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Abstract. This paper relates properties of operators with the well-known concepts of positive real-
ness and passivity properties in dynamic systems and their associate transfer functions. Those con-
cepts together with very close related ones are first examined from a physical point of view. Then,
they are related with hyperstability and properties of transfer functions while the hyperstability
theorem is revisited and interpreted. Finally, the above concepts are compared to the mathematical
concepts of positivity and closely related ones in operator theory in Hilbert spaces.
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1. Introduction

Stability properties of nonlinear dynamic systems have been widely studied in the li-
terature (Vidyasagar, 1993; Niculescu, 2001; Hsiao and Cheng, 2002; Goreckiet al.,
1989; Popov and Halanay, 1963; Barnett and Cameron, 1990; Kailath, 1980). Related
properties include, for instance, Lyapunov’s stability/asymptotic stability, absolute stabil-
ity (i.e., global Lyapunov’s asymptotic stability in the presence of nonlinear static devices
belonging to prescribed sectors in the feedback law) or hyperstability/asymptotic hyper-
stability (i.e., global Lyapunov’s stability/asymptotic hyperstability in the presence of any
nonlinear and/or time-varying devices whose time input-output integral satisfy Popov’s
type inequalities). While Lyapunov’s stability may be local around the equilibrium, ab-
solute stability/hyperstability are always global in the whole state space and established
as a generic property for a set (not just for a single element) of feedback devices for a
given forward device or plant. An important physical property is that a positive dynamic
system being hyperstable (roughly speaking, positive) which is feedback connected with
any class of devices satisfying a Popov’s-type inequality implying lower bounding by a
negative finite constant is globally Lyapunov’s stable since its input-output energy is non-
negative and bounded for all time (Bergen, 1967; De la Sen, 1986; Gregor, 1996; De la
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Sen, 1998; De la Sen, 2002). On the other hand, hyperstability for a set of nonlinear/time-
varying devices satisfying a certain Popov’s inequality includes the absolute stability of
any static nonlinear device that satisfies such an inequality. The above concepts are very
related to the more general one of passivity. In an operator theoretical framework, there
are well-known related concepts based on positivity of operators (Vidyasagar, 1993). In
this paper, we analyze and inter-relate the various concepts of passivity, hyperstability,
positivity, dissipation, conservation, regeneration etc. in Physics from their implications
in input-output or power energy balances as well as their strict-type version. We inter-
pret those concepts in a feedback framework related to general stability properties (or
roughly speaking hyperstability). Then, we relate those concepts to close properties in
the operator theoretical framework formulated in an appropriate Hilbert space.

2. Physical Concepts Related to Power and Energy Balances

Consider a scalar (only for purposes of facilitating the mathematical treatment and expo-
sition) dynamic systems with instantaneous real input and output signals at timet being,
respectively,u(t) andy(t), then of supplied power (u(t)y(t)), whose stored energy and
dissipated energy are respectively given by functionsS(t) andD(t). Thus, the instanta-
neous power balance at timet � 0 and the energy balance in the time interval[0, t] are
given, respectively, by:

Power balance at timet:

u(t)y(t) = Ṡ(t) + Ḋ(t). (1a)

Energy balance in the time interval[0,t]:

〈u, y〉t = S(t) + D(t) − S(0) − D(0), (1b)

where the dot superscript denotes time-derivative, as usual,〈u, y〉t is an abbreviation for a
time-integral product (i.e., a scalar product, denoted by〈u, y〉t, of square-integrable func-
tionsu(t) andy(t) on [0, t], i.e., belonging toL2[0, t]) meaning〈u, y〉t =

∫ t

0
u(τ)y(τ)dτ .

