B mod N , whereA, B, X andN aren-digit integer, the Montgomery modular
REDC algorithm can be depicted as follows.

Montgomery Modular Reduction (REDC) Algorithm
Input: A, B, N /*A, B andN aren-digit integers in base 2*/
Output: X /*X = REDC(AB)*/
X = 0; /*X = (XnXn−1 . . . X1X0)2*/
begin

for i = 0 to n − 1 do /*scan from integerA right to left*/
begin

X = X + Ai × B;
k=X0×N ′

0 mod 2; /*N ′
0=−N−1

0 mod 2 andN ′=−N−1 mod 2n*/
X = (X + k × N) × 2−1;

end;
if (X � N) X = X − N ; /*X = A × B × 2−n mod N*/

end.

From the Montgomery modularREDC algorithm depicted above, note that both
(2−n mod N) and (N−1 mod N) can be precomputed using the Euclidean algorithm
(Knuth, 1997). Moreover, the MontgomeryREDC algorithm allows the precomputa-
tion of N = Nn−1 × 2n−1 + Nn−2 × 2n−2 + . . . + N1 × 2 + N0 and X =
Xn−1 × 2n−1 + Xn−2 × 2n−2 + . . . + X1 × 2 + X0, we can computeX one digit
Xi in every modular reduction step instead of computing the wholeX at one time.

As modular multiplication using the Montgomery modularREDC algorithm requires
the transformation of both multiplier and multiplicand into theN -residue, therefore mod-
ular multiplication using thisREDC algorithm requires a longer processing time than
other methods. If(2−n mod N) has been precomputed and stored before we using the
Montgomery reduction algorithm,A′ andB′ in the N -residue can be easily computed
from REDC(A × (2−n mod N)) andREDC(B × (2−n mod N)) respectively as fol-
lows.

A′ = REDC(A × (2−n mod N)) = A × (2n)−1 mod N, (7)

454 C.-L. Wu, D.-C. Lou, T.-J. Chang

B′ = REDC(B × (2−n mod N)) = B × (2n)−1 mod N, (8)

X = A′ × B′ = A × (2n)−1 × B × (2n)−1 mod N, (9)

C ′ = REDC(X) = A × B × 2−n mod N, (10)

C = REDC(C ′) = A × B mod N. (11)

Notice that, Eqs. 7 to 11 shown above describe modular multiplication using the
MontgomeryREDC algorithm require a longer processing time than other methods due
to the residue transformation of the multiplier and the multiplicand. For example, the
modular multiplication using Eq. 7 to 11 requires 7n2 + 4n multiplications since every
reduction operation takesn2 + n multiplications. The classical Montgomery reduction
algorithm only requires 2n2 + n multiplications andm divisions (Dusse and Kaliski,
1990).

3. The Proposed Algorithm

In the following, we will first introduce the basic concept of minimal-signed-digit recod-
ing arithmetic, and then we will summarize some important mathematical preliminar-
ies including formulas for the common-multiplicand-multiplication (CMM) and signed-
digit-folding (SDF) technique. Finally, we will give detailed description for the proposed
parallel SDF-CMM Montgomery binary algorithm for fast exponentiation.

3.1. Signed-Digit Recoding Arithmetic

A signed-digit (SD) representation of an integern in radix r is a sequence of digits
a = (ak, . . . , a2, a1, a0)SDr

with ai ∈ {0,±1, . . . ,±(r − 1)} andr is the radix number
for k � i � 0 such thata =

∑k
i=0 ai × ri. The signed-digit (redundant) representations

number system was first proposed by Avizienis (Avizienis, 1961) to make it possible to
perform carry-free addition. Recently, redundant representations of this form have been
used successfully in various arithmetic applications and many signed-digit number sys-
tems have been used to increase the efficiency of computer arithmetic (DeBrunneret al.,
2002; Syutoet al., 2002).

Arno and Wheeler (1993) proposed the signed-digit representations for minimal ham-
ming weight arithmetic. Assume we refer toSr as the set of all signed digit radix-r rep-
resentations of elements of Z, the mappingπ: Sr →Z defined by

π(a) =
∞∑

i=0

air
i (12)

associates an integer with each elementa ∈ Sr.
Let a, b ∈ Sr, we define negative digitx by x − sgn (x) × r, where sgn (x)

is 0, 1, −1 depending on whetherx is zero, positive, or negative, respectively. If

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 455

a = (ak, . . . , a2, a1, a0) and b = (bk, . . . , b2, b1, b0), then we define the addition of
c = a + b = (ck, . . . , c2, c1, c0) in Sr whereε−1 = 0 as

εi = 0
ci = ai + bi + εi−1

}
if − r < ai + bi + εi−1 < r,

εi = sgn (ai + bi + εi−1)
ci = ai + bi + εi−1 − εi × r

}
otherwise.