If the time subscript “t” is dropped out from the scalar product definition then the time in-
tegral, provided to exist, is extended to infinity; i.e.,〈u, y〉 =

∫ ∞
0

u(τ)y(τ)dτ . Note that
if truncated input and output signalsut andyt replaceu andy, wherezt = z(τ) for all τ ∈
[0, t] andzt = 0 otherwise in the real axis then〈u, y〉t = 〈ut, yt〉 =

∫ ∞
−∞ ut(τ)yt(τ)dτ ,

i.e., the input/output energy time-integral may be extended from minus infinity to infinity
when using truncated input/output signals. This allows to describe the supplied energy
equivalently in the frequency domain via Parseval’s theorem for all finite time even if the
input/output product is not potentially square-integrable on[0,∞). In the following, we
drop the time argumentt in order to simplify the notation when no confusion is expected.
In the context of dynamic systems, we manipulate a set of energetic-related concepts say-
ing that the system is at timet � 0 (the constraintt > 0 for time is stated explicitly when
applicable):
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a) Regenerativeif it does not dissipate energy but it supplies it to the network. Thus,
Ḋ(t) < 0 andD(t) < D(0) so thatu(t)y(t) < Ṡ(t) and〈u, y〉t < S(t) − S(0) <

S(t). If, in addition, the stored energy decreases with time thenS(t) � S(0) for
all t � 0 and then〈u, y〉t < 0 for all t > 0.

b) Passive or Dissipativeif it has energetic losses sincėD(t) � 0. Thus,D(t) �
D(0) so thatu(t)y(t) � Ṡ(t), and

〈u, y〉t � S(t) − S(0) � β := min
t�0

S(t) − S(0) � −S(0).

Note thatβ is a real number whose sign depends on each particular situation related
to the system’s properties. For instance, ifS(t) tends asymptotically to zero then
β = −S(0). However,β is nonnegative (positive) ifS(t) � S(0) (S(t) > S(0)
for any t > 0). The system is said to beStrictly Passive or Strictly Dissipative
if Ḋ(t) > 0 for all finite time so that〈u, y〉t > S(t) − S(0) for all t > 0 except
possibly at a set of zero measure. A more complete classification of passivity may
be made as follows:

– The system isWeakly Passiveif −S(0) � 〈u, y〉t < 0 for all t � 0.
– The system isStrongly Weakly Passive(then called Positive as well) if
〈u, y〉t � 0 for all t � 0.

– The system isWeakly Strictly Passive(then called Weakly Strictly Positive
as well) if 〈u, y〉t > 0 for all t > 0. Note that an unforced system (i.e., if
the inputu ≡ 0) cannot be either Weakly Passive or Weakly Strictly Passive
since the supplied power is zero for all time.

– The system isStrongly Strictly Passive(then called Strongly Strictly Posi-
tive as well) if〈u, y〉t > β〈u, u〉t for some real constantβ > 0 and allt � 0.
Note that an unforced system (i.e., if the inputu ≡ 0) is trivially Strongly
Weakly Passive but it cannot be Strongly Strictly Passive since the supplied
power is zero for all time.

Two different classes of conservative systems are considered according to their
ability to keep always their stored energy constant either independent of the in-
terchange of the energy with the environment (strong conservativeness), or when
there is no interchange of energy with the environment only (weak conservative-
ness). In the first case, all the supplied energy is dissipated because the system has
the ability of operating in that way. In the second one, the system is not able to
dissipate energy which is the classical concept of conservativeness. In that way, the
system keeps its stored energy constant during a given time interval provided that
there is no supplied power during such an interval while it increases or decreases
its stored energy during such a time interval according to the sign of the supplied
energy if this is not zero.

c) Strongly Conservative if Ṡ(t) = 0, i.e., the stored energy is kept constant while
the supplied energy is entirely dissipated so that〈u, y〉t � D(t)−D(0) � −D(0).

d) Weakly Conservative if Ḋ(t) = 0, i.e., the dissipation power is zero so that
〈u, y〉t = S(t) − S(0), namely, the supplied energy equalizes the variations of
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stored energy for any considered time-interval. In the case when that there is no
supplied energy during a time interval[0, t] (i.e., 〈u, y〉t = 0), the stored energy is
kept constant so thatS(τ) = S(0), for all τ ∈ [0, t], andṠ(t) = 0, i.e., the stored
power is zero.

e) Positive (Strictly Positive) if u(t)y(t) � 0 so that〈u, y〉t � 0 (u(t)y(t) > 0 and
〈u, y〉t > 0 for all t > 0). The specificationsWeakly or Strongly may be used
in the same contexts and meanings as for Strict Passivity so that Strictly Positive
systems may be specified as Weakly Strictly Positive or Strongly Strictly Positive
ones, respectively. Positive systems may be equivalently named as Weakly Passive
Systems.

f) It satisfies Popov’s Inequality. If for some finite real constantγ0 and allt � 0,
the following inequality holds:

〈u, y〉t � −γ2
0 > −∞.