(13)

We denote the generic notation of the packet of data(at, at+1, εt) as (x, y, ε) and
produce the output digit̂y and the new carrŷε, and the new data packet becomes
(at+1, at+2, εt+1). Therefore, the output digit̂y and the carrŷε are generated as

ε̂ = 0
ŷ = ai + bi + ε

}
if (ai + bi + ε)

(
x + sgn (ai + bi + ε)

)
�= 0,

ε̂ = sgn (ai + bi + ε)
ŷ = ai + bi + ε − ε̂ × r

}
otherwise.

(14)

The problem of finding minimal binary representations is usually referred to as
“canonical Booth recoding” (DeBrunneret al., 2002). The signed-digit recoding is canon-
ical if its signed-digit representation contains no adjacent nonzero digits. The canonical
signed-digit recoding is unique if its binary representation is viewed as padded with an
initial zero. Based on (Arno and Wheeler, 1993), the MSD recoding algorithm for gener-
ating the signed-digit representation of minimal-Hamming-weight is depicted as follows.

Minimal-Signed-Digit (MSD) Recoding Algorithm
Input: a ∈ Sr with π(a) = n; /*a is redundant representation ofn*/
Output: A(a) ∈ Sr; /*A(a) denotes the action of this algorithm ona*/

t = 0;
while (. . . , at+2, at+1, at) �= (. . . , 0, 0, 0) do
begin

if at �= 0 then
begin

b = (. . . , sgn (at),−sgn (at) × r, 0, . . . , 0) /*nonzeros att andt + 1*/
c = a + b;
if ct+1 = 0 a = c;

end;
t = t + 1;

end.
If we take signed-digit recoding system with radix-2(r = 2) for example, three sym-

bols {1, 0, 1} are allowed for the digit set, in which 1 and1 in digit positionk represent
+2k and−2k, respectively. Based on MSD recoding arithmetic algorithm show above,
the signed-digit arithmetic representation can be depicted as follows.

Notice that, in order to obtain signed-digit1 for our signed-digit representation in
Fig. 1, the subtraction operation executed between 3r andr is a “no-borrow (carry) sub-

456 C.-L. Wu, D.-C. Lou, T.-J. Chang

2r = (rk−1, rk−2, rk−3, . . . , r1, r0, 0)2
+ r = (rk−1, rk−2, . . . , r2, r1, r0)2

3r = (sk, sk−1, sk−2, sk−3, . . . , s1, s0, r0)2
“no-borrow subtraction”→− r = (rk−1, rk−2, . . . , r2, r1, r0)2

2r = (ek, ek−1, ek−2, ek−3, . . . , e1, e0, 0)SD2

Fig. 1. Signed-digit arithmetic representation.

traction”. On average, the probability of the digit “0” appearance is “2/3”, and the total
occurrence probability of nonzero digits “1” and “1” is “1/3” (Arno and Wheeler, 1993).

3.2. Mathematical Preliminaries

The basic idea of our proposed SDF-CMM Montgomery binary exponentiation algorithm
is try to extract the common substring of the signed-digit recoding exponentE, and then
save the number of required for the computation of common substring. Let the exponent
E have the radix-2 representation(ek−1ek−2 . . . e1e0)2, i.e.,E =

∑k−1
i=0 ei × 2i, where

ei ∈ {0, 1, 1} andk is the bit-length of the signed-digit recoding exponentEMSD.
In the first phase of exponent-folding method, by folding the signed-digit recoding

exponentEMSD in halfn times, andEMSD is then divided into2n equal sized substrings.
Let each substring of signed-digit recodingEMSD be denoted asEi for i = 1, 2, . . . , 2n,
i.e., EMSD = E2n ‖ E2n−1 ‖ E2n−2 ‖ . . . ‖ E2 ‖ E1, where‖ is the concatenation
operator. Hence

ME =
2n∏
i=1

S(i−1)(k
2n)(MEi), (15)

whereS(m)(z) represents performingm squares on the related valuez, andEi is denoted

as(e
k
2n −1
i e

k
2n −2
i . . . e1

i e
0
i)2.

In the second phase of exponent-folding method, we define the following:

Ecomm i =Ecomm (i+1) =Ei AND Ei+1 for i=1, 3, . . . , 2n − 3, 2n − 1, (16)

Eexcl i = Ecomm i XOR Ei for i = 1, 2, . . . , 2n, (17)

whereAND andXOR are the bitwise logical operators. Then,Ei can be denoted as

Ei = Ecomm i + Eexcl i. (18)

In the third phase of exponent-folding method, the exponentiation of the consecutive
pairs ofME2n , ME2n−1 , . . . , ME1 can be computed as follows:

MEi = MEcomm i × MEexcl i , (19)

and

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 457

MEi+1 = MEcomm i × MEexcl (i+1) for i = 1, 3, . . . , 2n − 3, 2n − 1. (20)

TheEcomm i operation will record the common part for every two consecutive seg-
mentsEi andEi+1. Note, we record the differences for “Ei andEcomm i” and “Ei+1 and
Ecomm i” in Eexcl i andEexcl (i+1), respectively. We define the logical operationsAND
andXOR operators over the set {0, 1,1} for the SDF-CMM Montgomery exponentiation
algorithm in Table 1.

By using signed-digit-folding technique, the CMM binary exponentiation algorithm
(depicted in Section 2.2) can be generalized as follows.

Let

Y ∗
comm = AND2n

i=1Yi, (21)

and
Yexcl i = Ycomm i XOR Y ∗

comm for i = 1, 2, . . . , 2n. (22)

Thus, eachYcommon i can be represented as

Ycomm i = Y ∗
comm + Yexcl i. (23)

Suppose thatY ∗
comm is folded n-times, and every part ofY ∗

comm is denoted as
Ycomm i(i = 1, 2, . . . , 2n), whereYcomm = Ycomm 1|| . . . ||Ycomm 2n−1||Ycomm 2n .
Therefore, the generalized common-multiplicand multiplications algorithm using the
signed-digit-folding technique can computeX ×Yi(i = 1, 2, . . . , 2n) with the assistance
of X × Ycommon as

X × Ycomm =
2n∑
i=1

S(m/2n)(2n−i)(X × Yexcl i + X × Y ∗
comm), (24)

whereS(m)(z) function represents performingm squares (or left shift ofm bits) on the
related valuez.

For example, forYcomm is folded exact one-time (i.e.,n = 1), we can obtain the
following relation from the Eq. 4 defined previously in Section 2.2:

X × Ycomm =
2∑

i=1

S(m/2)(2−i)(X × Yexcl i + X × Y ∗
comm)

Table 1

Bitwise logical operatorsAND andXOR

AND 1 0 1 XOR 1 0 1

1 1 0 0 1 0 1 0

0 0 0 0 0 1 0 1

1 0 0 1 1 0 1 0

458 C.-L. Wu, D.-C. Lou, T.-J. Chang

= S(m/2)(2−1)(X × Yexcl 1 + X × Y ∗
comm)

+ S(m/2)(2−2)(X × Yexcl 2 + X × Y ∗
comm). (25)

Hence, the computations {X × Y1, X × Y2} can be identically represented as

{
X×Y1,c+X×Yexcl 2+X×Y ∗

comm+S(m/2)(X×Yexcl 1+X×Y ∗
comm),

X×Y2,c+X×Yexcl 2+X×Y ∗
comm+S(m/2)(X×Yexcl 1+X×Y ∗

comm)
}

. (26)

Here we respectively introduce three lemmas to give the MSD representation with
minimal-weight, to efficiently calculate the modular inverse result for handling the neg-
ative signed-digits, and to better describe the expected value of signed-digit recoding
number based on the probability distribution property as follows.

Lemma 1. Let S be a string and the sequence [S]l denote S, S, . . . , S (repeat l times),
in order to find the canonical representation of minimal Hamming weight for exponent
EMSD, the following two equivalences exist in our radix-2 signed-digit representation:

(1) ([0, 1]l, 1)SD2 = (1, [0, 1]l)SD2 ,
(2) ([0, 1]l, 1)SD2 = (1, [0, 1]l)SD2 .

Proof. (1) Based on the minimal-Hamming-weight signed-digit recoding arithmetic rep-
resentation defined in Section 3.1, we can have the following result:

(
[0, 1]l, 1

)
SD2

= 1 +
l∑

i=1

22i−1 = 22l −
l∑

i=1

22i−2.

However,22l −
∑l

i=1 22i−2 can also be represented as(1, [0, 1]l)SD2 .
Therefore, the first equivalence([0, 1]l, 1)SD2 = (1, [0, 1]l)SD2 holds.
(2) Again, based on the minimal-Hamming-weight signed-digit recoding arithmetic

representation defined in Section 3.1, we know

(
[0, 1]l, 1

)
SD2

= −1 −
l∑

i=1

22i−1 =
l∑

i=1

22i−2 − 22l.

However,
∑l

i=1 22i−2 − 22l can also be represented as(1, [0, 1]l)SD2 .
Therefore, the second equivalence([0, 1]l, 1)SD2 = (1, [0, 1]l)SD2 holds.