REMARKS

(1) The above concepts may also be applicable only to some finite time subinterval
[t1, t2] in such a way that the system may be characterized under different proper-
ties in the above context through time.

(2) Both Passive and Positive dynamic Systems satisfy Popov’s Inequality.
(3) A system which satisfies Popov’s Inequality is always passive or conservative but

not necessarily Positive (i.e., not necessarily Weakly Passive).
(4) If a system is regenerative andS(t) � S(0), for all finite time, the energy sup-

plied is negative for all finite time so that in fact the system supplies energy to the
connected network. Also, its supplied input/output energy is upper-bounded by a
negative real number.

(5) A system is both Passive and Positive if〈u, y〉t � β � 0. A system is Weakly Pas-
sive but not Positive or, equivalently, Strictly Weakly Passive in some interval[0, t]
if there exists a finite negativeβ such that〈u, y〉t � β with strict equality keep-
ing for some time within such an interval. Then, such a system satisfies Popov’s
Inequality as well.

3. Hyperstability

The above concepts play a crucial role in the properties of hyperstability and asymptotic
hyperstability which, as stated in the introduction, generalize the concept of absolute
stability which, on the other hand, generalizes the standard one of global Lyapunov’s
stability (De la Sen, 1986). Assume a negative feedback configuration where the forward
loop is defined by a linear time-invariant input/output operator (or plant) from the input
space to the output spaceG: U → Y while the feedback loop is a, in general, nonlinear
and/or time-varying operator (or feedback controller) whose output space is equal to the
input space to the forward loopF : Y → V ≡ U such that ifu is in U thenv = −u is
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in V identical toU . Assume that the G-operator is Strictly Positive and the feedback
one is anyone satisfying a Popov’s-type Inequality so that:

〈u, y〉t � 0; −〈u, y〉t = 〈v, y〉t � −γ2
0 > −∞. (2)

Note that the second inequality specifies a class of linear or nonlinear (being eventually
time-varying) devices defining an associated class of control laws. In particular, the stan-
dard static non-linearities (in the sense that they are not explicitly time-dependent) of the
well-known (so-called Lure’s and Popov’s) absolute stability problems belonging to sec-
tors inside the first-third quadrants satisfy such a constraint (Goreckiet al., 1989; Popov
and Halanay, 1963; Barnett and Cameron, 1990). Combining the above two relationships,
one gets that the supplied input/output energy during the time interval[0, t] satisfies after
using Parseval’s theorem and assuming that the input is not identically zero within such
an interval:

E(t) = 〈u, y〉t = 〈ut, yt〉 = 〈ut, g ∗ ut〉 = 〈ut, hut〉
= (2π)−1〈ût, ŷt〉 = (2π)−1〈ût, ĝût〉, (3)

wherej is the imaginary unit, the symbol∗ denotes the convolution integral,g and ĝ

being the impulse response and the frequency response (i.e., its Fourier transformF (· ))
associated with the physical filter of the forward input-outputG-operator, andh being a
time operator fromU to Y defining the convolution integral in the time-domain, namely:

g ∗ ut = h(ut)(t) =
∫ ∞

−∞
g(τ)ut(t − τ)dτ =

∫ t

0

g(τ)u(t − τ)dτ,

ût(jω) = F(ut) =
∫ ∞

−∞
ut(τ)e−jωτdτ ; ŷt(jω) = F(yt) =

∫ ∞

−∞
yt(τ)e−jωτdτ.

Such Fourier transforms always exist for finite time since the corresponding integrals
exist. Note that the input/output energy is expressed equivalently in the time-domain (first
line of identities in Eq. 3) and in the frequency domain (second line of identities in Eq. 3).
Thus,

E(t) = (2π)−1

∫ ∞

−∞
ût(jω)

(
ĝ(jω)ût(−jω)

)
dω

= (2π)−1

∫ ∞

−∞
Re ĝ(jω)

∣∣ût(jω)
∣∣2dω = (2π)−1〈ût, (Re ĝ)ût〉 (4)

with the last inner product being defined in the frequency input/output spaces by using the
identities (3) where the odd symmetry property of the imaginary part of the hodograph
Im (ĝ(jω)) = −Im (ĝ(−jω)) has been used.

3.1. Asymptotic Hyperstability for Strongly Strictly Positive Real Transfer Functions

Now, if theh andRe ĝ are Strictly Positive (or, in particular,Strongly Strictly Passive)
operators thend = minω�0 Re ĝ(jω) > 0 [checking for negative frequencies is not
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necessary sinceRe (ĝ(jω)) = Re (ĝ(−jω)]. It is then said thatthe transfer function
ĝ(s) is Strongly Strictly Positive Real, i.e., Re ĝ(s) > d � 0 for Re s � 0 so that
Re ĝ(jω) � d > 0 for all realω (Bergen, 1967; De la Sen, 1986; Gregor, 1996; De la
Sen, 1998; De la Sen, 2002), so that one gets directly from (4) combined with the second
relationship in (2) for the feedback loop:

∞>γ2
0 �E(t)�(2π)−1d

∫ ∞

−∞

∣∣ût(jω)
∣∣2dω=d

∫ t

0

u2(τ)dτ >0 for t>0, (5)

so that taking limits ast → ∞ it follows that the input is bounded for all time and
it converges to zero asymptotically continuous (or it only has bounded isolated dis-
continuities). Sincêg(s) is Strongly Strictly Positive Real then it is strictly stable (i.e.,
its poles have negative real parts) and non-strictly proper (i.e., it has the same num-
ber of poles and zeros – or relative degree zero). Its inverse1/ĝ(s) is also Strongly
Strictly Positive Real, strictly stable and non-strictly proper but proper (and then real-
izable) so that1/d = minω�0(ĝ−1(jω)) > 0. Thus, (5) might be re-arranged by using
û(jω) = ĝ−1(jω)ŷ(jω) as follows:

∞>γ2
0 �E(t)�(2π)−1d−1

∫ ∞

−∞

∣∣ŷt(jω)
∣∣2dω=d

∫ t

0

y2(τ)dτ >0 for t>0. (6)

Then, taking limits as above as time tends to infinity, one concludes that the output is
bounded provided that it is continuous almost everywhere while it tends asymptotically
to zero. Since the transfer function̂g(s) is strictly positive real then its inverse1/ĝ(s) is
also strictly positive real and then strictly stable (i.e., with poles in Re s< 0 which are the
zeros ofĝ(s)) so that the input converges asymptotically to zero for any set of bounded
initial conditions. The asymptotic hyperstability theorem is formulated as follows (De la
Sen, 1986).Thus, if the plant is Strongly Strictly Passive (so that its transfer func-
tion is Strongly Strictly Positive Real) while the feedback loop is anyone satisfying
a Popov’s type Inequality then the closed-loop system is asymptotically hyperstable
(i.e., globally Lyapunov’s asymptotically stable for the class of feedback laws satis-
fying the Popov’s Inequality in (2). If the transfer function is Weakly Strictly Positive
Real, so that its associate time and frequency domain operators are Weakly Strictly Pas-
sive, thenRe ĝ(jω) > 0 for all finite ω but limω→±∞ Re ĝ(jω) = 0.