By using Lemma 1 shown above, we can find the canonical representation for radix-2
signed-digit representation of minimal Hamming weight.

Lemma 2. The modular arithmetic relation “a−1 = r−1 mod N” holds as “r =
a mod N”.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 459

Proof. As from the extended Euclid algorithm (Knuth, 1997), yields

a−1 mod N = x ⇔ axmod N = 1 ⇔ a × x −−N × y = 1.

Assumer = a mod N , hence,a = Q × N + r.
As a × a−1 = 1 mod N , we haver × a−1 = 1 mod N .

∵ r × r−1 = 1 mod N,

∴ r × a−1 = r × r−1 mod N,

hence,a−1 = x = r−1 mod N .

By using Lemma 2, we know as long as the relationa = Q × N + r holds, we can
have the modular equivalence relation ofa−1 = r−1 mod N .

Lemma 3. Let kr be a random variable on the space of m-digit radix-r integers denoting
the radix-r signed-digit representation of minimal Hamming weight. As Exp(a) denote
the expected value of a, we can have the expected value of kr as

Exp(kr) =
(r − 1)
r + 1

m (where m → ∞).

Proof. Let n be a randomm-digit radix-r integer with0 � n<rm, whose standard rep-
resentation is given bya = (. . . , 0, am, am−1, am−2, . . . , a1, a0), and whose minimal-
weight representation is given bŷa = (. . . , 0, âm, âm−1, âm−2, . . . , â1, â0).

Let Prob(a) denote the probability distribution ofa. Assume we have the input to
signed-digit recoding algorithm is the standard radix-r representation ofn. Let w+

m and
w−

m denote the number of positive digits and the number of negative digits ofâ, respec-
tively.

Based on (Arno and Wheeler, 1993), we can have the following

Prob(w+
m) =

(r − 1)2

r(r + 1)
and Prob(w−

m) =
(r − 1)
r(r + 1)

(where m → ∞). (27)

Therefore, we can have the following expected values as

Exp(w+
m) =

(r − 1)2

r(r + 1)
m, Exp(w−

m) =
(r − 1)
r(r + 1)

m (where m → ∞). (28)

We should note thatkr is independent of the radix-r signed-digit representation as
defined in (Arno and Wheeler, 1993), thus we havekr = w+

m +w−
m, and we can therefore

have the following equivalence:

Exp(wm) = Exp(w+
m) + Exp(w−

m). (29)

460 C.-L. Wu, D.-C. Lou, T.-J. Chang

Therefore, we have

Exp(kr) =
(r − 1)2

r(r + 1)
m +

(r − 1)
r(r + 1)

m =
(r − 1)
(r + 1)

m (where m → ∞). (30)

By using Lemma 3, we can better describe the expected value of minimal-signed-digit
recoding number based on the probability distribution property.

3.3. The Proposed SDF-CMM Montgomery Binary Exponentiation Algorithm

After we have introduced the definitions and lemmas shown above, we here propose a
fast parallel Montgomery modular exponentiation algorithm using Montgomery modular
reduction algorithm, SDF technique, and CMM method as follows.

SDF-CMM Montgomery Binary Exponentiation Algorithm
Input: M, EMSD, N, R /*M, R andN aren-digit integers in base 2*/
Output: C = MEMSD mod N /*EMSD = (emem−1 . . . e1e0), whereei ∈ {0, 1, 1}*/
begin

S = M × R, C = R mod N ; /*R = 2n*/
C1 = C1 = C1 = 1;
for b = 1 to k/2n do /*scan the MSD recoding exponent from right to left*/

begin
if (eb

comm i = 1) C1 = REDC(SC1); /*handle the common part*/
if (eb

comm i = 1) C1 = REDC(S−1C1); /*handle the common part*/
if (eb

excl i = 1) C2 = REDC(SC2); /*handle the positive digit*/
if (eb

excl i = 1) C2 = REDC(S−1C2); /*handle the negative digit*/
if (eb

excl (i+1) = 1) C3 = REDC(SC3); /*handle the positive digit*/

if (eb
excl (i+1) = 1) then C3 = REDC(S−1C3); /*handle the negative digit*/

S = REDC(SS);
end;

C2 = REDC(C1C2); /*C2 = MEMSD[1] mod N , 0 � C < N*/
C3 = REDC(C1C3); /*C3 = M

EMSD[1] mod N , 0 � C < N*/
C = REDC(C2C3); /*C3 = M

EMSD[1] mod N , 0 � C < N*/
end.

Note, as the modular multiplication operation and the modular inversion operation
in this improved exponentiation algorithm can be concurrently executed, we can further
have the proposed SDF-CMM algorithm work more efficient for evaluatingME using
parallel computing technique.

3.4. Parallel Processing of The Proposed Algorithm

As we can execute the modular multiplication (for positive digits of folding-exponent)
and the multiplicative inverse (for negative digits of folding-exponent) operations sep-
arately, we can apply the “parallel-processing” technique on the improved SDF-CMM
algorithm to speed up the total exponentiation efficiency as follows.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 461

Fig. 2. Flow chart of the parallel SDF-CMM algorithm.

The parallel computing flow chart of the SDF-CMM binary exponentiation algorithm
is depicted in Fig. 2.

By adopting lemma 1 shown in Section 3.2, we can therefore transform the original
multiplicative inverse operation into normal positive (multiplication) calculation, and use
the operation result for our original multiplicative inverse calculation. Here we can speed
the whole modular exponentiation process as we let the multiplicative inverse operation
performed only once in the last step before our final output result for the improved SDF-
CMM Montgomery algorithm.

Here we put an example to explain how the SDF-CMM Montgomery binary expo-
nentiation algorithm works.

EXAMPLE. Let N = 37 × 41 = 1517.
By folding the signed-digit exponent one time, we can get the optimal computational

complexity (Lou and Chang, 1996), i.e.,n = 1.
MessageM = 127,

E = 1213 = (10010111101)2 = (10100200101)SD.

By using the concatenation operation, yields

E = E1 ‖ E2 = (101002)SD ‖ (000101)SD.

462 C.-L. Wu, D.-C. Lou, T.-J. Chang

For positive folding-exponent,

C1 ≡ M (101000)SD(modN) ≡ M (40)10(modN);

C2 ≡ M (00001)SD(modN) ≡ M (1)10(modN).

For negative folding-exponent,

D1 ≡ M (000002)SD(modN) ≡ M (2)10(modN);

D2 = M (00100)SD(modN) = M (4)10(modN).

Similarly, we can also have

E = (10100000001)SD + (02000100)SD

= (10100000001)2 − (1000100)2 = A − B.

Hence,A = (10100000001)2 = 1281, B = (1000100)2 = 68.
Using the proposed SDF method shown below, we can obtainME mod N =

1271213 mod 1517 = 1048.

rMA ≡ C2
(k− k

2n)

1 × C2(modN),

⇒ rMA ≡ (12740)2
5 × 1271(modN) ≡ 1271281(mod1517).

rMB ≡ D2
(n− k

2n)

1 × D2(modN),

⇒ rMB ≡ (1272)2
5 × 1274(modN) ≡ 12768(mod1517).

∴ MA mod N ≡ rMA = 1271281 mod 1517 = 988,

∴ MB mod N ≡ rMB = 12768 mod 1517 = 551.

Based on the calculation shown above, we can have:

(MB)−1 mod N ≡ r−1
MB mod N = 551−1 mod 1517 = 1082.

Finally,

∵ ME mod N ≡ MA−B mod N,

(MA mod N)(M−B mod N) mod N ≡ rMA × (rMB)−1 mod N.

Therefore, we obtainME mod N = 988 × 1082 mod 1517 = 1048. This example
shown that we can obtain the correct result using the proposed SDF-CMM Montgomery
method.

We should note that, by using the computation over Galois Field, the time complex-
ity of multiplicative inverse operation is equivalence to the bit shift operation (Leeet
al., 2002). To further speed up the SDF-CMM algorithm, we can put the multiplicative

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 463

inverse operation in SDF-CMM algorithm over a finite filed (such as GF(2n) (Wu and
Chang, 1995; Yen, 1997). The detailed computational complexity analyses will be given
in Section 4 as follows.

4. Complexity Analyses

In this section, we will detailed describe the theoretical analyses for the performance
of the proposed parallel SDF-CMM algorithm in public key cryptography. We use the
number of modular multiplications to express the speed-up efficiency. By using the pro-
posed SDF-CMM algorithm to evaluate the modular exponentiation computation ofME

(mod N) whereE is thek-bit minimal-signed-digit exponent.
Based on the lemma 2 given in Section 3.2, the probability for the occurrence of

positive digit “r” and negative digit “r” (or “−r”) is (r−1)2

r(r+1) and (r−1)
r(r+1) , respectively, and

the probability for the occurrence of digit “0” is 2
(r+1) . Assume that the two possible

nonzero digits, “1” and “1”, occur with equal probability (Nozakiet al., 2003), then we
can have the occurrence probability for each element recorded as{Pr(0) = 2/3, Pr(1) =
Pr(1) = 1/6}.