3.2. Asymptotic Hyperstability for Weakly Strictly Positive Real Transfer Functions

Thus, the above reasoning needs to be modified to get the asymptotic hyperstability result,
what extends the more classical ones of Lyapunov’s stability and absolute stability for
nonlinearities belonging to a sector for all time in a sector, (see, for instance, (Goreckiet
al., 1989; Popov and Halanay, 1963; De la Sen, 2003; De la Sen and Luo, 2003)).Assume
that the transfer function is Weakly Strictly Positive Real with Re ĝ(jω) > 0 for all
finite ω and limω→±∞ ω2Re ĝ(jω) � d0 > 0. Then, we perform multiplication and
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division by the squared-frequency in the frequency domain integrals of (5) to get instead:

∞ > γ2
0 � E(t)

� (2π)−1d0

∫ ∞

−∞

∣∣δ̂t(jω)
∣∣2dω = (2π)−1d0

∫ ∞

−∞

( ût(jω)
jω

)( ût(−jω)
−jω

)
dω

= d0

∫ t

0

δ2(τ)dτ > 0, for t > 0, (7)

whereδ(· ) is the input time-integral. Thus, it follows that this integral converges to zero
as time tends to infinity so that the input should exhibit that limit behavior. Continuing
with such a development one gets the following conclusion.Thus, if the plant is Weakly
Strictly Passive (so that its transfer function is Weakly Strictly Positive Real) while
the feedback loop is anyone satisfying a Popov’s type Inequality then the closed-loop
system is asymptotically hyperstable (i.e., globally Lyapunov’s asymptotically stable
for the class of feedback laws satisfying the Popov’s Inequality in (2).

3.3. Further Comments

Note also that, in both cases of Strict Positive Realness, the plant input/output energy
and supplied power are at the same time positive and bounded for all time: i.e., bounded
above with a finite bound and strictly positively bounded from below for all time.

A key associate property is that the absolute maximum input/output phase deviation
is 90◦ and that the system is strictly stable of strictly stable inverse in the case of strict
positivity or passivity and critically stable (of inverse being critically stable as well) with
eventual simple imaginary poles of nonnegative associate residuals.

Also, the hodographs of frequency responses are confined to the first and third quad-
rants of the complex plane and they are never tangent to the imaginary axis if the system
is Strongly Strictly Positive Real.

Note that another important aspect is the role played by the feedback device. Note
that while the forward loop is strictly positive/passive (and then dissipative) the feedback
one might have negative supplied energy (at least during certain time intervals) so that it
may be regenerative at least during certain time intervals. In this case, the upper-bound of
the feedback input/output integral satisfying Popov’s Inequality is a negative real number
during such time intervals. This leads to the weaker sufficient conditions for achieving
closed-loop stability, when adopting a physical point of view concerning weakness of
dynamics constraints, but it is not always the case concerning the fulfillment of Popov’s
Inequality. For instance, if the feedback loop consists of a dynamics-free nonlinearity in-
side the first/third quadrants, as in the standard absolute stability problem, then the above
mentioned upper-bound is always positive for the scalar product satisfying a Popov’s In-
equality type lower-bound what means that the feedback device is either conservative or
dissipative as it is the forward device (plant) while maintaining closed-loop stability in
terms of hyperstability.
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We can also point out by using again Parseval’s theorem in (4) to interpret it in the
time-domain via the bounds in (5) that

∞ >

∫ t

0

g(τ)u2(τ)dτ > 0 for all t > 0

if the system is Strictly Passive (or Strictly Positive), so that its transfer function is Strictly
Positive Real and

∞ >

∫ t

0

g(τ)u2(τ)dτ � 0 for all t > 0

if the system is Weakly Passive (or Positive), so that its transfer function is Positive Real.
As a result, the impulse responseg(t) is a strictly positive function and bounded above
for all time t > 0 if the system is either Weakly or Strongly Strictly Passive/Positive and
g(t) � 0 and bounded above for all timet > 0 if the system is Weakly Passive/Positive.
If the system is only Positive/Weakly Passive theng(t) does not converge asymptotically
to zero. Thus, the last inequality ensures that the inputu(t) is bounded. Since the transfer
function is (perhaps critically) stable [since Positive Real] then the output is bounded as
well and (in general, non asymptotic) hyperstability is guaranteed.