Let the threem-bit exponent segments (decompositions) in the parallel SDF-CMM
algorithm be denoted asEi, Ei+1 andEi+2, based on the bit level arithmetic defined
in Section 3.2, we can computeEcommon using “Ei AND Ei+1 AND Ei+2” where for
i = 1, 2, . . . , 2n andn is the exponent-folding times. Hence,Ecommon will be equal to 1
(or 1) if and only if for Ei, Ei+1 andEi+2 are all equal to 1.

Based on Eq. 22, on average, we have the following occurrence probabilities:

Prob(Ecommon = 1) = Prob(Ecommon = 1) =
(1

6

)3

.

Based on Eqs. 23, 24, and 25, on average, we have:

Prob(Ei,i+1 =1)=Prob(Ei,i+2 =1)=Prob(Ei+1,i+2 =1)=(Prob(1))3 =
(1

6

)3

.

Based on Eqs. 26, 27, and 28, on average, we have:

Prob(Ei,common = 1) = Prob(Ei+1,common = 1)

= Prob(Ei+2,common = 1) = (Prob(1))3 =
(1

6

)3

.

In the parallel SDF-CMM binary exponentiation algorithm, the exponentiations
MEcommon , MEi,i+1 , MEi,i+2 , MEi+1,i+2 , MEi,common , MEi+1,common , MEi+2,common

for processing positive signed-digit bits and negative signed-digit bits are performing in
parallel. We can check that the parallel SDF-CMM exponentiation algorithm has its op-
timal performance when the minimal-signed-digit recoding exponentE is folded exact
one time(n = 1).

464 C.-L. Wu, D.-C. Lou, T.-J. Chang

On average the probability of performing one, two, three, or four multiplications in
each iteration are163 , 3

63 , 3
63 , and 1

63 , respectively. The SDF-CMM binary algorithm there-
fore takes

[
1
63 + 2×3

63 + 3×3
63 + 4

63

]
× m + 9 multiplications to obtain all exponentiation

results ofMEi , MEi+1 , MEi+2 . Given these three partial results, when applying Eq. 21,
the parallel SDF-CMM algorithm takes 2m + 2 additional multiplications to perform the
squaring operation in each bit position and get the final result ofME .

The entire computation in the parallel SDF-CMM algorithm needs on average[
1
63 + 2×3

63 + 3×3
63 + 4

63 +2
]
×m+11 =

(
452
216

)
m ≈ 2.0926m+11 ≈ 0.6975k +11 mul-

tiplications (wherek is the bit-length of exponent andm = k/3). The proposed parallel
SDF-CMM exponentiation algorithm outperforms both the Wu-Chang’s exponentiation
algorithm in (Wu and Chang, 1995) which needs totally 1.219k multiplications plus some
extra additions and shift operations and the Yen’s exponentiation algorithm in (Yen, 1997)
which needs totally 1.292k + 11 multiplications.

Furthermore, by using the proposed parallel SDF-CMM Montgomery binary expo-
nentiation algorithm, on average the total number of single-precision multiplications can
be reduced by about 61.3% and 74.1% as compared with Chang-Kuo-Lin’s CMM mod-
ular exponentiation algorithm (Ha and Moon, 1998) and Ha-Moon’s CMM Montgomery
modular exponentiation algorithm (Changet al., 2003), respectively.

5. Conclusions

As we know the modular exponentiation is on of the most important operations in
public-key cryptography. In this paper, an efficient parallel modular exponentiation algo-
rithm is proposed which based on both the common-multiplicand-multiplicand (CMM)
and signed-digit-folding (SDF) techniques. By dividing the bit pattern of the minimal-
signed-digit recoding exponentE into three equal length parts and using the technique
of recording the common parts in the folded substrings, the proposed SDF-CMM Mont-
gomery algorithm can improve the efficiency of both the binary algorithm and common-
multiplicand-multiplication algorithm, thus can further decrease the computational com-
plexity of modular exponentiation.

By adopting the parallel processing technique for signed-digit recoding exponentE,
we can further enhance our SDF-CMM Montgomery algorithm and obtain the optimal
overall computational complexity as0.6975k+11 multiplications by folding the minimal-
signed-digit radix-2 recoding exponentE exactly one time wherek denotes the digit-
length of the exponent. We can check that the SDF-CMM Montgomery algorithm out-
performs other existing exponentiation methods. Moreover, as the multiplicative inverse
operation in GF(2n) finite field can be done by a simple shift operation (Takagiet al.,
2001; Watanabeet al., 2002), in the proposed SDF-CMM Montgomery algorithm, we
can further decrease the overall computational complexity.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 465

References

Arno, S., and F.S. Wheeler (1993). Signed digit representations of minimal hamming weight.IEEE Transactions
on Computers, 42(8), 1007–1010.