3.4. Asymptotic Hyperstability for Positive Real Transfer Function with a Single Pole at
the Origin (Popov’s Simplest Particular Case)

Now, assume the case that the plant input is not trivially zero and the forward loop is only
(nonstrict) Positive/Weakly Passive while its transfer function possess only a single pole
ats = 0. Assume also that̂g1(s) = sĝ(s) is Strictly Positive Real. After relating real and
imaginary parts of̂g(s) andĝ1(s), one getsRe ĝ(jω) = Im ĝ1(jω)/ω andRe ĝ1(jω) =
−ωIm ĝ(jω) so Im ĝ(jω) � 0 andIm ĝ1(jω) � 0 for ω � 0 should hold in addition.
Now, note that

E(t) = (2π)−1

∫ ∞

−∞
Re ĝ1(−jω)ˆ̄ut(jω)dω � (2π)−1d1

∫ ∞

−∞
ˆ̄ut(jω)dω,

whered1 > 0 provided that̂g1(s) = sĝ(s) is Strongly Strictly Positive Real (so that
strictly stable and of relative degree zero or plus unity) sinceĝ(s) is Positive Real with a

single pole ats = 0 andˆ̄ut(jω) = |ût(jω)|2
jω so that

ˆ̄ut(τ) =
∫ ∞

−∞

|ût(jω)|2
jω

ejωτdω,

E(t) � (2π)−1d1

∫ ∞

−∞

∣∣δ̂t(jω)
∣∣ ∣∣ût(−jω)

∣∣dω

= d1

∫ ∞

−∞
δt(τ)

∣∣ut(τ)
∣∣dτ = d1

∫ t

0

δ(τ)
∣∣u(τ)

∣∣dτ > 0
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for all t > 0 and any nontrivial input whereδ(t) =
∫ t

0
|u(τ)|dτ . After combining the

above inequalities with Popov’s Inequality of the feedback device, one gets that the input
is bounded, square-integrable and converges to zero. The output has the same properties
since ĝ1 is strongly positive real. Then, asymptotic hyperstability follows also in this
particular case of (non strict) positive realness whereĝ1(s) is Strongly Strictly Positive
Real. The proof for the case whenĝ1(s) is Weakly Strictly Positive Real is quite similar
but more involved and it may be addressed by proceeding withĝ1(s) as in the case of
Weakly Strictly Positive Real transfer function discussed previously in the context of
asymptotic hyperstability for strict realness of the forward loop. A very related case is
that the Simplest Particular Case (i.e., Positive Realness of the plant with a single pole
at the origin) leads to absolute stability (global asymptotic Lyapunov’s stability) for any
nonlinear device which only generates a zero output when its input takes a zero value.

4. Links with Operator Theory

All the above results may be interpreted in the context of operators. We consider the
input and Output spacesU (identical toV ) andY as Hilbert linear subspaces (i.e., Ba-
nach spaces, namely, normed spaces where any Cauchy sequence has a limit in those
spaces) of the set or real square-integrable functionsL2 ≡ L2(0,∞) endowed with
the inner product (semi) norm; i.e., ifu ∈ U then ‖u‖ =

√
〈u, u > and a simi-

lar norm is defined for the output signal onY . Since, we have to deal with limits as
time tends to infinity, it cannot be “a priori” guaranteed that the input/output functions
are square-integrable over(0,∞) since this has been a previous issue in the stability
proofs of the former section. Therefore, the formalism is more properly established on
L2e := {f : [0,∞) → R/ft ∈ L2∀t ∈ [0,∞)} ≡

⋃
0�t<∞(L2[0, t]); i.e., the set of

square-integrable truncated functions for any finite truncation time. Thus, for all finite
time, we can consider the (truncated) input and output signals of the dynamic system as
members of that set. Also, since theL2-norm is rather a semi-norm, since it is defined
through an integral, we consider as identical all input and output signals belonging to
classes that only differ possibly on sets of zero measure of(0,∞). Now, we pay our
attention to a key identity recovered from (3), namely,