Avizienis, A. (1961). Signed digit number representation for fast parallel arithmetic.IRE Transactions on Elec-
tronic Computers, EC-10(3), 389–400.

Chang, C.-C., Y.-T. Kuo and C.-H. Lin (2003). Fast algorithms for common-multiplicand multiplication and
exponentiation by performing complements. InProceedings of the 17th IEEE Symposium on Advanced
Information Networking and Applications. pp. 807–811.

DeBrunner, L.S., V.E. DeBrunner and D. Bhogaraju (2002). Defining canonical-signed-digit number systems
as arithmetic codes. InProceedings of the 36th Asilomar Conference on Signals, Systems and Computers,
vol. 2. pp. 1593–1597.

Diffie, W., and E. Hellmen (1976). New directions in cryptography.IEEE Transactions on Information Theory,
22(6), 644–654.

Dusse, S.R., and B.S. Kaliski (1990). A cryptographic library for the Motorola DSP 56000. InProceedings of
EUROCRYPT Workshop on Theory and Application of Cryptographic Techniques, Advances in Cryptology,
LNCS 473. Springer-Verlag. pp. 230–244.

ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms.IEEE
Transactions on Information Theory, 31(4), 469–472.

Joye, M., and S.-M. Yen (2000). Optimal left-to-right binary signed-digit recoding.IEEE Transactions on Com-
puters, 49(7), 740–748.

Ha, J.-C., and S.-J. Moon (1998). A common-multiplicand method to the Montgomery algorithm for speeding
up exponentiation.Information Processing Letters, 66(2), 105–107.

Gordon, D.M. (1998). A survey of fast exponentiation methods.Journal of Algorithms, 27(1), 129–146.
Knuth, D.E. (1997).The Art of Computer Programming, Vol. II: Seminumerical Algorithms, 3rd edition. MA:

Addison-Wesley.
Koren, I. (2002).Computer Arithmetic Algorithms, 2nd edition. A.K. Peters, Natick, MA.
Kunihiro, N., and H. Yamamoto (2000). New methods for generating short addition chains.IEICE Transactions

on Fundamentals, E83-A(1), 60–67.
Lee, S.-Y., Y.-J. Jeong and O.-J. Kwon (2002). A faster modular multiplication based on key size partitioning

for RSA public-key cryptosystem.IEICE Transactions on Information and Systems, E85-D(4), 789–791.
Lou, D.-C., and C.-C. Chang (1996). Fast exponentiation method obtained by folding the exponent in half.

Electronics Letters, 32(11), 984–985.
Montgomery, P.L. (1985). Modular multiplication without trial division.Mathematics of Computation, 44(170),

519–521.
Nedjah, N., and L.M. Mourelle (2002). Efficient parallel modular exponentiation algorithm. InProceedings of

the 2nd Advances in Information Systems (ADVIS) International Conference. pp. 405–414.
Nozaki, H., A. Shimbo and S. Kawamura (2003). RNS Montgomery multiplication algorithm for duplicate

processing of base transformations.IEICE Transactions Fundamentals, E86-A(1), 89–97.
Premkumar, A.B. (2002). A formal framework for conversion from binary to residue numbers.IEEE Transac-

tions on Circuits and Systems II: Analog and Digital Signal Processing, 49(2), 135–144.
Rivest, R.L., A. Shamir and L. Adleman (1978). A method for obtaining digital signatures and public key

cryptosystems.Communications of the ACM, 21(2), 120–126.
Su, C.-Y., S.-A. Hwang, P.-S. Chen and C.-W. Wu (1999). An improved Montgomery’s algorithm’s for high-

speed RSA public-key cryptosystem.IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
7(2), 280–284.

Syuto, M., E. Satake, K. Tanno and O. Ishizuka (2002). A high-speed binary to residue converter using a
signed-digit number representation.IEICE Transactions on Information and Systems, E85-D(5), 903–905.

Takagi, N., J. Yoshiki and K. Takagi (2001). A fast algorithm for multiplicative inversion in GF(2n) using
normal basis.IEEE Transactions on Computers, 50(5), 394–398.

Tenca, A.F., and C.K. Koc (2003). A scalable architecture for modular multiplication based on Montgomery’s
algorithm.IEEE Transactions on Computers, 52(9), 1215–1221.

Watanabe, Y., N. Takagi and K. Takagi (2002). A VLSI algorithm for division in GF(2m) based on extended
binary GCD algorithm.IEICE Transactions on Fundamentals, E85-A(5), 994–999.

Wei, S., S. Chen and K. Shimizu (2002). Fast modular multiplication using booth recoding based on signed-

466 C.-L. Wu, D.-C. Lou, T.-J. Chang

digit number arithmetic. InProceedings of the 2nd IEEE Asia-Pacific Conference on Circuits and Systems.
pp. 31–36.