E(t) = 〈ut, hut〉 � 0 for all t � 0

for all finite t. In our context, we say that this holds for anyut ∈ L2 for finite time
(which, in fact, is identical to say for anyu ∈ L2[0, t] for any finite time). That means
that the Convolution Operator is Positive if the transfer function of the plant is Positive
Real or Strictly Positive Real. That leads, trough Parseval’s theorem, to the fact that the
associate response frequency operator which is the mapping between the corresponding
input and output frequency linear spaces (being identified in particular with the real part
of the frequency responseRe ĝ(jω)) is also positive, respectively, strictly positive. Posi-
tive Operators are self-adjoin operators. If the two-sided boundedness of the input/output
energy balance discussed in the above section (finite above and below strictly from zero)
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holds for all time, which requires for the feedback loop to satisfy Popov’s Inequality, then
the system is asymptotically hyperstable since we can take limits as time tends to infinity
to conclude thatu ∈ L2, u tends to zero as time tends to infinity while it is bounded for
all time, provided thatut ∈ L2. In order to interpret all the results of the previous sec-
tions in the context of operator theory, we can extend the definition of positive operators
to passive ones together with their strict versions as follows:

The h-operator is (and so it is the operatorĥ(jω) := Re ĝ(jω) through Parseval’s
theorem):

– Passive or Dissipative: 〈ut, hut〉 � β for some real constantβ all t � 0. This
implies〈ût, ĥût〉 � β.

– Positive if β = 0; Weakly Strictly Positive/Passiveif 〈ût, ĥût〉 � β〉0 for all
nonzerout and allt > 0; andStrongly Strictly Positive/Passive if〈ut, hut〉 �
β〈ut, ut〉 with β〉0 for all t � 0. Since the properties of theh-operator induce
similar properties on thêh-operator, it follows that:

• If h is Positive then̂h is positive as well,Re ĝ � 0 for all real ω so that
ĝ is Positive Real. As a result, it is (perhaps critically) stable with relative
degree zero or plus unity (if realizable) with residuals at the critically stable
(necessarily simple) poles (if any) being nonnegative, having inverse Positive
Real and producing an absolute input/output phase deviation of at most 90◦.

• If h is Strongly Strictly Positive then̂h is Strongly Strictly Positive as well,
Re ĝ > 0 for all realω so that̂g is Strongly Strictly Positive Real. As a result,
it is strictly stable with relative degree zero, having inverse Strictly Positive
Real and producing an absolute input/output phase deviation of at most 90◦.

• If h is Weakly Strictly Positive then̂h is Weakly Strictly Positive as well,
Re ĝ > 0 for all real finiteω [with ĝ tending to zero as the absolute fre-
quency tends to infinity andω2ĝ tending to a positive number as the absolute
frequency tends to infinity] so that̂g is Weakly Strictly Positive Real. As a
result, it is strictly stable, having inverse Strictly Positive Real and producing
an absolute input/output phase deviation of at most 90◦.

The proof of asymptotic hyperstability requires that the feedbackF -operator satisfy
Popov’s Inequality and such a proof is addressed as indicated in the previous section.
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Apie abstrakčius ryšius tarp dinamini ↪u fizini ↪u sistem ↪u ir operatori ↪u
teorijos objekt ↪u energijos balanso ir stabilumo atžvilgiu

M. De la SEN

Darbe nustatomas ryšis tarp operatori↪u savybi↪u bei dinamini↪u sistem↪u ir j ↪u perdavimo funkcij↪u
hiperstabilumo ir inertiškumo s↪avokomis. Pradžioje tos s↪avokos kartu su kai kuriomis tampriai su
jomis susijusiomis s↪avokomis nagriṅejamos fiziṅeje plotṁeje. Po to jos siejamos su perdavimo
funkcij ↪u hiperstabilumu bei j↪u savyḃemis tuo pat metu peržiūrint ir paaiškinant hiperstabilumo
teorem↪a. Pagaliau, miṅetos s↪avokos palyginamos su matematinėmis hiperstabilumo s↪avokomis ir
siejamos su operatori↪u teorijos Hilberto erdv̇ese koncepcijomis.