Wu, T.-C., and Y.-S. Chang (1995). Improved generalization common-multiplicand multiplications algorithm
of Yen and Laih.Electronics Letters, 31(20), 1738–1739.

Yen, S.-M. (1997). Improved common-multiplicand multiplication and fast exponentiation by exponent decom-
position.IEICE Transactions on Fundamentals, E80-A(6), 1160–1163.

Yen, S.-M., and C.-S. Laih (1993a). Common-multiplicand multiplication and its applications to public key
cryptography.IEE Electronics Letters, 29(17), 1583–1584.

Yen, S.-M., and C.-S. Laih (1993b). Common-multiplicand multiplication and its applications to public key
cryptography.Electronics Letters, 29(17), 1583–1584.

An Efficient Montgomery Exponentiation Algorithm for Cryptographic Applications 467

C.-L. Wu was born in Kaouhsiung, Taiwan, Republic of China, 1965. He received his BS
degree in electrical engineering from the Chung Cheng Institute of Technology, Taiwan,
Republic of China, in 1988, and the MS degree in computer science from the United
States Air Force Institute of Technology, Dayton, Ohio, in 1995. He received his PhD
degree in the Department of Electrical Engineering at the Chung Cheng Institute of Tech-
nology, National Defense University, Taiwan (Republic of China). He is currently an as-
sistant professor at the Department of Avionics Communication & Electronics, Chinese
Air Force Institute of Technology (AFIT), Taiwan. He is also a member of Computer
Security Committee of Crisis Management Society of Taiwan, R.O.C. His research in-
terests include information security, cryptography, number theory, information system,
algorithm design, complexity analysis, cryptography, computer arithmetic and parallel
and distributed computing.

D.-C. Lou was born in Chiayi, Taiwan, Republic of China, 1961. He received the BS
degree from Chung Cheng Institute of Technology (CCIT), National Defense Univer-
sity, Taiwan, R.O.C., in 1987, and the MS degree from National Sun Yat-Sen University,
Taiwan, R.O.C., in 1991, both in electrical engineering. He received the PhD degree in
1997 from the Department of Computer Science and Information Engineering at National
Chung Cheng University, Taiwan, R.O.C. Since 1987, he has been with the Department
of Electrical Engineering at CCIT, where he is currently a professor and the Director of
Computer Center of CCIT. His research interests include cryptography, steganography,
algorithm design and analysis, computer arithmetic, parallel and distributed system. Prof.
Lou is currently an Area Editor for Security Technology of Elsevier Science’s Journal of
Systems and Software. He is an honorary member of the Phi Tau Phi Scholastic Honor
Society. He is a member of the IEICE Society and the Chinese Cryptology and Informa-
tion Security Association. He is the owner of the eleventh AceR Dragon PhD Dissertation
Award. He has been selected and included in the fifteenth and eighteenth edition of Who,s
Who in the World which has been published in 1998 and 2001, respectively.

T.-J. Chang was born in Taichung, Taiwan, Republic of China, 1970. He received his
BS degree in electrical engineering from the Chung Cheng Institute of Technology, Tai-
wan, Republic of China, in 1993, and the MS degree in electrical engineering from the
Chung Cheng Institute of Technology, National Defense University, Taiwan, Republic of
China, in 2001. He is currently studying his PhD degree in the Department of Electrical
Engineering at the Chung Cheng Institute of Technology, National Defense University,
Taiwan (Republic of China). His research interests include information security, number
theory, cryptography, computer arithmetic, complexity analysis, and parallel computing.

468 C.-L. Wu, D.-C. Lou, T.-J. Chang

Efektyvus Montgomerio kėlimo laipsniu algoritmas kodavimui

Chia-Long WU, Der-Chyuan LOU, Te-Jen CHANG

Efektyvus modulinis k̇elimas laipsniu yra labai svarbus ir naudingas atviro rakto kodavimo
sistemoms. Šiame straipsnyje yra pasiūlytas efektyvus lygiagretus dvinaris kėlimo laipsniu al-
goritmas, pagr↪istas Montgomery daugybos algoritmu, skaitmen↪u su ženklu suv̇erimo ir bendro-
daugiklio-daugiklio technikas. Pasiūlytas algoritmas naudoja vidutiniškai 61,3% ir 74,1% mažiau
viengubo tikslumo daugyb↪u negu Chang-Kuo-Lin ir Ha-Moon bendro-daugiklio-daugiklio Mont-
gomerio modulinio k̇elimo laipsniu algoritmai atitinkamai.

